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Hyperdimensional computing (HDC) is an emerging computational framework inspired by the brain that

operates on vectors with thousands of dimensions to emulate cognition. Unlike conventional computational

frameworks that operate on numbers, HDC, like the brain, uses high dimensional random vectors and is capable

of one-shot learning. HDC is based on a well-defined set of arithmetic operations and is highly error-resilient.

The core operations of HDC manipulate HD vectors in bulk bit-wise fashion, offering many opportunities to

leverage parallelism. Unfortunately, on conventional von Neumann architectures, the continuous movement

of HD vectors among the processor and the memory can make the cognition task prohibitively slow and

energy-intensive. Hardware accelerators only marginally improve related metrics. In contrast, even partial

implementations of an HDC framework inside memory can provide considerable performance/energy gains as

demonstrated in prior work using memristors. This paper presents an architecture based on racetrack memory
(RTM) to conduct and accelerate the entire HDC framework within memory. The proposed solution requires

minimal additional CMOS circuitry by leveraging a read operation across multiple domains in RTMs called

transverse read (TR) to realize exclusive-or (XOR) and addition operations. To minimize the CMOS circuitry

overhead, an RTM nanowire-based counting mechanism is proposed. Using language recognition as the

example workload, the proposed RTM HDC system reduces the energy consumption by 8.6× compared to the

state-of-the-art in-memory implementation. Compared to dedicated hardware design realized with an FPGA,

RTM-based HDC processing demonstrates 7.8× and 5.3× improvements in the overall runtime and energy

consumption, respectively.
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1 INTRODUCTION
The success of machine learning has fueled the transformation of industry and society in recent

decades. A key factor for the ubiquity of these learning algorithms is their use in mobile devices

such as smartphones, tablets, or sensor networks. However, classic approaches such as deep

learning require enormous computing and power resources [57]. For example, training of a single

transformer-based deep learning model requires weeks on modern GPUs and produces carbon

footprints (a proxy for energy consumption) ≈ 5× more than the entire lifetime carbon footprint

of a passenger car [56]. Unfortunately, these characteristics are at odds with the requirements of

many IoT devices, namely limited bandwidth, memory and compute power, and battery capacity.

Architectural innovations such as near-memory and in-memory computing, along with the alternate

models for machine learning such as hyperdimensional computing, substantially reduce the area and

energy consumption of cognitive-inspired computing systems without compromising accuracy [21].

The idea of hyperdimensional computing (HDC) is inspired by biological systems that generally

combine sufficient accuracy with a very high energy efficiency. Compared to conventional machine

learning models, HDC is more robust and error-resilient [19] as well as more compute and energy

efficient [8, 53]. Moreover, HDC provides comparable accuracy to the highest fidelity ML models

(cf. Table 2 in [10]). HDC frameworks mainly operate on binary or bi-polar hypervectors, typically

having thousands of dimensions [19]. The base or seed hypervectors are randomly generated

and describe input features. In HDC training, class hypervectors are generated by performing a

set of basic algebraic operations (XOR, permutation, addition, thresholding, and multiplication)

that combine several hypervectors and the properties of the desired class. In inference, the same

encoding is applied to the input data to generate a query hypervector and reason about a given

dataset. The query hypervector is then classified by performing a similarity match operation.

With conventional von Neumann machines, shuttling of hypervectors between the memory

and the processor makes the overall classification process prohibitively slow. To overcome this,

state-of-the-art proposals use accelerators and near-memory processing to achieve parallelism

and energy efficiency [5, 48, 49]. Since the algebraic operations in most of the HDC frameworks

are memory intensive and inherently parallel, they are particularly well-suited for in-memory

computing. Furthermore, in most emerging memory technologies, the physical properties of the

memory cells can be exploited to realize some, if not all, HDC operations in place [13, 50].

In one of the most recent works, an entire HDC framework is implemented on an integrated

system using memristor crossbars with additional CMOS logic [21]. Specifically, the multiplication

operation required for “binding” and “similarity search” operations is implemented using phase

change memory (PCM) crossbars while the addition, permutation and thresholding operations are

realized by additional near-memory CMOS logic. Although the in-PCM HDC system significantly

reduces energy consumption (by more than 6×), it has three major limitations. First, the additional

CMOS logic incurs large area and energy penalties. In the ideal case, the entire framework should be

implemented using memory devices. Second, the write operation in resistive memories such as PCM

is extremely expensive (in terms of latency and energy) and induces wear on the endurance-limited

cells. Although the proposed solutions avoid repetitive programming of the memristive devices, the

fundamental problem of expensive writes and finite endurance remains. Third, memristive devices

compute values in the analog domain. Besides accuracy implications, which are not as severe due
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to the inherent resilience of HDC, analog computation requires power hungry [55] back-and-forth

conversion between the analog and digital domains (via ADC/DAC).

To overcome these challenges, we use another class of emerging nonvolatile memory technologies

called racetrack memory (RTM) or domain wall memory (DWM) [2] to implement the entire HDC

framework. An RTM cell consists of a magnetic nanowire that stores multiple data bits in magnetic

domains and is associated with one or more access ports. RTM promises to realize the entire

framework in the digital domain with relatively low additional logic and without compromising on

accuracy.

We present HyperDimensional Computing in Racetrack (HDCR), a complete in-RTM HDC system

where all HDC operations are implemented in RTM using the RTM device characteristics. Namely,

a novel access mode called transverse read (TR) [51] is used to conduct processing within the

RTM [38, 39]. By applying a sub-shift-threshold current across two access points along the nanowire,

the resistance state of the nanowire can be used to count ‘1’s at each bit position across multiple

adjacent data words within the memory. HDCR leverages the TR operation and makes appropriate

changes to the peripheral circuitry to realize the XOR operation, and efficient counters. Together

with our design for in-memory majority operation, and “permutation,” TR enables all necessary

HDC processing operations to be performed in a highly parallel fashion within RTM.

Our experimental results show that for the well-known use case of language recognition, our

HDC system is an order of magnitude faster than the state-of-the-art FPGA solution and consumes

5.3× and 8.6× less energy compared to the state-of-the-art FPGA and PCM-crossbar solutions,

respectively.

The main contributions of this paper are as follows:

(1) We present a complete HDC system with precise control and datapaths based on nonvolatile

racetrack memory.

(2) For the rotation operation, we make necessary changes to the RTM row buffer to enable

rotation of HD vectors with a simple copy (read and write) operation.

(3) We propose a first RTM nanowires-based counter design to perform the majority operation

and compute the Hamming weight.

(4) For binding, we implement the XOR logic by doing a transverse read operation and using the

modified row buffer to infer the result.

(5) For bundling, we use RTM counters to find the majority output at each position in the

hypervectors.

(6) For comparison with the class vectors, we compute the Hamming distance between the query

vector and each class vector leveraging a TR-based XOR operation and the RTM counter.

(7) We evaluate our system on a standard benchmark and compare the runtime and energy

consumption with state-of-the-art FPGA [48] and in-PCM implementations [21].

The remainder of this paper is organized as follows: Section 2 provides background information

about HDC, language recognition, RTM and TR. Section 3 proposes the architectural modification

needed to perform operations inside RTM and explains the implementation of our RTM counter.

Section 4 explains different HDCR modules and their integration to perform HDC operations in

RTM. Section 5 evaluates HDCR, demonstrating the energy and latency advantages of using RTM.

Section 6 presents some of the most related work in the literature. Finally, Section 7 concludes the

paper.
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2 BACKGROUND
In this section, we introduce the fundamentals of HDC, its major operations, and main components.

We then describe our use case and provide details on classes and input features/symbols. Finally,

we provide background on RTM technology, its properties and organization, and the working

principles of the transverse read operation.

2.1 Hyperdimensional Computing
Hyperdimensional computing, also referred to as brain-inspired computing, is based on the ob-

servation that neural activity patterns can be regarded as one fundamental component behind

cognitive processes. These patterns can be modeled by leveraging the mathematical properties of

hyperdimensional spaces. In conjunction with a well-defined algebra, they can be used to implement

machine learning tasks with less computational effort than other approaches such as the support

vector machine (SVM) algorithm [12]. Since the dimension 𝐷 of the hyperdimensional space is on

the order of 10
4
, this approach is extremely robust to variation and errors within its hypervectors.

In HD computing, each hypervector (HV) describes a unique point in space and encodes either

a feature, a group of features, or a class in the given machine learning problem. As shown in

Fig. 1-I, the base or seed hypervectors describe input features, and are randomly generated. In

HDC training, a set of algebraic operations—i.e., binding, bundling, permutation, and similarity

check—are performed on the seed hypervectors and their intermediate results are used to generate

class hypervectors. Each class hypervector represents a class in the data set. In HDC inference, the

same encoding is applied to the input data to generate a query hypervector. The query hypervector

is then classified into one of the classes by performing a similarity check operation.

