Compiler-Based Graph Representations for Deep
Learning Models of Code

Alexander Brauckmann
TU Dresden
Dresden, Germany
alexander.brauckmann@tu-dresden.de

Sebastian Ertel
Barkhausen Institut
Dresden, Germany
sebastian.ertel@barkhauseninstitut.org

Abstract

In natural language processing, novel methods in deep learn-
ing, like recurrent neural networks (RNNs) on sequences of
words, have been very successful. In contrast to natural lan-
guages, programming languages usually have a well-defined
structure. With this structure compilers can reason about
programs, using graphs such as abstract syntax trees (ASTs)
or control-data flow graphs (CDFGs). In this paper, we ar-
gue that we should use these graph structures instead of
sequences for learning compiler optimization tasks. To this
end, we use graph neural networks (GNNs) for learning pre-
dictive compiler tasks on two representations based on ASTs
and CDFGs. Experiments show that this improves upon the
state-of-the-art in the task of heterogeneous OpenCL map-
ping, while providing orders of magnitude faster inference
times, crucial for compiler optimizations. When testing on
benchmark suites not included for training, our AST-based
model significantly outperforms the state-of-the-art by over
12 percentage points in terms of accuracy. It is the only one
to perform clearly better than a random mapping. On the
task of predicting thread coarsening factors, we show that
all of the methods fail to produce an overall speedup.

CCS Concepts - Software and its engineering — Com-
pilers; - Computing methodologies — Neural networks;
Natural language processing; Graphics processors.

Keywords Deep Learning, Compilers, Graphs, LLVM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CC °20, February 22-23, 2020, San Diego, CA, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-7120-9/20/02...$15.00
https://doi.org/10.1145/3377555.3377894

201
RIGHTS L1 N Hig

Andrés Goens
TU Dresden
Dresden, Germany
andres.goens@tu-dresden.de

Jeronimo Castrillon
TU Dresden
Dresden, Germany
jeronimo.castrillon@tu-dresden.de

ACM Reference Format:

Alexander Brauckmann, Andrés Goens, Sebastian Ertel, and Jeron-
imo Castrillon. 2020. Compiler-Based Graph Representations for
Deep Learning Models of Code. In Proceedings of the 29th Interna-
tional Conference on Compiler Construction (CC °20), February 22-23,
2020, San Diego, CA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3377555.3377894

1 Introduction

The last decade has seen tremendous improvements in ma-
chine learning, especially due to deep learning methods,
which do not rely on manually-specified features of the data
to be learned, but are able to learn what features are impor-
tant on their own. Deep learning methods have revolution-
ized several fields like image recognition or natural language
processing. While progress has been made in compiler opti-
mization and tasks related to programming languages, deep
learning still plays a comparably modest role in these fields.

Most approaches to deep learning in compiler optimiza-
tion [21] borrow ideas from the successful deep learning
methods in natural language processing. This is very reason-
able, as the similarities between natural languages and pro-
gramming languages have fueled cross-fertilization of these
two fields for many years. Prominent examples feature Long
Short Term Memory (LSTM) architectures on sequences of to-
kens [5], or learning vector embeddings for instructions [3],
in analogy to the successful word2vec method [16], also based
on sequence models and LSTM. A comprehensive survey can
be found in [1]. However, the nature of the analysis required
for compiler optimization has shown to require very spe-
cific structural properties, which might be neglected by the
sequential nature of these methods. For example, the polyhe-
dral model looks into the geometric structure of the lattices
of array indices to find optimal re-orderings of nested loops.
This model has proven to be very successful in optimizing
such nested loops [20]. More generally, compilers base most
analysis on non-sequential data structures like abstract syn-
tax trees (ASTs) and control- and dataflow graphs (CDFGs).
We argue that these kinds of structures are very different

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3377555.3377894
https://doi.org/10.1145/3377555.3377894

RIGHTS

CC 20, February 22-23, 2020, San Diego, CA, USA

Token Abstract Syntax Control-Data-Flow-
sequence Tree (AST) Graph (CFDG)
Sj\‘/][g;:lce : DeepTune [5] inst2vec [3]
Graph .
Model This work

Figure 1. Representations of code in the compiler with their
respective machine learning models.

from the sequences of words that compose natural language.
Data dependencies can be crucial on parts of the code that
are far apart in the code string, and details in a small part of
the source, like the precise array indices in loops, can have a
tremendous impact on some optimizations. For this reason,
focusing on the similarities to natural language processing
for deep learning in compilers might be ill-advised.

In this paper, we propose to re-evaluate the representa-
tions of code we use in deep learning for compilers. We
believe that decades of research in the compiler domain have
identified data structures (cf. Figure 1) that expose the aspects
important for optimization better than the token sequences
that are analogous to word sequences in natural languages.
We thus propose to use graph-based neural networks, to ex-
plicitly capture these graph representations of code. Graph
neural networks have shown to be significantly better for
reasoning tasks, even when these are formulated in natural
language terms [9]. We believe these reasoning tasks, like
inference from a series of logical statements, structurally
resemble the kind of analysis required for compiler opti-
mization. We study two concrete graph-based architectures
(Section 4), using ASTs or CDFGs as input (Section 3). We
compare them with traditional methods on two complex
tasks (Section 5), deciding whether OpenCL kernels should
execute on a CPU or a GPU, and predicting optimal thread
coarsening factors. With orders of magnitude smaller infer-
ence times, our methods clearly outperform two different
state-of-the-art models ([5, 16]) in this task, with the CDFG
model yielding the best accuracy overall. Additionally, we
consider an alternative experimental setup to test aspects
about the generality of the learned heuristics. Instead of ran-
domly choosing training and test kernels from the available
pool, we make sure these sets feature kernels from disjoint
benchmark suites. With this setup, we show that our AST-
based model is the only one that clearly outperforms the
equivalent of a coin-toss to decide the kernel mapping when
generalizing across benchmark suites.

Finally, We also test on a second task, namely predicting
thread coarsening factors. With much less data and only
modest opportunities for speedup, this task showcases the
current limitations of deep learning in compilers. Our graph-
based models do not outperform the state-of-the-art. How-
ever, none of the considered models are able to produce an
overall speedup (> 1) with their predictions.

i,

202

A. Brauckmann, A. Goens, S. Ertel, and J. Castrillon

2 Related Work

Very recently, the deep learning model class of Graph Neural
Networks (GNNs) has emerged, which enables the extrac-
tion of task-specific features from graph-structured data. In
many tasks where information can be represented as a graph,
GNN-based models have proven to be superior to sequence-
based models that operate on a serialized representation of
the graph [10, 13]. By applying various established architec-
tures for sequences and euclidian data to the GNN model,
recurrence- and convolutional-based variants of the GNN
have been proposed and shown to support integration into
complex architectures to achieve discriminative and genera-
tive tasks where they are part of an end-to-end optimization
process [22].

A recent method has combined graph neural networks
and code representation learning for node-level prediction
tasks in the domain of software-engineering. In a variable
name- and misuse prediction task based on a AST-graph
representation, they have shown to outperform recurrent
neural networks [2].

Probabilistic models on source code have successfully been
used for solving various tasks on source code in the research
area of compiler optimization [21]. While the optimizations
themselves are performed with formal, algorithmic meth-
ods, probabilistic models are used for selecting and tuning
them to achieve better performance [6]. Also in adjacent
research areas, probabilistic models have solved tasks where
statistical properties of source code are desirable, e.g. auto-
completion [19] and variable naming [18]. Similarly, they
have been used to provide approximations for problems that
due to their enormous complexity are hardly solvable with
formal methods, such as software defect prediction [14] and
tuning of compiler heuristics [3, 5, 15, 17], albeit not without
caveats [7].

Early models for predicting compiler optimizations rely
on features that are manually designed by experts [6, 15, 17]
and automatically selected from a set of candidates [11].
Those features are typically quantities of instructions in
compiler intermediate representations (IRs). To extract fea-
tures that capture the complex dependencies, several models
relying on deep learning [12] have been proposed: Cummins
et al [5] train an LSTM recurrent neural network model to
predict compiler-internal optimization heuristics based on
a program represented as a raw sequence of C program-
ming language tokens. Ben-nun et al [3] adopt the notion
of the distributional hypothesis, which is commonly known
as word2vec [16] to produce embeddings, i.e. mappings to
real vectors, on a graphical representation based on LLVM
IR. This results in a closeness of the embeddings for code
that shares similar contexts in the large body of open-source
software projects that the embeddings have been trained
on. Subsequently, the embeddings are used in more com-
plex downstream tasks as input to an LSTM recurrent neural

RIGHTS

Compiler-Based Graph Representations for Deep Learning ...

network model. However, the semantic information of the
compiler IR is only being used to produce the embeddings
in the first phase, and not part of the optimization of the
downstream task. Therefore, the embeddings are not opti-
mized for the specific task. Figure 1 shows how these models
compare conceptually to our work.

To the best of our knowledge, no machine learning model
that uses the semantic information of compiler-internal anal-
yses in an end-to-end setting has been studied.

3 Compiler-Based Representations

A compiler typically uses several representations of code
at different stages in order to enable different analyses and
optimizations. In this section, we will discuss three of the
most common representations at the different stages and
how we expect their properties to affect machine learning
tasks.

Consider the following OpenCL kernel as a running ex-
ample for this section:

__kernel void Add(__global const int* x,

__global const intx vy,
__global int* z, const int d) {
const int id = get_global_id(0);
if (id < d)
z[id] = x[id] + y[id];

The code for this kernel contains very obvious informa-
tion, like the numbers and types of input variables for the
kernel, but also very subtle information, like the indentation
style of the code, which while semantically irrelevant for
the compiler, can say something about the person writing
the program. In this paper, we are taking the point of view
of the compiler, and thus will not take into consideration
such information that does not change the semantics of the
program, like the indentation style, or more importantly, the
identifiers in the code. Thus, we will consider code that is
normalized for identifiers, using the methodology described
in [5]. It standardizes all identifiers and removes whitespaces.
The kernel above becomes:

__kernel void A(__global const int* a,
__global const int* b, __global int* c,
const int d) {const int e = get_global_id
(0); if (e < d) c[e] ale] + blel;}

When compiling this kernel, a typical compiler’ will trans-
form this input string of character into multiple different
representations at various stages, namely as a sequence of
tokens, an abstract syntax tree, and a control and dataflow
graph. We will consider these three representations and em-
phasize the focus for machine learning for code, as the rep-
resentation is what permits the ML model to gather the rele-
vant information. If a piece of information is not included

lin this work, concretely, we use LLVM and Clang in version 7.1.0

Ay

203

CC *20, February 22-23, 2020, San Diego, CA, USA

I __kernel H void __global H const H int*
‘ __global H const H int* F@%{ __global H int*
[HolDHiHitHeH=HadHeHIHeH]
=Ha eI Hb M e]

Figure 2. An example kernel as a sequence of tokens.

in a representation, it cannot be learned. On the other hand,
if a particular kind of information is very prominent in a
representation, an ML model is more likely to learn patterns
based on this information.