Various HDC frameworks exist that implement HDC in different ways such as (1) using different

types of hypervectors (bipolar, binary, integer, etc.), (2) using a different distribution of elements

in hypervectors (sparse and dense hypervectors), and (3) employing a different set of algebraic

operations. A detailed comparison of these frameworks is presented in [48, 54]. Since we focus on a

digital, in-memory implementation of HDC, we consider a binary HDC subset. Thus hypervectors

consist of binary values and the framework leverages Boolean operations to implement the required

algebraic operations. For the hypervectors, we consider the dimensionality of a hypervector 𝐷 =

8192 and a probability of 𝑃 = 0.5 for each component to be a one or a zero. This is because, for

our selected use case, 𝐷 = 8192 does not have any considerable impact on the accuracy (only

reduces it from 97.8% to 97.7%) while still leaving the memory to be used by other general-purpose

applications.

We use the Hamming distance 𝑑𝐻 ( ®𝑎, ®𝑏) metric to compare the hypervectors ®𝑎 and ®𝑏, resulting in

the normalized number of dissimilar elements of both vectors. For large vector sizes, the Hamming

distance between random vector pairs, in 98% of the cases, results in 𝑑𝐻 ( ®𝑎, ®𝑏) = 𝐷/2. In this

context, we classify any two vectors as similar (𝑑𝐻 < 0.5) or dissimilar (𝑑𝐻 ≥ 0.5). Since 𝑑𝐻 ( ®𝑎, ®𝑏) ≈
𝐵(𝐷, 𝑃 = 1/2) with 𝐵 representing the binomial distribution, random, i.e., unrelated, vectors are
unlikely to deviate from 𝐷/2. Thus, HDC defines sufficiently dissimilar (e.g., 𝑑𝐻 ≥ 0.5) vectors to

be orthogonal1.
In the context of HDC for binary hypervectors, relevant algebraic operations are:

• Binding is used for combining related hypervectors. This operation is implemented as an

element-wise XOR operation between 𝑁 hypervectors e.g., ®𝑐 = ®𝑥1 ⊕ ®𝑥2 . . . ®𝑥𝑁 binds ®𝑥𝑖 : 𝑖 =
1, 2, ..., 𝑁 together.

1
Mathematically, orthogonal vectors would have 𝑑𝐻 = 1, HDC relaxes this definition to 𝑑𝐻 ≥ 0.5 because it is attempting

to distinguish between similar and dissimilar vectors. HDC redefines vectors with 𝑑𝐻 = 1 as diametrically opposed.
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• Permutation is used to generate a new hypervector that is orthogonal to the original

hypervector by performing a reversible operation. The permutation is a unary operation

®𝑥𝑝 = 𝜌 ( ®𝑥) such that the resulting vector ®𝑥𝑝 is orthogonal to ®𝑥 . In the context of this work,

we use piece-wise circular shifts to perform this operation (see Section 4.3.1). Rotating a

hypervector 𝑛 times is expressed as ®𝑥𝑝 = 𝜌𝑛 ( ®𝑥).
• Bundling is used to generate a hypervector representing a set of hypervectors. This operation
is implemented by performing the vector sum and element-wise thresholding, also referred

to as the majority operation. For an even number of binary hypervectors, the tie is broken by

a fixed random hypervector. The bundling operation generates a representative hypervector

which is non-orthogonal to the operand hypervectors.

• Similarity Check: The similarity check operation compares the query hypervector to all

class hypervectors to find the closest match. Different frameworks use a variety of similarity

metrics. For this work, we use Hamming distance and compare the Hamming weights of

the query and class hypervectors. The operation is implemented as an XOR followed by the

population count operation (see Section 4.4.)

2.2 Use Case: Language Recognition
In the context of this work, we use the language recognition (LR) classification task, which has

already been used as a benchmark by other HDC approaches in the literature [21, 48, 49]. With this

example application, we demonstrate the scalability and efficiency of our architecture compared

to the state-of-the-art FPGA [48] and in-memory [21] implementations. We use the language

recognition code published on [47] that classifies an input text to one of 22 European languages.

The input features consist of 26 letters of the Latin alphabet and the space character (represented

by 𝜏). As a first step in building the hyperdimensional (HD) model, hypervectors are generated for

all input letters and are stored in an item memory (IM) Θ = {𝑎 → ®𝑎, 𝑏 → ®𝑏, . . . , 𝑧 → ®𝑧, 𝜏 → ®𝜏} (see
Fig. 1-I). The dimensionality of the hypervectors (𝐷 = 8192) is carefully chosen to ensure better

utilization of the memory architecture.

After the IM is created, the training of the HD model is carried out using one text for each of the

22 languages. In order to model the probability distribution of individual letters in the respective

language, the text is broken down into substrings of length 𝑁 called N-grams. In the binding
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Fig. 1. An overview of the HDC operations
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operation, a hypervector is generated for each N-gram of the input text, which is subsequently

combined by the bundling operation into a single hypervector. This is in contrast to models which

use dictionaries and banks of phrases, which increases the complexity of similarity checking without

a commensurate advantage in accuracy or efficiency [58]. For example, the first N-gram of the

phrase “dont panic” for 𝑁 = 4 would be “dont”. This is encoded to a single N-gram vector, as

shown in Fig. 1-II, by permuting and XORing the individual hypervectors from the IM (®Θ) as follows:
®Φ𝑑𝑜𝑛𝑡 = 𝜌3 ( ®𝑑) ⊕ 𝜌2 (®𝑜) ⊕ 𝜌 (®𝑛) ⊕ ®𝑡 . Due to the properties of the selected encoding, all generated

N-gram vectors 𝑉𝑧 = {®Φ𝑑𝑜𝑛𝑡 , ®Φ𝑜𝑛𝑡𝜏 , . . . , ®Φ𝑎𝑛𝑖𝑐 } are orthogonal. Finally, the language vector ®T is

generated as follows:
®®T = Majority ( ®Φ𝑑𝑜𝑛𝑡 , ®Φ𝑜𝑛𝑡𝜏 , . . . , ®Φ𝑎𝑛𝑖𝑐 ) (see Fig. 1-III). In the training phase,

®T represents a (language) class hypervector
®L and is stored in the associative memory. In the

inference phase of HDC,
®T , the query hypervector, represents the input sentences or phrases and

is generated with exactly the same operations.

After the query hypervector is generated, the distance between the query vector and the class

vectors must be determined. As shown in Fig. 1-IV and mentioned in Section 1, this is done by

calculating the Hamming distance between the input vector and each of the 22 class vectors

𝑑ℎ ( ®T , ®L) = 𝑐𝑛𝑡𝑝 ( ®T ⊕ ®L). The Hamming distance is computed by performing an element-wise XOR

operation followed by a population count on the resultant vector. As a final step,
®T is classified

into
®L𝜉 where 𝜉 = argmin𝑖∈{1,...,22}

(
𝑑𝐻

(
®T , ®L𝑖

))
.

This method is based on the fact that the language vectors lie in a linear space that is spanned by

a unique N-gram distribution of the associated language. The class vector with the closest N-gram

distribution has the smallest distance to the input vector and represents the resulting language.

2.3 Racetrack Memory
The basic storage unit in racetrack memory is a magnetic nanowire that can be grown vertically or

horizontally on a silicon wafer, as shown in Fig. 2. The nanoscale magnetic wires, also referred to

as tracks or racetracks, can be physically partitioned into tiny magnetic regions called domains that
are delineated by domain walls (DWs) wherever the magnetization changes. This magnetization

direction can be based on either in-plane (± X) or perpendicular (± Z) magnetic anisotropy. The

state of any given domain exhibits a different resistance when it is parallel/antiparallel to a fixed

reference domain, which can be interpreted as bits representing 1s and 0s [2]. Generally, each

track in RTM has its associated access ports (APs) and can store 𝐾 bits delineated by 𝐾 − 1 physical
notches along the nanowire, where 𝐾 can be up to 128. The number of APs per nanowire is usually

less than the number of domains due to the larger footprint of the APs [69]. This mismatch in

the number of domains and APs leads to compulsory shifts, i.e., each random access requires two

steps to complete: 1○ shift the target domain and align it to an AP and 2○ apply an appropriate

voltage/current to read or write the target bit.

Read/Write Port Read-Only Port

RWL WWL

WWL RWL

GND

SL

BL

SL

BL

... ...

Data Domain

Extra-Domain

Domain Wall

Access Port Access Port

...

... ...Access Ports

Horizontal Racetracks

Silicon Substrate

II

A B

Fig. 2. RTM nanowire structure (A) and anatomy(B).

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. Y, Article 1. Publication date: June 2022.



Brain-inspired Cognition in Next Generation Racetrack Memories 1:7

Shifting is conducted by passing spin-polarized current along the nanowire from either an access

point or an endpoint to another access or endpoint; sufficient densities of spin-polarized current can

overcome a potential well (“pinning”) created at notches and in turn advance all the domain walls

toward the next notch position. This inherent behavior of RTM can be imprecise, generating what

is known as a “shifting fault” in the literature. Several solutions have been proposed to mitigate

this fault mode [1, 38, 67]. Due to shifting, the access latency of RTM is limited by the velocity with

which domains move within the nanowire as well as the amount of shifts. The maximum number of

domains per track depends on device parameters, but considering the user/application requirements

and the number of APs, the number of addressable domains per track varies to accommodate shifting

each addressable domain to align with any port.

Fig. 2 depicts the major components of an RTM nanowire and its access circuitry. The blue

domains represent the actual data stored in memory. The yellow domains are extra domains used

to prevent data loss while shifting domain walls (and the data between them) along the nanowire.

The dark blue elements and the connected access transistors form read-only or read-write ports. A

read-only port has a fixed magnetic layer, indicated in dark blue, which can be read using RWL. The
read-write port is shown using shift-based writing [61] where WWL is opened and the direction of

current flows between BL and BL. Reading is conducted from BL through the domain and RWL to
GND.
Similar to contemporary memory technologies, RTM cells are grouped together to form a

2D memory array. To minimize the integration complexity, we deliberately conserve a DRAM

hierarchical organization consisting of banks, subarrays, and tiles, as shown in Fig. 3. As illustrated,

the basic building block of the RTM array is a group of 𝑇 nanowires and is referred to as a domain
wall block cluster (DBC) [23, 59]. A DBC therefore can accommodate 𝐾 𝑇 -bit memory objects. Data

in a DBC is distributed across nanowires, which facilitates parallel access of all bits belonging to the

same data word. Access ports of all 𝑇 tracks of a DBC point to the same location and domains can

be moved together in a lock-step fashion. For our proposed system, we use 𝐾 = 32 and𝑇 = 512, the

standard cache line size, as shown in Fig. 3. Note that for simplicity, we do not show the overhead

domains in Fig. 3 and 𝐾 refers to only addressable domains in the nanowires. We assume 16 DBCs

per tile, 16 tiles per subarray. Furthermore, we assume a single compute in memory (CIM) tile or

cim-tile per subarray, capable of performing in-RTM computations (see Section 3).

RTM strengths, challenges and developments: Table 1 provides a direct comparison of RTMs

to other memory technologies. RTM offers high-performance SRAM comparable latency with

extremely low leakage power and higher write endurance compared to other non-volatile memory
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Table 1. Comparison of RTMs with other memory technologies [2]

SRAM DRAM STT-MRAM ReRAM PCM RaceTrack 4.0

Cell Size (𝐹 2) 120-200 4-8 6-50 4-10 4-12 ≤ 2

Write Endurance ≥ 10
16 ≥ 10

16
4 X 10

12
10

11
10

9 ≥ 10
16

Read Time (ns) 1–100 30 3–15 10–20 5–20 3–250
†

Write Time (ns) 1–100 30 3–15 20 >30 3–250
†

Write Energy Low Medium High High High Low

Read Energy Low Medium Medium Medium Medium Low

Leakage Power High Medium Low Low Low Low

Retention Period Voltage-dependent 64–512ms Variable Years Years Years

†
including shift latency

technologies. However, due to the device’s sequentiality, RTM access latency and energy con-

sumption depend on the number of required shift operations. In the worst case, the RTM access

latency can be 25.6× higher compared to an iso-capacity SRAM [60]. In addition, shifts can also

incur position and alignment faults. A number of solutions have been proposed to optimize RTM

performance through shift minimization [2]. Additionally, solutions have been proposed to detect

and correct RTM misalignments [38, 67].

In recent years, RTMs have seen fundamental breakthroughs in device physics. In the earliest

version of RTM [42], controlled movement of domain walls in the nanowires was not only challeng-

ing but also extremely slow. Later, the same authors demonstrated accurate movement of domain

walls with up to 10× higher velocities [43]. More recently, the field-driving magnetic domain wall

mobility has remarkably enhanced to 20 km/sT [25], more than 20× faster compared to the previous

version or a two-order of magnitude improvement over the original prototypes. Similarly, moving

domain walls in ferromagnetic materials with an exchange coupling torque [3] has shown promise

to reduce the critical current density to reduce shift energy. The data access devices, magnetic
tunnel junctions (MTJs), have also attracted significant interest and have observed considerable

improvements in performance and thermal stability by employing different materials (e.g.,MgO

as a tunneling barrier) and adopting different switching mechanisms (such as spin-orbit torque

instead of spin-transfer torque). These newer MTJs allow for ultrafast magnetization switching, in

sub-ns, with extremely low incident power [45].

Transverse Read Operation in RTM: The transverse read (TR) operation is an alternate access

mode which conducts reads along the nanowire rather than across it [38]. By applying a sub-shift-

threshold current at an AP, and performing a normal read at the next nearest AP (for example,

between the two access ports in Fig. 2), it is possible to detect how many of the domains between

the ports are in a particular magnetic orientation. The resultant magnitudes of the difference of

resistances are small compared to the normal access mode, which limits how many domains can be

accurately read in this manner without inadvertently shifting the domain walls. However, using a

transverse read distance (TRD) of five domains can reliably produce a count of domains which are

in either magnetic orientation [51].

Prior work used this count to detect misalignment when shifting nanowires [38], but this count

can also be used to conduct bitwise logical operations on the data within the TRD [39]. Using

a level-detecting sense amplifier, we can detect different voltage thresholds when 0, 1, ..., 𝑛 bits

are set, where exceeding any given threshold implies that all lower thresholds are also exceeded.

For example, if a TR is conducted across four words at a specific bit position in a nanowire, we

derive logical OR if any of the thresholds are exceeded, logical AND if the threshold for four bits is

exceeded, and XOR ⇐⇒ the threshold exceeded ∈ {1, 3, 5}. For a fixed TR distance, these levels
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can be be used to realize carry-sum operations which can be composed to realize addition and

multiplication [39]. In the next section we show how a modified version of these level operations

combined with handful of additional CMOS logic gates can be used to implement the fundamental

HDC operations.

3 ENABLING COMPUTATION IN RACETRACK MEMORY
This section presents the extensions to the cim-tile circuitry that enable in-place logical operations

and counting in RTMs.

3.1 Logical Operations in RTM
Similar to [48, 49], we use the binary spatter-coding [18] framework that has four primary opera-

tions, i.e., XOR and circular shift operations for binding, the majority for bundling, and XOR for the

similarity check as described in Section 2.1.

To implement these operations in RTM, HDCR exploits the nanowires’ properties and modifies

the peripheral circuitry in selected RTM tiles (see Fig. 3), referred to as compute-in-memory tiles.

Concretely, one tile (𝑇15) in each subarray is designated as a cim-tile. Fig. 4a shows the necessary

support circuitry similar to [39], with the logic required for compute-in-memory operation outlined

in red. Sense amplifiers (𝑆𝑖 ) shown in blue are aligned with access points at bitline 𝐵𝑖 to conduct

either a normal read at that bit position, or a TR as described in Section 2. During a TR operation,

the sense amplifier outputs five bits indicating the five possible reference thresholds corresponding

to a particular count of 1s between the access port at 𝐵𝑖 and another access port at a 𝑇𝑅𝐷 = 5

distance in the same nanowire. For example, 2:3 indicates that the voltage threshold between 2 and 3

ones was exceeded, indicating that at least 3 ones exist in the TR. To realize TR-based computations,

we introduce the CIM block as shown in Fig. 4b. Based on the thresholds representing the count of

ones in the TR, and XOR is high when only the threshold for 0:1 is high or 2:3 is high with 3:4 being

low, or when 4:5 is high. The results of all operations are output simultaneously, to be selected

using the multiplexer immediately below the CIM blocks.