3.1 Sequence of Tokens

Conceptually, a compiler first turns a string of characters into
a sequence of tokens. Figure 2 shows the example kernel as a
sequence of tokens. Boxes are used to represent tokens in the
figure, and arrows point to the next token in the sequence.
This illustrates both the sequential nature of a token string, in
particular as its structural similarities to strings of characters.
In terms of machine learning, this sequential nature can
be an advantage and a drawback at the same time. Data
organized in a sequential manner has been well-studied in
ML, and powerful methods exist that yield good results on
sequential data. The ordering of the sequence of tokens also
faithfully represents the ordering of the code as written by
the programmer. This ordering contains information on the
thought process of the programmer, which might be valuable
for analyzing and characterizing code. However, the ordering
may overconstrain the representation, enforcing an artificial
order on code fragments that could otherwise execute in a
different order.

3.2 Abstract Syntax-Tree

After parsing, an abstract syntax tree (AST) on its own loses
some information. In particular, if an AST does not include
the identifier strings, then it is impossible to tell when two
identifiers refer to the same data. To deal with this, instead of
embedding the identifiers, we enhance the AST with (labeled)
dataflow edges, which connect two nodes in the AST that
refer to the same data.

Figure 3 shows our example kernel as an AST. We can
see how the first two arguments to the kernel (x and y in
the original code) are indistinguishable in the AST. Because
addition is commutative, swapping these two arguments
yields the same result. In the token sequence, because tokens
have to have an order, this symmetry is broken by imposing
x as coming before y. The AST, on the other hand, removes
this synthetic dependency: swapping the arguments is an
isomorphism of the AST and our dataflow-enhanced version.
This is an example of how the AST abstracts away structure
that is not syntactically relevant, otherwise imposed by the

RIGHTS LI

CC 20, February 22-23, 2020, San Diego, CA, USA

Function
type: void

FunctionArg

FunctionArg
type: int

FunctionArg
type: int*
4

FunctionArg
type: int*

DeclStmt
type: int

J CompoundStmt

BinaryOperator
operator: =

/

BinaryOperator
operator: +

type: int*

BinaryOperator
operator: <

CallExpr
function_name: get_global_id

IntegerLiteral
value: 0

’ ArraySubscriptExpr

ArraySubscriptExpr ArraySubscriptExpr

Figure 3. An example kernel as an AST with overlayed
dataflow edges (in blue).

sequential nature of strings. As discussed before, for machine
learning, this difference can be an advantage or a drawback,
e.g. as the ordering might indirectly encode some of the
thought processes of the programmer as well. The structure
of an AST reflects the grammar of the language, and it would
be plausible to think that this exposes the semantics of the
code more directly, although it is not obvious that it should.
Based on the AST, we define the following representation:

Definition 1 (AST+DF). A dataflow-enriched AST graph is a
labeled digraph, where nodes are labeled as Declarations, State-
ments, and Types as in the Clang AST. The edges are labeled
either as type AST, representing child-of relationships within
the AST, and dataflow, representing use use-def relationships
for variables.

To create dataflow-enriched AST graphs, we first extract
the raw Clang AST using a tool implemented in the Clang
library. As a second step, we reduce the graph by eliminating
regular nodes that don’t provide additional, structure-critical
information. A small graph diameter is generally a desirable
property because the information has a limited outreach in
the propagation scheme of the graph model introduced in sec-
tion 4. Specifically, we eliminate nodes of type Dec1RefExpr
and ImplicitCastExpr by merging them with their AST-
edge successors.

3.3 Control- and Dataflow Graph

Finally, the control and data flow graph (CDFG). This graph
organizes the statements in the code not by their grammar,
but by the semantics of the possible flow of control in the
program. The basic structure of the CDFG is that of a graph.
This graph will usually contain cycles, e.g. if the code con-
tains loops. Similar to the AST+DF, we define the following
representation:

Ay

204

A. Brauckmann, A. Goens, S. Ertel, and J. Castrillon

2
load,

load,

sext

etelementptr

load,

load

Figure 4. An Example Kernel as a CDFG. The control flow
is depicted by black arrows, the data flow by green ones, the
red arrow represents an external function call.

Definition 2 (CDFG+CALL+MEM). A LLVM-based control-
and dataflow graph enrichted with calls and memory nodes is
a labeled digraph, where the nodes are labeled with LLVM IR
instructions. The edges of the type control- and dataflow define
the basis of the CDFG. The dataflow edges represent opera-
tor relationships within the LLVM IR. CALL edges are added
based on dependencies to return values of functions. MEM edges
represent store-load dependencies to specific memory locations.

We create the CDFG by using a custom LLVM pass that
extracts all LLVM IR instructions, the operands, and the
memory accesses. We disable all optimization passes by using
optimization level 0 before running our pass.

Figure 4 shows the CDFG representation of the example
kernel. Note that the statements in the figure are not in C,
but in LLVM IR instead. As can be seen in the figure, this
representation includes many new low-level operations, like
memory management. It has a different structure, closer to
how the calculation is executed than to what is calculated.
Thus, this is the representation that is closest to the execution
semantics of the program and furthest away from how the
programmer expressed a computation. Again, for machine-
learning, this poses a trade-off: while exposing the semantics
more directly might be beneficial to learn said semantics,
it may hinder learning subtleties that are encoded in the
human components of a piece of code.

4 Machine Learning Architectures

In order to leverage the compiler-based representations out-
lined in Section 3, we need deep learning models appropriate
to their structure. In this section, we introduce a concrete

RIGHTS

Compiler-Based Graph Representations for Deep Learning ...

architecture to leverage the CDFG and AST representations.
As this paper focuses on predictive models, we first explain
some core principles for ML-driven predictive models in
compiler tasks. After that, we dive into the specifics of the
ML architecture required to leverage graph models in the
context of predictive models.

4.1 Predictive Models

Predictive models revolve around a simple principle: based
on some input data X, predict some output data Y. In the
context of compiler optimizations, the input data X is the
program code, and perhaps additional information about
the task. For example, the task of deciding whether a kernel
should be executed on a CPU or a GPU depends on the
problem size, which is not part of the kernel’s code, and
should be considered additionally as input, besides the code.