During a normal read operation, each sense amplifier outputs the value of the single bit position

directly beneath the access port. This output bypasses the CIM tile and feeds directly to the first

row of multiplexers to enable a fast read path. This same read path for bit line 𝐵𝑖 is routed to the

multiplexer for the prior bit line 𝐵𝑖−1 and the subsequent bit line 𝐵𝑖+1, shown with orange and
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B510
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turquoise arrows, respectively. These paths enable circular shifting (permutation) of words by

one bit position at a time. Together with the six outputs of the CIM block, the topmost row of

multiplexers selects from eight operations on the input data. The second row of multiplexers from

the top is added to select from the CIM/shifting data path or the direct read path. The final row of

multiplexers and the writeback drivers are identical to the architecture of the non-cim tiles; data

for writeback can be fed in from local row buffers𝑊𝑖 , or read from the current tile to move data or

write back the result of a cim operation.

Operating this circuitry requires a new pseudo-instruction in the ISA called cimop. Each cimop

instruction consists of a source address (src), indicating which data to align to the access ports, a

size, indicating the number of nanowires to be included in the TR operation, and op, which selects

the cim operation from the topmost row of multiplexers. Note that this psuedo-instruction entails

some primitive operations to conduct the alignment and pad operands for sizes less than the TRD.

We assume that these primitive operations are scheduled by the compiler and conducted by the

memory controller.

3.2 Counting in RTM
Fig. 5a presents an overview of the proposed in-RTM counter. It combines the TR operation in the

RTM nanowire with the basic read/write operations to realize counters. The RTM nanowires used

for counters must be equipped with two read-write APs, necessary for the TR operation. For a

base2·𝑋 counter, the two access ports in the nanowires must be 𝑋 − 2 domains apart, i.e., the TRD
in the nanowire must be 𝑋 .
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Fig. 5. RTM counter: overview and details.
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In HDCR, we prefer decimal counters for the majority operation and the population count. As

such, we use 𝑋 = 5, delimited by APs in dark blue in Fig. 5b and with arrows in Fig. 5a. Note that

each nanowire in the RTM counter only uses the domain between the access ports and the number

of nanowires in the counter are defined by the counter size. For instance, in a decimal counter, i.e.,
𝑋 = 5, a single nanowire can only count between 0 and 9 (see Fig. 5a). If we want to count from 0

and 99, the RTM counter requires at least two nanowires. In general, for a decimal counter having

size 𝐶 , an RTM counter requires at least ⌊log
10
(𝐶)⌋ + 1 nanowires.

The RTM counter operates using the same principle as a Johnson counter. Let us assume a

two-nanowire decimal counter that can count up to 99 and is initially set to 0 (see Fig. 5a). The

counter value at any instant in time is determined by the number of 1s between the APs and the

state of bit 𝑃 , the bit under AP2, i.e., the right AP in Fig. 5b. The bit 𝑃 determines if the counter is in

the first or second half of counting, in this case between 0-4 or between 5-9. For the decimal value

0, the 𝑋 bits are all filled with 0s and hence the bit 𝑃 is zero. If we want to increment the counter

by four, for instance, four 1s need to be shifted under AP1, as shown in Fig. 5a. To count beyond 5,

i.e., when all bits between APs including the 𝑃 bit are 1, 0s are shifted under AP1. The decision to

shift a 1 or a 0 under AP1 is controlled by the 𝑃 bit position: when 𝑃 = 0, we interpret the counter

value as the count of ones between access points, and when 𝑃 = 1, we interpret the counter value

as ten minus the count of ones (or five plus the count of zeros) between access points. To realize

this behavior, toggling the value of 𝑃 also toggles the value pushed into the nanowire when the

counter is incremented, as shown for the decimal value 12 in Fig. 5a. The table of Fig. 5a represents

all TR and 𝑃 combinations and their associated values.

The RTM counter requires nanowires in DBCs to be shifted independently. This drastically

increases the shift controller complexity since each nanowire AP position needs to be stored and

controlled independently instead of a single position per DBC (512 nanowires). In order to reduce

this impact on the nanowire shifting logic, we also used the notion of transverse write (TW) [39].

Traditionally, to perform a shift based write under the left AP on Fig. 5b, RWL0 and one WWL0 would
be closed, the current flows through the fixed layer, one domain and then go to the ground, writing

a new value and erasing the previous value under the left AP. However, by closing one WWL0 and
RWL1, while sending a higher current density, our design can perform a write operation and perform

a partial shift along the nanowire rather than between the fixed layer and ground. We called it

partial (i.e., segmented) shift since only the bits between the heads are shifted. Thus, a TW from

the leftmost AP writes a value under that AP, and shifts the remaining bits between the APs to the

right, erasing the bit that was under the right AP.

In the next section, we use these in-RTM compute-in-memory concepts and present our proposed

architecture for HDCR. Further, we explain how the cim-tile operations implement each of the

fundamental HDC operations.

4 HYPERDIMENSIONAL COMPUTING IN RACETRACK MEMORY
This section presents the implementation details of the proposed HDCR. It provides an overview of

the overall system and explains the individual modules and their system integration.

4.1 Overview
Fig. 6 presents an overview of the proposed in-RTM HDC system. As explained in Section 2.1, the 27

hypervectors of the input letters are initially mapped to the item memory, 9 DBCs in each subarray

as shown in Fig. 6a. Note that for simplicity, we only show the cim-tiles in the subarrays. For the

encoding operation, the hypervectors in the item memory are loaded into the encoder module. This

requires the hypervectors in the item memory to be shifted and aligned to the port positions in their

respective DBCs (Step 1.1 in Fig. 6b). Subsequently, HDCR copies the hypervectors to the encoder
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Algorithm 1 HDC Procedures

1: Global variables: 𝑉𝑧 ← ∅, 𝜃, 𝐴𝑀,𝑇𝐻𝑅
2: ⊲𝜃 = item memory, 𝐴𝑀 = Associative memory, (cf. Section 2.2)

3: function HDC_Train(𝐿𝑆, 𝜃 )

4: ⊲LS: List of Lang strings for training

5: for all 𝐿𝑖 ∈ 𝐿𝑆 do
6:

®L𝑖 ← Encode(𝐿𝑖 )

7: Store
®L𝑖 in AM

8: return 𝐴𝑀

9: function HDC_Classify(𝐿, 𝜃,𝐴𝑀)

10: ⊲𝐿: Text string to be classified

11:
®T ← Encode(𝐿)

12: LangLabel← Sim_Check(
®T )

13: Display: 𝐿 is LangLabel language.

14: function 𝜌(®𝑒)
15: ®𝜂 ← [], ®𝜓 ← []
16: PG_size← 𝑑𝑖𝑚 ( ®𝑒)

𝑇
⊲𝑇 = 512

17: for 𝐼𝑡𝑟 ← 0 to PG_size do
18: ⊲Rotate left within each SA

19: ®𝜂 ← rol ( ®𝑒 [512·𝐼𝑡𝑟 ]:[512· (𝐼𝑡𝑟+1) ]−1)
20: ⊲Concatenate rotated chunks

21:
®𝜓 [512·𝐼𝑡𝑟 ]:[512· (𝐼𝑡𝑟+1) ]−1 ← ®𝜂

22: return ®𝜓

23: function Sim_Check(
®T )

24: for all ®L𝑖 ∈ 𝐴𝑀 do
25: ⊲Implemented with TRs (cf. Sec 4.4)

26: 𝑑𝐻 ( ®T , ®L𝑖 ) ← Hamdist( ®T , ®L𝑖 )
27: ⊲Implemented at the MemControl level

28: 𝜉 = argmin𝑖∈{1,...,22} (𝑑𝐻 ( ®T , ®L𝑖 ))
29: return Label of language class

®L𝜉

30: function Encode(String L)

31: ®𝑣0 = ®𝑣1 = ®𝑣2 = ®𝑣3 ← 0

32: 𝑁 ← 4, 𝐷 ← 8192

33: 𝑐ℎ𝑎𝑟𝐶𝑜𝑢𝑛𝑡 ← 0

34: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠 ← 0 ⊲𝐷 counters in total

35: for all 𝑐𝑖 ∈ 𝐿 do
36: ®𝑐𝑖 ← 𝜃 (𝑐𝑖 ) ⊲Read HV from IM

37: ⊲Rotate HVs in the N-gram

38: ®𝑣3 ← 𝜌 ( ®𝑣2)
39: ®𝑣2 ← 𝜌 ( ®𝑣1)
40: ®𝑣1 ← 𝜌 ( ®𝑣0)
41: ®𝑣0 ← ®𝑐𝑖
42: 𝑐ℎ𝑎𝑟𝐶𝑜𝑢𝑛𝑡 ← 𝑐ℎ𝑎𝑟𝐶𝑜𝑢𝑛𝑡 + 1
43: if 𝑐ℎ𝑎𝑟𝐶𝑜𝑢𝑛𝑡 ≥ 𝑁 then
44: ⊲XOR with a TR operation

45:
®𝜙 = ®𝑣0 ⊕ ®𝑣1 ⊕ ®𝑣2 ⊕ ®𝑣3

46: ⊲Push counters at all bit positions

47: for 𝐼𝑡𝑟 ← 0 to 𝐷 do
48: if ®𝜙𝐼𝑡𝑟 == 1 then
49: counters𝐼𝑡𝑟 + +
50:

51: ⊲Check all counters’ state against THR

52: for 𝐼𝑡𝑟 ← 0 to 𝐷 do
53: if counters𝐼𝑡𝑟 > 𝑇𝐻𝑅 then
54:

®T𝐼𝑡𝑟 ← 1

55: else
56:

®T𝐼𝑡𝑟 ← 0

57: return ®T

module implemented in DBC9 of the subarray (see Step 1.2 in Fig. 6b and Line 36 in Algorithm 1).

HDCR then permutes the hypervectors in the encoder module (see Lines 38-40 in Algorithm 1)

and performs the XOR operation to generate their N-gram hypervector (see Step 1.3 in Fig. 6b and

Line 45 in Algorithm 1). Since the N-grams represent 𝑁 contiguous characters in the input text,

the encoder module produces a new N-gram hypervector for each new character in the text. Thus

for an input text of 𝑆 characters, the encoder module generates 𝑆 − 𝑁 + 1 hypervectors in total.

For each new N-gram hypervector, the counters for each bit position implemented in DBCs10−15
are incremented based on the XOR result (see Step 1.4, Lines 47-49 in Algorithm 1). The count-

ing module performs the majority operation on all N-gram hypervectors and generates a single

hypervector based on the final counters’ state (Step 1.4). In the training phase of the HDC this
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generated hypervector represents a language class hypervector (
®L𝑖 ). This is stored in the associative

memory (AM), and the process is repeated for all remaining languages. In contrast, during the

inference phase, the resultant hypervector (
®T𝑖 ) represents the input text. After generating this

hypervector, it is passed on to the similarity search module in Step 2 to classify it into one of the

language classes, as shown in Fig. 6b. In the following sections, we provide the implementation

details of the individual modules.

4.2 Item Memory
The HDC framework operates on 𝐷 = 8192 bit wide binary vectors. Since our DBCs are only

512 bits wide, this requires dividing the hypervectors into 16 chunks of 512 bits each to store the

complete 8192-bit hypervector. These chunks can be stored in DBC(s) of the same subarray, as we

are doing in Section 4.4, or in the same DBC (e.g., 𝐷𝐵𝐶𝑖 ) across 16 different subarrays. However,

for the encoder module in HDCR, to enable performing the TR operation in parallel across all 8192

bit-positions, the HV chunks need to be distributed across different subarrays, as shown in Fig. 6a.

This group of 16 subarrays sharing and manipulating chunks of the same hypervectors is referred

to as a processing group (PG). A PG generates the output of a CIM operation on TRD hypervectors

in a single cycle.

For the LR application, the item memory (IM) is composed of 27 hypervectors (HVs), one for

each character of the Latin alphabet plus the space character 𝜏 (see Section 2.2). Since a DBC in

our proposed system has 32 domains per nanowire, the 27 HVs can be stored in a single DBC (e.g.,
𝐷𝐵𝐶0) across all subarrays in a PG. However, since each new character consumed from the input

text accesses the IM to retrieve its corresponding HV, this tight packing of HVs in a single DBC can

lead to a significant number of shift operations in RTM. In the worst case, access to the IM can

incur 27−𝑇𝑅𝐷 = 23 shifts, which stalls the other modules in HDCR and substantially increases the

overall runtime. To overcome this, HDCR dedicates 9 DBCs (see Fig. 6a) to the IM and distributes

the HVs in the IM such that accessing an HV requires at most one RTM shift. That is, by placing

each character HV directly at or adjacent to one of the two access ports, we can access the 18 HVs

beneath the access ports without shifting, and the remaining 9 HVs by shifting by one position.

To efficiently map the character HVs into the IM, we profiled each language to rank the frequency

of each character in our corpus. The most frequently occurring characters are then placed directly

under the access ports, and the remaining characters are distributed among the bit positions adjacent

to the access ports.

4.3 Encoding
The encoder module transforms the entire language into a representative vector (see Section 2.1).

From the implementation perspective, the encoder module performs three major operations, i.e.,
binding, permutation and bundling (see Fig. 6b). In the following sections, we explain how these

operations are implemented.

4.3.1 Binding and Permutation in RTM. As explained in Section 2.1, the binding operation in HDC

generates a new hypervector by XORing the permuted versions of the 𝑁 character hypervectors

which form each N-gram in the input text.

Initially, all hypervectors of the respective N-gram are iteratively loaded into the encoder module

i.e., DBC9 (see step 1.2 in Fig. 6b). Depending on the HVs position in the IM, this may require a

shift operation in RTM, as demonstrated in Fig. 6b (step 1.1). In the next step, the hypervectors are

rotated by𝑀 times, where the value of𝑀 for a particular hypervector depends upon its position

in the N-gram. This rotation is functionally equivalent to a bitwise circular shift, where the 𝑀

most significant bits overwrite the𝑀 least significant bits after shifting the remaining 512 −𝑀 bits
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left by𝑀 bit positions. Note that this shifting is different from the RTM nanowire shift operation.

In this case, the HV bit positions along the nanowire do not change, rather the HV representing

the character is shifted across all nanowires it spans, using the peripheral circuitry in Fig. 4a. For

instance, for the first N-gram “dont” in the running example, the hypervector
®𝑑 of the first character

‘d’ is rotated by 3, the hypervector ®𝑜 is rotated by 2, the hypervector ®𝑛 is rotated by 1, and the

hypervector ®𝑡 is taken unchanged. This is important for differentiating this permutation of these

four characters from any other permutation.

To efficiently rotate a hypervector, which spans many DBCs, the rotate control signal is enabled
and a read operation is performed on all subarrays in a PG. The resultant hypervector in the

row-buffer is the rotated-by-one version of the original hypervector. A subsequent write command

is issued to the RTM controller to update the new value in RTM. To perform a rotation by three,

our RTM architecture will perform three rotated-by-one operations sequentially.

Note that rotating an entire 8192 bit HV in RTM requires considerable modifications to the RTM

row buffer. The customization in Fig. 4a only allows rotating a 512-bit chunk of the HV, i.e., rotation
at the granularity of the subarray. HDCR performs chunk-wise permutation on all subarrays in

a PG and concatenates the permuted chunks to generate the permuted HV, as demonstrated in

Fig. 6b (Step 1.3) and Algorithm 1 (Lines 19-21). This chunk-wise rotation operation is reversible

and the generated hypervector was empirically verified to not adversely impact the accuracy of the

HDC framework.

Once the required 𝑁 hypervectors for a particular N-gram are loaded and 𝑁 − 1 (all but last)
hypervectors are permuted, they are XORed together to generate the resultant N-gram hypervector

(
®𝜙𝑖 ). As described in Section 2.3, a TR operation and sense amplifiers detect how many ones exist

between the TR access ports. When exactly one, three, or five 1s are detected, the logic in Fig. 4b

asserts the XOR output, representing the XOR of all TRD operands.

This binding operation is performed iteratively for all N-grams in the input text. As the input

text is consumed, each character hypervector in each N-gram is used at least 𝑁 times in different

permutations to generate 𝑁 N-gram vectors. For instance, the hypervector ®𝑡 is used as-is to generate
the first N-gram vector in the running example. However, for the second N-gram (“ont𝜏”) vector, ®𝑡
is rotated by 1. Similarly, for third and fourth N-gram vectors, ®𝑡 is rotated by 2 and 3, respectively.

Since the sequence of operations is known, we can reuse each permutation result in the next

iteration to save execution cycles.

To accomplish this we leverage both upper and lower access points to align, read/shift into the

row buffer, and then write back the rotated into the access points while minimizing alignment

operations. The detailed approach is described in Algorithm 2 referencing DBC locations from

Fig. 3 in the encoder DBC9 shown in Fig. 6. Using the example, we first read ®𝑣0 and rotate and then

write it back to complete 𝑝1 (®𝑛). We then align ®𝑣1 with the lower access point to complete 𝑝2 (®𝑜). We

then align the outgoing ®𝑣3 with the upper access point to reset it to zero. We then align ®𝑣2 with the

upper access point to complete 𝑝3 ( ®𝑑) and then align the lower access point to write ®𝑡 from the IM.