Optional

H Auxiliary inputs ‘
e.g. work group size, data size

)

m Result ‘

Device mapping
Thread coarsening factor

H Source code ‘ } OpenCL
P l ; Source rewriter

| reprorzssmg ‘ } Clang, LLVM

m Code representation ‘ } Token

AST, CDFG
I . .
Deep Learni del ‘ }
‘ eep Learning mode CNN

Figure 5. High-level overview of the predictive task.

An end-to-end optimization flow for code-based tasks was
proposed in [5], and we base our proposal on it by replacing
the representation-specific part with a graph-based deep
learning model. Figure 5 depicts the general flow within
these predictive models. As can be seen, the input source code
is transformed to the appropriate representation for machine
learning, using well-established compiler techniques. This
includes, for instance, the code normalization discussed in
Section 3, the generation of a token string, the syntax analysis
producing an (enriched) AST, or a pass creating the CDFG.
The output of the flow depends on the concrete predictive
task. It could be a simple binary decision like CPU or GPU,
or a transformed version of the input program. In this paper
we restrict the output to a choice of n possible outcomes,
e.g. hardware mappings ({CPU, GPU}) or thread coarsening
factors ({2,4,...,32}).

For the deep learning component in sequential-models,
as the token-based model used in [5], well-known recurrent

i,

205

CC *20, February 22-23, 2020, San Diego, CA, USA

neural network architectures like LSTM [8] can be used as
representation models. For graph-based models, however,
we need to replace the ML architecture used in the flow. In
the following, we describe the architecture of a deep learning
component of this flow based on graph neural networks. We
use this architecture to perform predictive tasks on the AST
and CDFG structure.

4.2 Graph Neural Networks

Figure 6 illustrates the deep learning part of our predictive
model for graphs with its corresponding components and
their relationships. As mentioned above, we base our pro-
posed architecture on the model described in [5] and extend
it with the GNN proposed in [13]. Our architecture consists
of an embedding layer for creating initial embeddings, a
propagation layer for enriching the initial embeddings with
structural information, and a prediction layer that aggregates
the propagated embeddings and performs a prediction.

The input structure to the model is a labeled graph G =
(V,E). The output of the model is an n-sized vector repre-
senting a probability distribution, with n being the number
of classes. A node embedding vector h, € R? is assigned to
all v € V, where d € N is its dimension.

We transform the graph representations of code into the
input structure of the model by generating annotated types,
considering the graphs of the whole dataset. For the AST-
based representation, node types are tuples of (Clang AST
node type, property), whereas considered properties are

o the data type for Clang AST nodes of type Function,
FunctionArg, and DeclStmt,

e the operator for Clang AST nodes of type
BinaryOperator,

e and function names for Clang AST nodes of type
CallExpr.

For the CDFG graph, node types are directly mappable to
the LLVM IR node types. Additionally, we consider function
names as node types.

Each distinct tuple of the AST graph, or each node type
for the CDFG graph respectively, results in a different node
type v; € N in the scope of the graph model. For each edge,
we also add an edge with the reverse direction, in order to
improve the propagation capabilities of the model.

Initial Embedding Layer Nodes from the input graph are
represented as one-hot encoded vectors, i.e. vectors (e;); =
i j, where §; ; is the Kronecker Delta which is 1iff i = j and
0 otherwise. Since the number of possible node types tends
to be very large in practice, we introduce this embedding
layer to reduce the dimension of these one-hot encoded
node vectors, to the smaller size d € N described above.
The node embedding vectors h,, are computed by applying
a learnable function fin;t(v;) to the node annotation vector
vy. The learnable function is implemented as a Multi-Layer
Perceptron (MLP) neural network.

RIGHTS

CC 20, February 22-23, 2020, San Diego, CA, USA

’ Preprocessing ‘ H Auxiliary inputs

Code representation
e

H Code representation graph ‘

N
T e | [

.

Edges ‘

~

’ Initial embedding layer ‘

lhv Y

’ Embedding propagation layer 3 h,

2 :

aux
’ Prediction layer ‘

Deep Learning model

v
‘ Results ‘

Figure 6. An overview of the predictive model architecture
based on graph neural networks.

hv = finit(vt) .

Embedding Propagation Layer With the initial encod-
ings based only on the node type, the encoding does not con-
tain any structural information of the graph, i.e. as expressed
by the edges. By applying an iterative information propaga-
tion scheme, the initial node embedding vectors produced
by the embedding layer are enriched with this structural
graph information. For a fixed number of iteration steps T,
nodes propagate their embeddings to their directly adjacent
neighbors and eventually result in embeddings that contain
information about a T-sized neighborhood. This is illustrated
in Figure 7, where the colored cells represent the information
on the nodes encoded in the embedding vectors.

In each iteration, messages are formed for each node and
each edge by using a learnable function fis(ho, €;) with the
embedding information h,, and the edge type information e;.
It consists of learnable parameters A and b for each edge type
e;. When all messages of an iteration have been passed to
their target nodes, they are aggregated per target node and
new intermediate node embedding vectors h/, are formed
by applying a learnable function f,rop(ay, h). This function
is implemented as a Gated Recurrent Unit (GRU), a variant
of a recurrent neural network with similar performance to
an LSTM, but with less learnable parameters [4]. After T
iterations of the scheme, the node embedding vectors reach
a final state. As depicted in the figure, they are then aggre-
gated to a single graph embedding hg, which happens in the
prediction layer.

i,

206

A. Brauckmann, A. Goens, S. Ertel, and J. Castrillon

he
b) ﬁ)rop fprop
-
hy

he

144
h’U

C
) ﬁ)mp
ANANAN~

Figure 7. An illustration of a) encoding the initial node
embeddings, b) the embedding propagation scheme with 2
iterations, and c) the aggregation to a graph embedding.

fmsg(hv’ et) = Aet ~hy + bet,
ay = Z fmsg(h‘u’ et)’

u:(u,v)eE

h‘/u = fprop(av, hv) Yo eV.