As a result of the binding and permute operation, a new N-gram vector is generated and is

consumed by the bundling unit, as explained in the next section. For the entire input text, a whole

set of N-gram vectors is generated where each vector corresponds to an N-gram in the text. Recall,

𝑉𝑧 represents all N-gram vectors of the input text (see Section 2)
2
. The bundling operation combines

all elements in 𝑉𝑧 by taking the bit-wise majority on each bit position, as explained in Section 2. In

the next section, we discuss the implementation of bundling in HDCR.

2𝑉𝑧 is distinct from V0..31, which represents logical locations in the DBC (see Fig. 3).
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Algorithm 2Memory operations required for computing an N-gram HV

1: ⊲ ®𝑣𝑖 , 𝑖 ∈ {0, 1, 2, 3, 4} represents HV stored in DBC locations 0,1,2,3,4, i.e., all five locations

between APs (see Step 1.3 in Fig. 6b)

2: ⊲At any time Shift (if necessary) to align ®𝑐𝑖 to AP in IM

3: Algorithm Step: ®𝑣1 ← 𝜌 ( ®𝑣0) (see Line 40 in Algorithm 1)

4: Memory operations:

(i) Read ®𝑣0 (with rotate signal enabled)

(ii) Write the row buffer contents to lower access point (old V0, new V1)
5: Algorithm Step: ®𝑣2 ← 𝜌 ( ®𝑣1) (see Line 39 in Algorithm 1)

6: Memory operations:

(i) Shift down one position to align ®𝑣1 to lower AP

(ii) Read ®𝑣1 (with rotate signal enabled)

(iii) Write the row buffer contents to lower access point (old V1, new V2)
7: Clear old ®𝑣3:
8: Memory Operations

(i) Shift up by three positions to align ®𝑣3 to upper AP while resetting row buffer

(ii) Write the row buffer contents to upper access point (old V3, new V4)
9: Algorithm Step: ®𝑣3 ← 𝜌 ( ®𝑣2) (see Line 38 in Algorithm 1)

10: Memory operations:

(i) Shift up by one position to align ®𝑣2 to AP

(ii) Read ®𝑣2 (with rotate signal enabled)

(iii) Shift to align DBC location three to AP

(iv) Write the row buffer contents to the DBC upper access point (old V2, new V3)
11: Algorithm Step: ®𝑣0 ← ®𝑐𝑖 (see Line 41 in Algorithm 1)

12: Memory operations:

(i) Shift down by one position to align DBC new V0 to lower AP and Read ®𝑐𝑖
(ii) Write the row buffer contents to the DBC V0

4.3.2 Bundling Operation in RTM. Bundling in the HDC framework is a conjunctive operation that

forms a representative vector for the set of N-gram hypervectors 𝑉𝑧 (see Section 2.1). Concretely, it

computes a new hypervector ®Γ by adding all hypervectors in𝑉𝑧 , i.e., ®Γ =
∑
®Φ∈𝑉𝑧
®Φ. Each component

in ®Γ is then compared to a fixed threshold to make it binary , i.e., ∀𝑖 ∈ {1, 2, . . . 8192}, ®T𝑖 = 𝛽𝑖 , and

𝛽𝑖 =

{
1, if ®Γ𝑖 > threshold

0, otherwise

(see Algorithm 1, Lines 52-56). The threshold value for binary hypervectors is typically the greatest

integer less than 0.5 times the number of elements in 𝑉𝑧 . For instance, for |𝑉𝑧 | = 55, the threshold

value will be ⌊55 × 0.5⌋ = 27, which also means that the resultant hypervector
®T is equivalent to

the output of the majority function, i.e., ®T = Majority( ®Φ, ∀®Φ ∈ 𝑉𝑧).
HDCR uses RTM counters (see Section 3.2) for each bit position to implement the majority

function for |𝑉𝑧 | > TRD. As shown in Fig. 6b (step 1.2-1.4), each subarray dedicates DBCs10−15 for
RTM counters. At each bit position in a PG, the 6 nanowires in DBCs10−15 are used to implement

the counter for that particular position. With 6 nanowires, the RTM counters can count from 0 to

10
6−1, far more than what is required for the LR use case. For each new N-gram hypervector, HDCR

updates all counters simultaneously based on the XOR result. Once a particular counter hits the
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threshold, it ignores subsequent incrementing. To simplify the thresholding, the memory controller

can preset the state of the counter to 𝑀 −𝑇 where 𝑀 is the maximum value represented by the

counter and𝑇 is the desired threshold. Thus, the thresholding does not require any additional logic

and can be represented by the status of the 𝑃 bit of the most-significant digit of the counter.

In our evaluated system, we have 128 PGs (see Section 5.1). To reduce the overall runtime, the

input text is divided into 128 chunks, and each chunk is provided to a separate PG. Once the

computation in all PGs is finished, the majority output of all PGs is combined to make a single final

vector. In the training phase of the HDC framework, this final computed hypervector represents the

language (class) hypervector and is written to the AM (same DBCs as for itemmemory, i.e., DBCs0−9
but different positions). In inference, this hypervector is referred to as the query hypervector and is

compared to all class hypervectors to infer the final result, as shown in Fig. 6b (step 2) and explained

in the next section.

4.4 Inference
The inference phase of the HDC framework uses the same encoding module to generate a query

hypervector for the input text. Since the language class hypervectors are pre-generated in the

training phase and are stored in the cim-tiles, classification is conducted by computing the Hamming

distance of the query vector with all class vectors to find the closest match (see Section 2.1).

This similarity search is encapsulated in a module which performs three main operations. First,

the query hypervector is XORed with all class hypervectors for bit-wise matching. Subsequently,

the Hamming weight is computed by performing a population count of set bits within each of the

computed hypervectors. Finally, the language with the minimum Hamming weight is inferred as

the output.

From the implementation perspective, HDCR uses one subarray per language hypervector. For

the 22 language hypervectors, HDCR uses 22 subarrays (2 PGs). As shown in Fig. 7, the language

vectors in subarrays are stored across different DBCs of the same subarray, unlike the encoding

module which stores hypervectors across different subarrays. The query vector is then written to

all 22 subarrays to compute the Hamming weights independently.

t
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Fig. 7. Similarity search module
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The XOR operation generates 16×512 bits for each language. In each subarray (for each language),

the 16 chunks are processed sequentially, with each iteration producing one 512-bit chunk of the

XOR operation in a single cycle, and then storing the results adjacent to one another in the same DBC

(DBC14 in Fig. 7) for the subsequent population count operation. For each of these 16 parallel 512 bit

results, the TR operation sequentially performs the ‘1’ counting in DBC14. HDCR uses the TR result

to shift bits in the RTM counter implemented in DBC15, as shown in Fig. 7. Since the maximum

count value in the similarity search module can be 8192, HDCR uses four nanowires for the RTM

counter in this module. Note that, unlike the per-bit counting for the majority operation in the

encoding module, the similarity search module uses a single RTM counter per DBC to find a single

Hamming weight value per language. This necessitates the counters to be updated sequentially for

all 512 TR outputs after each TR operation.

Once the counting operations of the inference is done, the TR and 𝑃 values for all counters packed

like in Fig. 8 and sent sequentially to the memory controller for final input language selection.

Index 0..4 5 6 .. 10 11 12 .. 16 17 18 .. 22 23 24 .. 511

Value 𝑇𝑅00 ..𝑇𝑅04 𝑃0 𝑇𝑅10 ..𝑇𝑅14 𝑃1 𝑇𝑅20 ..𝑇𝑅24 𝑃2 𝑇𝑅30 ..𝑇𝑅34 𝑃3 ∅ .. ∅

Fig. 8. Example of packing TR and 𝑃 values from the counters into local subarray rowbuffer.

5 EVALUATION
This section explains our experimental setup, provides details on the dataset, and compares our

proposed system to state-of-the-art solutions for performance and energy consumption. Concretely,

we evaluate and compare the following designs.

• HDCR: Our proposed in-RTM HDC system.

• FPGA: The FPGA based HDC system from [49].

• PCM: The in-PCM HDC implementation from [21].

• CPU: For the sake of completeness, we also compare to a software/CPU control.

5.1 Experimental Setup
As a target system, we consider an RTM-based 8GB main memory that consists of 32 banks, having

64 subarrays each. A subarray consists of 16 tiles composed of 16 DBCs, which are 512 bits wide

and have 32 columns/data domains per racetrack. We assume two access ports per nanowire and

an operating clock frequency of 1000MHz. The cim-tiles utilize a high throughput mode proposed

in prior PIM work [7]. The peripheral circuitry in cim-tiles does not affect the storage capability

or otherwise prevent its use to store data beyond the marginal delay of a single multiplexer.