Prediction Layer This layer maps the final node embed-
ding vectors to a probability distribution. To achieve this, a
fixed-size graph embedding vector is computed by aggregat-
ing the final node embedding vectors and then mapping the
graph embedding vector to the output.

The aggregation is implemented by summing all final node
embedding vectors, after mapping them to a higher size
with the learnable functions f;,(h,) and g,,(h,). An atten-
tion mechanism, implemented by the element-wise product
fin(he) ©gm(hy) of fin(hy) and g, (hy), decides the relevance
of individual nodes in the current task. The functions are
implemented as MLPs with hyperbolic tangent and sigmoid
activation. The sigmoid activation function is a natural fit for
the attention mechanism because it outputs a range of (0, 1)
that is multiplied element-wise with the output vector of
fm(hy). The hyperbolic tangent function on the other hand,
normalizes the values to a range of (—1, 1) within the model,
yielding better performance.

A final learnable function f,,;(hg) computes the output
based on the graph embedding vector hg that is optionally
concatenated with the auxiliary inputs aux. It is implemented
as a MLP with a softmax activation function.

hg = fm(hv)’ gg = gm(h‘u),
hg = Z 95 © K, out = four(hg, aux).
veV

RIGHTS LI MNI

Compiler-Based Graph Representations for Deep Learning ...

5 Evaluation

In this section, we present an evaluation of our methods
using the different representations of code.? We do this by
using two different complex tasks on OpenCL kernels. These
tasks require an understanding of the full kernel, how dif-
ferent parts of it interact and the subtle interplay of them
with the memory hierarchy and SIMD capabilities of the
different target platforms. As such, the tasks serve as a good
first evaluation of the representations, as we expect only
a representation capable of capturing these intricacies to
perform well on them.

For both tasks, we reproduce’ the results of [5] and [3]
and integrate our method into the experimental setup. In
this setup, the dataset is split into k parts which are used
to make different training and testing sets in a k-fold cross-
validation scheme. In this scheme, the model is iteratively
trained anew using k — 1 parts of the dataset as training data
and is subsequently tested on the one part that was left out
while training. This is repeated for all k — 1, 1 partitions.

In these experiments, we observe a variance in the results
for all models, as the initialization of their weights is random
and the model converges to different minima. Therefore, we
repeat the execution of each experiment 10 times and report
aggregated results.

5.1 CPU/GPU Mapping

The problem of CPU/GPU mapping considers OpenCL ker-
nels and has the goal of classifying them as CPU or GPU,
depending on where they can be expected to run faster.
This problem has been studied extensively, and several ap-
proaches have been proposed to solve it. For example, Grewe
etal. [17] propose a heuristic based on a decision tree to solve
this. Cummins et al. [5], on the other hand, used a machine
learning approach based on an LSTM and a token representa-
tion to improve upon this. More recently, Ben-Nun et al. [3]
used a model based on finding good embeddings for LLVM
instructions to improve this problem further. We compare
our compiler-graph-based models to these approaches.

For evaluating the models, we want to asses their general-
ization performance. In the tasks we use the accuracy as a
metric, which is the ratio of the correctly predicted device
mappings over all predicted device mappings. As an addi-
tional metric for the performance benefit that the methods
bring we use the speedup. A correctly predicted mapping
of a sample yields a faster execution, resulting in a speedup
over a static mapping. In a static mapping, a single platform
(CPU/GPU) is selected and all kernels are mapped to this
platform. To select, the platform which is fastest in most
of the training samples for all test benchmarks is chosen.

2 Artifact available at https://github.com/tud-ccc/learning-compiler-graphs
3In fact, the results of [5] we show are better than the ones originally
published. We could reproduce this behavior in the published artifact of
this original work as well, obtaining better results there too when loading
the published models.

-:-l}

207

CC *20, February 22-23, 2020, San Diego, CA, USA

Additionally, we compare the models in terms of the number
of trainable parameters, which describe their sizes, as well
as their training and inference time. Inference time is partic-
ularly important for compiler-related tasks, as it translates
to a faster compilation time for an end-user.

Experimental Setup The dataset consists of the seven
benchmark suites AMD SDK, NPB, NVIDIA SDK, Parboil,
Polybench, Rodinia, and SHOC along with the execution
times for both CPU and GPU on two different heterogeneous
systems, one with an AMD Tahi 7970 GPU and one with an
NVIDIA GTX 970 GPU.

The construction of the code representation graphs for
the whole dataset leads to 92 node types for the GNN model
using AST+DF (here, GNN-AST) and 140 node types for the
GNN model using CDFG+CALL+MEM (here, GNN-CDFG).
To compute the initial node embeddings, we map the one-
hot encoded vectors with an MLP fi,;; consisting of 2 hidden
layers of size 64 to vectors of size 32. As propagation size
T, we chose 4 iterations, which yields embeddings that in-
clude a 4-neighborhood of the individual nodes. The graph
embedding vector hg of size 64 is created by aggregating
the node embeddings using the two MLPs f;,, and g,,, which
are dimensioned with 2 hidden layers of size 64. The graph
embedding is mapped with an MLP with two hidden layers
of size 32 to a dimension of 32, then serves as input to the
prediction model used in [5] and [3], which is a MLP with 1
hidden layer of size 32.

We compare both of our methods to the state of the art
methods DeepTune [5] and inst2vec [3]. We also compare it
to the decision-tree-based model of Grewe et al [17]. Addi-
tionally, we compare it to the static mapping model, and to
a model choosing CPU or GPU at random.