The majority of the latency overhead results from the reducing the number of domains between

the ports, from 16 to 5, which increases the average shift distance in the cim-tiles. While the

target technologies may be subject to different types of faults, the experiments here presume fault

free operation to ensure a fair comparison, particularly with respect to PCM which has limited

endurance. However, HDCR is is compatible with previous reliability schemes proposed in the

literature as DECC [38], or Hi-Fi [67] and by employing these techniques the major fault mode of

shift misalignment the intrinsic fault rate of circa 10
−5

can be reduced to circa 10
−20

with negligible

performance penalty [67]. For the LR use case, the entire training and test data sets fit in RTM.

However, since the proposed solution is generic and use case independent, the data sets can also be

partially loaded into RTM as needed to accommodate larger inputs with the same size working

set. The energy and latency numbers of the memory subsystem are estimated using the CIM

architecture presented in [39], the parameters from [66] and are shown in Table 2.
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Table 2. RTM latency and energy parameters

Domains per track 32

Tracks per DBC 512

Background power [mW] 212

rRead energy [pJ]/bit 0.5

Shift energy [pJ]/bit 0.3

Shift latency [Cycle] 1

Read latency [Cycle] 1

Write latency [Cycle] 1

a
fr

b
u
l

c
e
s

d
a
n

d
e
u

e
ll

e
n
g

e
s
t

fi
n

fr
a

h
u
n

it
a

la
v

li
t

n
ld

p
o
l

p
o
r

r
o
n

s
lk

s
lv
s
p
a

s
w
e

10
5

10
6

10
7

R
u
n
t
i
m
e
(
n
s
)

HDCR FPGA

Fig. 9. Runtime of HDC training on different platforms.

Baseline Systems: For the FPGA design, we use the System Verilog implementation from [49].

We synthesize the design on a Xilinx Virtex 7 FPGA (7vx1140tflg1930) using Vivado 19.2. The

maximum clock frequency was 80MHz and the device utilization is 61% and 23%, for LUTs and flip

flops, respectively. We get the throughput result from the post place & route simulation, which was

also used to record the switching characteristics of the design. The switching activity file is fed to

the Vivado power estimator to get the overall energy consumption.

For the CPU results, we use an Intel
®
Core(TM) i7-5650U CPU @ 2.20GHz, with 8GB RAM. We

use the C libraries for the LR use case from [11]. For comparison with the PCM configuration, we

used the numbers reported in [21].

5.2 Data Set
The language training data is taken from a corpora [46], which contains sample texts in 22 languages.

For inference, an independent data set from [29] is used, which comprises 1000 sentences per

language. The training, respectively the derivation of the language hypervectors, was carried out

with the entire training data set, which contains a text of 120000-240000 words per language. The

classification and thus the evaluation of the accuracy is carried out on multiple instances of one

sentence per language. Concretely, 1000 tests with one sentence per test are performed for each

language. We implement both the training and the inference phases of the HDC framework and

report the results in the following sections.

5.3 Performance Comparison
The runtime comparison for training and inference in HDCR and FPGA designs is presented in

Fig. 9 and Fig. 10, respectively. The runtime, and also the energy consumption in the next section,

for the training and inference phases are computed and reported separately because training is
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Fig. 10. Runtime of the HDC inference on different platforms. The results are generated on average length
input text for all languages.

typically performed once and in advance. In contrast, the inference is performed more frequently

in real-world applications. Therefore, the measured values for the inference should be regarded as

having a higher relevance. Since the runtime depends on the number of letters in the input text,

which varies for different languages, the evaluation is performed for each language.

On average (geomean), HDCR is an order of magnitude faster compared to the FPGA design.

Note that the FPGA implementation we used for comparison is already optimized for a high degree

of concurrency and parallelism. All hypervectors are stored in registers, and encoding an N-gram

requires only a single clock cycle, i.e., all𝑁 HVs are simultaneously permuted, and the XOR operation
is performed directly in the same combinational path. This results in long combinational paths,

which leads to a lower clock frequency of 80MHz. The massively parallel implementation of bit

operations on the vectors also results in an enormous consumption of resources, limiting the

given FPGA design to large devices, e.g., from the Virtex 7 series. Unlike the encoding operation,

the similarity check module compares HVs sequentially and requires 8192 cycles to compare the

query HV to a single class HV. This module is replicated 22 times to compare to all languages

simultaneously.

In HDC training, only the encoding module is used to encode large training texts
3
into their

respective class vectors. Despite the sequential rotation of hypervectors in HDCR, it outperforms

the FPGA design by a geometric mean of ≈ 10.2× (see Fig. 9). This is mainly attributed to the

smaller clock period in HDCR 1 ns compared to 12.5 ns in the FPGA design.

In HDC inference, due to the smaller input text
4
, the overall runtime of the FPGA design is

largely dominated by the similarity checking module. We use an average sentence size per language

generated from all 1000 test sentences per language in the test data set for this evaluation. Again,

despite the sequentiality in population counting, HDCR on average (geomean) reduces the runtime

by ≈ 6× compared to the FPGA design (see Fig. 10). This is because the FPGA design performs

the vector comparison sequentially while HDCR compares in 512-bit chunks, in parallel across

languages.

We also synthesized the hardware to an ASIC 65 nm process using Cadence RTL Compiler to

generate a performance comparison point consistent with the ASIC energy comparison point

presented in the next section. The best achievable clock speed was 400MHz which is approximately

5× faster than the FPGA implementation. The silicon required an area of 4.37mm
2
, which is quite

substantial for a single function accelerator. Given HDCR is more than 6× faster for all operation

modes and an ASIC implementation would be limited to the single task, HDCR provides a substantial

benefit over custom silicon. For completeness of comparison, on the CPU machine, the training

3
The number of characters for the training texts was between 100000 and 200000.

4
The number of characters for the test sentences was between 100 and 200 for all languages.
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Fig. 11. Energy consumption of the HDC training.

and inference modules require 0.107 × 103 sec and 0.095 × 103 sec for all 22 languages, which are

four and seven orders of magnitude slower, respectively, compared to HDCR. The reason for this

significant performance gap is that CPU machine requires a huge amount of data shuffling between

the memory and the core [9]. Additionally, the HDCR performance gain is partially attributed to its

custom in-memory compute units, e.g., the XOR implementation. Since the total energy consumption

is dependent on the runtime, a similar trend is expected in the energy comparison of HDCR and

the CPU machine.

5.4 Energy Consumption
In terms of energy consumption, HDCR is comparable to the FPGA design during the HDC training

phase (see Fig. 11) and ≈ 5.3× better during the inference phase. In the similarity checking module

alone, HDCR reduces the energy consumption by ≈ 95× (see Fig. 12). However, this is masked by

the roughly equivalent energy consumption of the encoder module in both designs. The dominant

impact on the energy consumption for the HDCR encoding phase is attributed to the parallel

implementation of the majority operation with RTM counters. This requires 8192 counters which

enable the required number of parallel bit-write operations. Since the energy consumption for

RTM is proportional to such write operations, it is correspondingly large for the encoding step.

The result presented in Fig. 11 shows the energy consumption during the training phase, which

includes the encoder. While the results vary less than 1% different between FPGA and HDCR, this

analysis does not consider I/O energy associated with moving data to and from the accelerator. In

both cases, the input letters need to be transferred from the main memory to the computing unit.

While HDCR only needs the input letter to be read and sent to the RTM memory controller, the

FPGA system must also forward the data on the bus to the FPGA implementation. This omission

makes our results more conservative, but independent of how the external system interfaces the

implementation. Regardless, the reduced inference-time energy allows the HDCR implementation

to immediately realize a net energy benefit over the FPGA implementation as presented in Fig. 12.

In the case of inference, the similarity checking in HDRC requires a single counter per language,

and the operation is performed only once. As soon as the bitwise comparison with the XOR

operation is performed, the 1s in the resultant vector are aggregated using the TR operation and

the RTM counter while the FPGA synthesizes a direct 1s counting circuit.

To summarize, with regard to the overall energy efficiency, the HDCR implementation reduces

the energy consumption by 5.3× (geomean).
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Fig. 12. Energy consumption of different modules in the HDC inference.

5.5 Comparison between HDCR and PCM
In the paper from Karunaratne et al. [21], they propose to use the novel PCM memory to implement

HDC. This work does not report the latency of their implementation, thus here we only show the

energy comparison. Table 3 compares the inference energy consumption of the HDCR and PCM

designs for an average-sized input text. Overall, HDCR outperforms the PCM design by 10.1× in

the encoding module and 1.08× in the similarity search module. Although the PCM design reports

dramatic reduction in the energy consumption in the similarity checking module, largely due to

parallel multiplications and current accumulation in the crossbar architecture, its overall energy

consumption is still higher than HDCR. This is due to the higher write energy of the memristive

devices compared to RTM. Comparing with the 65 nm CMOS-only design of the same reference,

HDCR achieves a 51.6× improvement.