Table 1 gives a comparison of the network sizes, in terms
of the number of trainable parameters, as well as the training
and inference times. We can see that Grewe et al’s model
is considerably faster in training and inference and has the
least amount of trainable parameters. The deep learning
models are larger in size by several orders of magnitude. It
is important to note that the AST-based model is an order of
magnitude faster in inference than the other deep-learning
based models.

S
=
a

Model

Random mapping
Static mapping
Grewe et al.
DeepTune
inst2vec
GNN-CDFG
GNN-AST

Accuracy
=]
&
=1

S
N
G

0.00

AMD Tahiti 7970
Platform

NVIDIA GTX 970

Figure 8. Accuracy results compared to state-of-the-art.

https://github.com/tud-ccc/learning-compiler-graphs

CC 20, February 22-23, 2020, San Diego, CA, USA

A. Brauckmann, A. Goens, S. Ertel, and J. Castrillon

Table 1. Model sizes for the device mapping task

Code Model No. of learnable . .

Model . . Training time Inference time
Representation architecture parameters

Grewe et al. [17] Manual features Decision tree 14 1.02x1073s 8.46 X 107 s
DeepTune [5] C tokens Recurrent neural network 76908 6.72x10%°s 9.02x107's
inst2vec [3] LLVM-IR tokens Recurrent neural network 649372 1.08 X 10% s 1.34s
GNN-AST AST+DF Graph neural network 139846 8.40 x 10%s 9.95x 107%s
GNN-CDFG CDFG+CALL+MEM Graph neural network 89798 1.59 X 10° s 9.8x107!s

GNN-CDFG
GNN-AST

Random mapping DeepTune
Grewe et al. inst2vec

1.61
I 1.5

0.79
NVIDIA GTX 970

H

1.56

1.39

1.24 I

Speedup (log)

AMD Tahiti 7970
Platform
Figure 9. Speedups (geometric mean) compared to state-of-
the-art.

Figure 8 shows the overall accuracy results on the different
benchmarks. We see how our graph-based models perform
better than inst2vec, albeit modestly. While DeepTune pro-
duces a slightly better accuracy than GNN-AST, GNN-CDFG
yields the highest accuracy overall. Similarly, Figure 9 shows
the speedups (geometric mean over all executions) *. We
see how the trends of the speedup results are comparable to
those seen from the accuracy results, which is to be expected
as the two metrics are linked by their definitions.

While useful for comparison with the state-of-the-art, the
setup used by [3, 5] trains the model with kernels from the
same benchmarks that it then uses to evaluate the heuristic.
Having 7 different benchmark suites, we believe that using
these as groups in a k-groups-split methodology yields more
insight about the generalization capabilities of the models.
This way, they are tested on kernels from a benchmark suite
they have not been trained on. To this end we split the dataset
into 7 parts, each of the 7 parts being the different bench-
marks suites, instead of 10 randomly-chosen parts out of
the set of all kernels of the benchmark suites. This way, the
model is tested on data that is fundamentally different than
the benchmarks its was trained on.

Figure 10 shows the results of the experiment with this
alternative setup. Since we split the train and test sets by
benchmarks, we can see how the models fare on every bench-
mark after being trained on the other six. It is notable how
the different methods can have vastly different results on

4Qur reported values differ from the original publications of the baseline
methods, because we aggregate using the geometric mean instead of the
arithmetic mean.

RIGHTSE LI MN iy

208

the different benchmarks. The final entries for each platform
show an aggregated result over all benchmarks (artithmetic
mean).

We can see that GNN-AST is not only the one with the best
overall results, but also the most consistent ones. It had an
overall accuracy of 60.6%, which is over 12 percentage points
better than that of DeepTune at 47.9% and even better than
the 44.9% overall accuracy obtained by inst2vec. In this case,
GNN-CDFG had a similar performance, beating DeepTune
by less than a percentage point in accuracy at 48.5%. In
fact, we see how when tested on different benchmark suites
than they were trained on, all state-of-the-art methods we
compared to here perform worse than a coin-toss (50.9%
accuracy). This indicates that the models probably do not
learn the relationship between the code’s semantics and the
optimal compute device in a way that is generalizable when
the code becomes different enough.

5.2 Thread Coarsening

In parallel architectures, faster executions can be achieved
by merging multiple parallel threads in certain situations.
The thread coarsening factor is a parameter that controls this
behavior in OpenCL. Various predictive models have been
proposed to solve this task, such as that by Magni et al [15],
which uses an MLP neural network based on static code
features, such as the quantities of certain instructions on the
LLVM IR. More recently, Cummins et al. [5] and Ben-Nun
et al. [3] proposed to use LSTM-based deep learning models
based on a source- and LLVM IR-level sequence of tokens.
The dataset for this problem consists of 17 selected kernels
from the AMD SDK, NVIDIA SDK, and Parboil benchmark
suites. As output, the flow decides among 6 classes for every
kernel, corresponding to coarsening factors of 1, 2, 4, 8, 16, 32.
We reproduced these models and the corresponding results
and used these as baseline to compare to our methods.

For this dataset we get a total of 46 distinct node types
for GNN-AST and 54 node types for GNN-CDFG. In this
task, we keep the dimensions of the model at a minimum, as
the amount of training data is quite slim. We apply one-hot
encoding to the nodes represented as node types and map
the resulting vectors with the MLP fi,;; to a size of 4. This
MLP only contains the input and output layers and no hidden
layers. After 4 propagation time steps T, we aggregate the

Compiler-Based Graph Representations for Deep Learning ...

CC *20, February 22-23, 2020, San Diego, CA, USA

Table 2. Model sizes for the thread coarsening task.