Table 3. Average energy per query

Encoder Sim_Check Total

all-CMOS [nJ] 1474 1110 2584

PCM [nJ] 420.8 9.44 430.3

HDCR [nJ] 41.4 8.67 50.07

Improvement (PCM / HDCR) 10.1× 1.08× 8.59×

6 RELATEDWORK
Hyperdimensional computing has been used for learning and classification problems in many ap-

plication domains. Among others, HDC has been used for analogy-based reasoning [20], language

classification [48], hand gesture and activity recognition [37], text classification [14], and medical

applications such as epileptic seizure detection [4]. Although compared to conventional learning

algorithms, HDC is considered lightweight, the dimensionality of the hypervectors still makes HDC

resource-intensive, particularly on embedded and IoT devices. To improve the performance and en-

ergy consumption of the HDC frameworks, they have been accelerated on various platforms. These

include: FPGAs [52], conventional CPUs and GPUs [6], and domain-specific accelerators [15, 26, 36].

Since HDC is a memory-intensive application and is based on simple mathematical and logical
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operations, the in-memory compute capabilities of emerging nonvolatile memory technologies can

be exploited to accelerate it.

Many recently proposed architectures conduct near- or in-memory computation using emerging

nonvolatile memory technologies [30], typically tuned to leverage the strength of the particular

memory technology and the intended application. These works can be broadly categorized based

on the underlying technology (phase-change memory (PCM), ReRAM, STT-MRAM), and further

by how they conduct their processing (bitwise operations, arithmetic logic, vector multiplication).

Vector multiplication and arithmetic is a fundamental operation to many machine learning

and neural network tasks. In HDC, the same is applied in the encoding and similarity search

modules to compute the n-gram hypervector and similarity score. Karunaratne et al. [21] implement

dot-product operations using PCM in a crossbar architecture. Using an on-chip network and

DAC/ADC circuits, smaller multiply-accumulate subarrays are composed to realize larger dot-

product results. Other recent work conducts 8-bit multiply accumulate logic for convolutional neural

networks by converting the values from digital to analog and uses analog crossbar computation

to obtain the results [22]. These, along with similar works leveraging ReRAM [31, 34, 63] provide

acceleration and improved energy consumption relative to GPU/CPU implementations, but offer

limited flexibility for input size, limited accuracy associated with computation in the analog domain,

and require additional area to interpret and accumulate the analog results. This makes such

approaches unscalable for our target application.

Besides PCM and ReRAM, STT-MRAM technology can also be used for in-memory computation.

For instance, HieIM [44] and MLC-STT-CIM [40] exploit customized STT-MRAM memories to

conduct bitwise operations on memory contents and build arithmetic operations by combining

bitwise operations. These designs offer energy and area benefits for simple large matrix operations

such as convolution. Still, they are less efficient than other general PIM proposals and require

customized cell designs, which are difficult to fabricate. A more efficient design in STT-CIM [16]

conducts computation by opening multiple rows and sensing the combined current on shared

bitlines. Usingmodified reference voltages at the sense amplifiers allows OR, AND, and XOR operations,
which are then composed to realize arithmetic operations. This is more efficient than prior designs

since the additional circuitry is restricted to the sense amplifiers, and more realistic to fabricate

since it does not modify the fundamental cell structures. Unfortunately, STT-MRAM designs require

an access point and a fixed reference layer for every cell. While some of this area’s cost is mitigated

by the use of crossbar architecture, the density is limited to the feature size of the access network.

A similar density limitation exists for computation using other non-volatile memories [32], often

with the added complication of limited endurance in the underlying memory cells. In contrast,

planar racetrack memories only need as many access points as the length of the DBC, and in turn

can achieve superior densities.

RTM was initially proposed as a secondary storage device [42, 43]. However, due to its promising

characteristics, particularly its best-case SRAM class latency and high energy efficiency, RTM has

been considered for application at all levels — from register file and instruction memory to SSDs —

in the memory stack. For instance, Mao and Wang et al. have proposed RTM-based GPU register

files to combat the high leakage and scalability problems of conventional SRAM-based register

files [35, 62]. Xu et al. evaluated RTM at lower cache levels and reported an energy reduction of

69% with comparable performance relative to an iso-capacity SRAM [64] and explored the impact

of lightweight compression to allow independent shifting [65]. Venkatesan et al. demonstrated

RTM at last-level cache and reported significant improvements in area (6.4×), energy (1.4×) and
performance (25%) [59]. Park advocates the usage of RTM instead of SSD for graph storage which

not only expedites graph processing but also reduces energy by up-to 90% [41]. Besides, RTMs have

been proposed as scratchpad memories [24], content addressable memories [68], reconfigurable

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. Y, Article 1. Publication date: June 2022.



1:24 Khan and Ollivier et al.

memories [70], and even as network buffers [27, 28]. A recent review on RTMs covers more details

on the latest developments in RTMs and provides an exhaustive list of references on the application

of RTM in the memory subsystem [2].

There are relatively fewer instances of processing-in-memory applied to racetrack memories.

The state-of-the-art offers three approaches: S-CNN [33], DW-NN [66], and PIRM [39]. SPIM adds

a dedicated processing unit utilizing skyrmions that can compute logical OR and AND operations.
Unfortunately, these operations require dedicated circuitry for a fixed number of operands, limiting

the utility of the approach whenmore complex computation is required [39]. DW-NN uses dedicated

racetrack pairs, which store data from either operand and compute logical functions by reading

across the stacked magnetic domains. Simple XOR operations are computed directly, and in concert

with an additional precharge sensing amplifier, can be used to compute a SUM and CARRY for addition.
These results are then transferred to conventional racetracks, which can be shifted and summed to

perform multiplication. Unfortunately, performance is bottlenecked in two places: first, the data

must be read from the conventional racetracks to the paired racetracks one bit at a time. Second,

each bit position in the paired nanowires must be shifted under the access port, serializing the

computation. While the architecture offers an energy and throughput advantage compared to

von Neumann, this serialization limits the utility of the approach. Finally, PIRM offers a more

generalized computation framework, utilizing a more capable PIM-enabled tile to compute arbitrary

logical operations, addition, and multiplication. PIRM accelerates computation by leveraging TR

and multi-operands, and does not require specialized racetracks to do its work.

Our cim-tile uses the same philosophy as PIRM, but is tuned for the operations needed to compute

HDC. Additionally, we explore new operations such as counters and majority determination. While

prior work for HDC using in-memory PCM did not conduct a performance analysis, recent work for

convolutional neural networks (CNNs) using a similar PIM approach did report 1.0 tera operations

per second (TOPS) for 8-bit values. This is a significant improvement over FPGA capabilities which

can achieve 0.34 TOPS [17]. However, compute-in-racetrack memory approaches can outperform

this PCM result by an order of magnitude, for example with S-CNN achieving 9.3 TOPS. Given

HDCR uses a similar mechanism to PIRM, and PIRM provides 26 TOPS for 8-bit CNN inference, we

can expect similar order of magnitude speedups of HDCR over PCM for HDC applications.

7 CONCLUSIONS
The data dimensionality and mathematical properties of the HDC frameworks make them ideal

fits for in-memory computations. Many conventional and emerging memory technologies allow

(partial) implementation of the HDC framework in-memory. In this paper, we present a complete

racetrack memory based HDC system, requiring near-negligible additional CMOS logic. Most of

the HDC operations are implemented with the TR operation that reports the number of 1s in the

nanowire, exploiting its properties and magnetic domain (and domain wall) arrangements. For the

majority and the population count operations, we propose RTM nanowires-based counters that are

scaleable and area and energy-efficient compared to their CMOS counterparts. The hypervectors

are organized in RTM in a way that allows maximum possible parallelism and minimum possible

data movement. For the in-RTM computations, we dedicate one tile per subarray – the cim-tile

– and make minimal but necessary changes to its peripheral circuitry. For the logic operations,

a few additional multiplexing/selection gates are added to the row buffer circuitry to infer the

transverse results into different HDC operations. Our hardware customization and extensions are

negligible compared to other memory technologies, e.g., the power-hungry ADC/DAC converters,

etc., in memristive devices. For the language recognition use case, our proposed system, on average,

consumes 5.33× and 8.59× less energy compared to the state-of-the-art FPGA and PCM-crossbar

designs, respectively.
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