Code Model No. of learnable . .
Model . . Training time Inference time
Representation architecture parameters
Magni et al. [15] Manual features MLP 8.63s 2.62%x107%s
DeepTune [5] C tokens Recurrent neural network 76838 8.66 x 1071 5.59 x 107's
inst2vec [3] LLVM-IR tokens Recurrent neural network 649030 1.92x 10 s 2.08 x 107 's
GNN-AST AST+DF Graph neural network 914 4.83s 1.21x 10735
GNN-CDFG CDFG+CALL+MEM Graph neural network 1024 521 1.32X1073s
AMD Tahiti 7970 NVIDIA GTX 970
Model
5 075 ‘ Random mapping
3 Static mapping
. Illh{i II' iII l il o
154 DeepTune
< 0.25 L I h I i h I inst2vec
GNN-CDFG
GNN-AST
0.00
> & X &
xO & be &Y % *00 & & Q ézr
Y§Q 4\0\;. szr‘ &%oz Q&b c) A\ Y§Q Ava Q‘é o\§<& %b c“g‘ W
%

Benchmark Suite

Figure 10. Accuracy of device mapping in grouped setting.

node embedding vectors to a graph embedding vector hg
of size 8 by using the two MLPs f;,, and f; with no hidden
layers. We use the prediction model used in [5] and [3], which
consists of one hidden layer, but with a reduced dimension of
4 instead of 32. All baseline models we trained in the reported
configurations.

Again, we compare the model sizes and training and infer-
ence times of the different models. The results can be seen in
Table 2. And again here we see how inference in GNN-based
models is orders of magnitude faster than the LSTM-based
sequential counterparts.

GNN-CDFG
GNN-AST

Oracle
Magni et al.

DeepTune
inst2vec

10.95

Speedup (log)

0.86

AMD
Radeon HD 5900

AMD NVIDIA
Tahiti 7970 GTX 480

Platform
Figure 11. Speedup results in thread coarsening task.

NVIDIA
Tesla K20c

Figure 11 shows the results of the thread coarsening exper-
iment. In the figure we add an “Oracle” for reference, which
depicts the best possible speedups. As we can see in the fig-
ure, the sequence-based models perform better than both

RIGHTS LI N K}

209

graph-based models in three of the platforms. It is notable,
however, that in most cases the predicted thread-coarsening
factors yield an overall slowdown. Overall, DeepTune yields
an overall speedup (geometric mean) of around 0.97 across
all platforms, GNN-AST is slightly better with 0.98 and GNN-
CDFG is slightly worse with 0.93. The Magni et al. model
yields an overall speedup of 0.87. The best results in this
task are achieved by inst2vec, which has an overall speedup
of 1.00, i.e. just as good as doing nothing. In general, all
deep learning methods fare comparably bad at this task. This
might be explained in part by the modest possible maximal
speedups, which cap at 1.28 overall. However, it is perhaps
also an indication that current deep learning models of code
are not yet up to this task.

5.3 Comparison of Graph-Based Models

The graph-based representations we have used for deep
learning in this paper feature several enhancements, like the
dataflow edges enriching the AST. Similarly, for the CDFG we
included edges connecting the corresponding instructions
for function calls and the data in load and store instructions.
In this section, we want to use the three experimental se-
tups described above to compare how our model fares with
and without these enhancements. For this, we used two ver-
sions of our AST-based representation, with (AST+DF) and
without the dataflow edges (AST). Similarly, for the CDFG
representation, we considered four different versions: just
control flow edges (CFG), control and dataflow edges (CDFG),
CDFG+CALL with call edges, and CDFG+CALL+MEM.

We trained the model using similar configurations as in the
previous experiments. Figure 12 shows the results with the

CC 20, February 22-23, 2020, San Diego, CA, USA

Dev. map. (random split)
1.00

0.93 0.93 0.93

0.75

I
=

Accuracy
o
&
3
Accuracy

I
1Y

0.25

0.00 0.0

Dev. map. (grouped split)

A. Brauckmann, A. Goens, S. Ertel, and J. Castrillon

I 0.98
0.94

Thread Coarsening

1

0.95 0.95

Model

Magni et al

Grewe et al.

DeepTune

inst2vec

GNN CFG

GNN CDFG

GNN CDFG + CALL

GNN CDFG + CALL + MEM
GNN AST

GNN AST + DF

Speedup (log)

Figure 12. Comparison of graph-based models with different enhancements.

different versions of our graph-based representations. In the
random setup for device mapping, all variants of the CDFG-
based representation fared similarly well, yielding the best
results overall. In the grouped setup, we see how the AST-
based representation yields better results. All experiments,
the grouped split mapping especially, show that the addition
of the dataflow edges to the AST was fruitful. Finally, as
discussed above, the results on the thread coarsening task
are pretty modest across all deep learning models.

From these experiments, we cannot conclude that there
is a single best compiler-based representation of code for
deep learning models. In the random split of the mapping
task, where the training data resembles more the test data,
the models closer to the execution semantics (CDFG) had
the best performance. On the other hand, with the grouped
split, where a higher degree of generalization is required, the
AST with its more abstract semantics, closer to the program-
mer, performed better. For the thread coarsening task, which
has very little data points available, the non-end-to-end ap-
proach of inst2vec fared best, albeit also not particularly well,
yielding no speedup overall.

6 Conclusion

In this paper, we have compared code representations for
deep learning based on the representations used in the com-
piler: sequences of tokens, abstract syntax trees, and con-
trol and data flow graphs. We have shown different graph-
based methods to be better suited for a complex classification
task, identifying the optimal CPU/GPU mapping for OpenCL
kernels. In particular, we outperformed state-of-the-art ap-
proaches using sequential models based on token sequences.
We also showed more generalization capabilities by split-
ting training and test data into sets coming from disjoint
benchmark suites instead of random subsets of all kernels.
In this alternative setup, our graph-based model GNN+AST
performed significantly better than their sequential counter-
parts, which failed to beat a coin-toss.

From our experiments, we cannot conclude that there is a
single best compiler-based representation of code for deep
learning models. In the random split of the mapping task,
where the training data resembles more the test data, the

RIGHTSE LI MN iy

210

models closer to the execution semantics (CDFG) had the
best performance. On the other hand, with the grouped split,
where a higher degree of generalization is required, the AST
with its more abstract semantics, closer to the programmer,
performed better. For the thread coarsening task, which has
very little data points available, the non-end-to-end approach
of inst2vec fared best, albeit also not particularly well, yield-
ing no speedup overall.

The CPU/GPU classification task is a complex task where
the interaction between different parts of the code and the
target architecture all play a role. Thus, this task serves as a
good first challenge for compiler analysis methods. However,
the related predictive task of finding optimal thread coarsen-
ing factors for OpenCL kernels proved to be too challenging
for both sequential and graph-based models. The results of
this task indicate that while useful, deep learning methods
still struggle on complex compiler-related tasks. Note that
the dataset for this task is small, which poses an additional
challenge to deep learning models.

We believe our results encourage further investigation of
compiler-based representations of code. Programming lan-
guages and machine semantics being strict and structured
as they are should also be an advantage in terms of learning,
and we can take advantage of decades of research into com-
piler methods to improve machine learning methods in this
domain. Furthermore, OpenCl kernels are comparatively
small. In future work, we plan to investigate these meth-
ods on larger code fragments, where we believe the graph
structures should be even better suited to track long-range
dependencies between parts of the code.

Acknowledgments

We thank Chris Cummins and Hugh Leather for making
the baseline methods and datasets available, as well as for
valuable feedback on the approach. We also thank Christian
Menard for an initial version of the LLVM pass. Further, we
thank the Center for Information Services and HPC (ZIH)
at TU Dresden for providing computation resources. This
work was supported in part by the German Research Council
(DFG) through the TraceSymm project CA 1602/4-1 and the
Studienstiftung des deutschen Volkes.

Compiler-Based Graph Representations for Deep Learning ...

References

(1]

(2]
(3]

(4]

(5]

RIGHTS

M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton. A survey of
machine learning for big code and naturalness. ACM Computing
Surveys (CSUR), 51(4):81, 2018.

M. Allamanis, M. Brockschmidt, and M. Khademi. Learning to repre-
sent programs with graphs. arXiv preprint arXiv:1711.00740, 2017.

T. Ben-Nun, A. S. Jakobovits, and T. Hoefler. Neural code comprehen-
sion: a learnable representation of code semantics. In Advances in
Neural Information Processing Systems, pages 3585-3597, 2018.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

C. Cummins, P. Petoumenos, Z. Wang, and H. Leather. End-to-end deep
learning of optimization heuristics. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques (PACT
2017), September 2017.

G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam,
M. Namolaru, E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois, et al.
Milepost gee: Machine learning enabled self-tuning compiler. Interna-
tional journal of parallel programming, 39(3):296-327, 2011.

A. Goens, A. Brauckmann, S. Ertel, C. Cummins, H. Leather, and J. Cas-
trillon. A case study on machine learning for synthesizing benchmarks.
In Proceedings of the 3rd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages (MAPL), MAPL 2019,
pages 38-46, New York, NY, USA, June 2019. ACM.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

D. D. Johnson. Learning graphical state transitions. In ICLR, 2017.

T. N. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

H. Leather, E. Bonilla, and M. O’boyle. Automatic feature generation
for machine learning-based optimising compilation. ACM Transactions
on Architecture and Code Optimization (TACO), 11(1):14, 2014.

IR

211

[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

CC *20, February 22-23, 2020, San Diego, CA, USA

Y. LeCun, Y. Bengio, and G. Hinton.
521(7553):436, 2015.

Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence
neural networks. arXiv preprint arXiv:1511.05493, 2015.

Z.Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong.
Vuldeepecker: A deep learning-based system for vulnerability detec-
tion. arXiv preprint arXiv:1801.01681, 2018.

A. Magni, C. Dubach, and M. O’Boyle. Automatic optimization of
thread-coarsening for graphics processors. In Proceedings of the 23rd
international conference on Parallel architectures and compilation, pages
455-466. ACM, 2014.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781,
2013.

M. F. O’'Boyle, Z. Wang, and D. Grewe. Portable mapping of data
parallel programs to opencl for heterogeneous systems. In Proceedings
of the 2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pages 1-10. IEEE Computer Society, 2013.

V. Raychev, M. Vechev, and A. Krause. Predicting program properties
from big code. In ACM SIGPLAN Notices, volume 50, pages 111-124.
ACM, 2015.

V. Raychev, M. Vechev, and E. Yahav. Code completion with statistical
language models. In Acm Sigplan Notices, volume 49, pages 419-428.
ACM, 2014.

N. Vasilache, C. Bastoul, and A. Cohen. Polyhedral code generation
in the real world. In A. Mycroft and A. Zeller, editors, Compiler Con-
struction, pages 185-201, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

Z. Wang and M. O4AZBoyle. Machine learning in compiler optimiza-
tion. Proceedings of the IEEE, 106(11):1879-1901, 2018.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehen-
sive survey on graph neural networks. arXiv preprint arXiv:1901.00596,
2019.

Deep learning. nature,

	Abstract
	1 Introduction
	2 Related Work
	3 Compiler-Based Representations
	3.1 Sequence of Tokens
	3.2 Abstract Syntax-Tree
	3.3 Control- and Dataflow Graph

	4 Machine Learning Architectures
	4.1 Predictive Models
	4.2 Graph Neural Networks

	5 Evaluation
	5.1 CPU/GPU Mapping
	5.2 Thread Coarsening
	5.3 Comparison of Graph-Based Models

	6 Conclusion
	References

