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Abstract—Dynamic DNN optimization techniques such as layer-
skipping offer increased adaptability and efficiency gains but
can lead to i) a larger memory footprint as in decision gates,
ii) increased training complexity (e.g., with non-differentiable
operations), and iii) less control over performance-quality trade-
offs due to its inherent input-dependent execution. To approach
these issues, we propose a simpler yet effective alternative for
adaptive inference with a zero-overhead, single-model, and time-
predictable inference. Central to our approach is the observation
that models trained with Stochastic Depth —a method for faster
training of residual networks— become more resilient to arbitrary
layer-skipping at inference time. We propose a method to first select
near Pareto-optimal skipping configurations from a stochastically-
trained model to adapt the inference at runtime later. Compared
to original ResNets, our method shows improvements of up to 2×
in power efficiency at accuracy drops as low as 0.71%.

Keywords—Edge Computing, Adaptive Inference, CNN.

I. INTRODUCTION

Computing at the edge offers lower latency and reduced band-
width usage by processing data close to the IoT devices, making
it ideal for applications that demand fast responses. However,
edge devices are constrained by limited computational power,
memory, and energy, which can restrict their ability to handle
more complex tasks, such as many resource intensive deep
neural networks (DNN). As alternatives, numerous hardware
and software optimizations have been proposed to reduce the
computation cost of DNNs. Dynamic optimizations like layer
skipping [1] offer an intrinsically adaptive inference. Usually,
this adaptation is performed on a per-sample basis. For example,
in skipping, decisions gates are placed before every (set of)
layer(s) and the decision of skipping (i.e., bypassing those
layers) is taken by an additional set of dedicated layers of
which computation does not contribute to the model result. This
means that for every input, the DNN itself judges how much
computation is required for that particular input, accelerating
the inference for easy inputs, while hard ones are processed
more extensively [2–6].

Despite their success in adapting the inference processing,
dynamic optimizations present one or more of the following
drawbacks: (a) They increase the model’s memory footprint
due to decision gates. (b) Many dynamic decisions, such as the
skip-or-not ones, are based on non-differentiable operations that
require methods like reinforcement learning for training, which
has no convergence guarantees, complicates the training process
[7, 8], and can easily prevent deploying dynamic optimizations

Figure 1. Accuracy curve for skipping blocks in ResNet-110 (on CIFAR-10)
trained with traditional and stochastic depth procedures (shaded area give the
distribution for 500 skipping configurations).

to new models. (c) The input-dependent behavior in dynamic
optimizations makes those unfeasible to be used in, for example,
real-time applications, where predictability is mandatory. These
drawbacks hinder a wider adoption of adaptive inference for
some application domains, thus limiting them from taking
advantage of larger and better models.

In this work, we address the drawbacks above by keeping it
simple. More precisely, based on the idea of skipping (group of)
layers, we propose a framework for inserting, at design time,
our proposed simple and weightless skip-or-not gates in front of
the model’s layers. The set of layers that will be skipped is also
defined at design-time, and many skipping configurations with
different combinations of layers to be skipped are generated.
At runtime, these different skip configurations can be loaded
into the skip-or-not gates. With that, we bring the heavily
computational task of skipping decisions from runtime to design-
time but still allowing for skipping adaptability after the model
deployment. In other words, we enable an adaptive inference
that is fully user-controllable (and thus, predictable) and does
not need extra layers or any kind of learnable operators, not
increasing memory footprint nor training complexity. As we
will show, thanks to Stochastic Depth training [9] and a careful
configuration of which layers to skip, carried by multiple near
Pareto-optimal skipping configurations, our framework avoids
major drops in accuracy that would be otherwise caused by
arbitrarily skipping layers.

Figure 1 gives an example of the accuracy improvements
achieved by skipping layers (e.g., skipping a residual block)
on a model trained with stochastic depth over skipping on one
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that was trained following a traditional training procedure. The
figure shows the accuracy (y-axis) for a varying number of
skipped blocks (x-axis) in a ResNet-110 [10]. First, note the
mean accuracy (black and red solid curves). The curves suggest
a much greater resiliency to skipping for a model trained with
stochastic depth – precisely the behavior exploited in this work.
Second, it is critical to note that there is a significant variability
in the accuracy depending on which blocks are skipped (black
and red shaded regions). For example, when skipping 37 blocks
out of the 54 in ResNet-110, there is a 49.61% accuracy gap
between worst and best skipping configurations. Therefore, it is
important to select not only how many blocks to skip (which
significantly impacts metrics like performance and energy) but
also which blocks to skip to reduce the accuracy drop and
enable different accuracy-performance inference profiles.

Concretely, this paper’s contributions are as follows:

∙ We propose a new gating mechanism that avoids the
need of complex training methods and overhead-prone
decisions layers. This mechanism enables, for the first
time, repurposing Stochastic Depth training for deploying
adaptive models;

∙ We propose a method for navigating the extensive skipping
design space and deriving the Pareto front at design-
time; and a runtime algorithm to adapt the inference
processing on these configurations according to current
edge requirements;

∙ We evaluate the proposed approach on a real edge platform
against state-of-the-art adaptive techniques, showing im-
provements of up 2× in power efficiency and up to 1.97×
in the number of processed inferences.

The state-of-the-art offers a plethora of DNN optimiza-
tions [11, 12]. Here, we focus on the dynamic optimizations
since they support adaptive inference techniques, which are
especially important for deploying DNNs at the edge. Particu-
larly, this work builds upon the skip optimization. The reasoning
behind skipping is that not all samples require all of the network
layers, which are necessary only for the hardest samples. For
easy inputs, a shallow(er) network is enough. The problem is
usually treated as an optimization problem where the goal is to
skip the most layers without dropping the network’s accuracy.
The prominent SkipNet [1], for instance, includes a method to
train decision gates that are placed before a group of layers.
Based on the output of the previous layer, the gate can bypass
the layers’ computation. SkipNet features two types of decision
gates: a feed-forward one (with one or two convolutional layers
followed by a fully-connected one), and a recurrent gate (with
a one-layer Long Short Term Memory, LSTM). Skipping is
especially applicable to ResNets [10] due to their intrinsic
design that already contains skips (residual connections) and
their ensemble property.

Figure 2 shows the traditional skipping approach (based on
SkipNet). For each residual block (sequence of Conv 3×3
with the respective ReLU and batch-normalization, omitted for
simplicity), the Decision Gate reads in the previous feature map
(dashed arrows) and selects whether to bypass the input feature
map as the block’s output (from the multiplexer’s upper input)
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Figure 2. Traditional skipping (adapted from [1]). Batch-normalization and
activation layers omitted for simplicity.

or use the feature map produced by the block (multiplexer’s
bottom input). Most of the literature on skipping networks differ
on the configuration and training of the decision gate. A sample
gate configuration is shown in Figure 2. The output of the
Fully-Connected (FC) layer is discretized to control the bypass
(e.g., bypass if greater than 0.5).

A. Stochastic Depth

Stochastic Depth [9] is a popular training procedure that
enables training very deep residual networks (e.g., ResNets
with over 1200 layers). It emerged as a method to cope
with challenges of training large networks, such as vanishing
gradients and diminishing feature reuse [9]. Key to stochastic
depth is to have a deep network for testing (delivering high
accuracy) and a shallow network during training (requiring less
resources). More precisely, for each mini-batch, a set of layers
is randomly disabled or dropped (i.e., for training on a shallower
network). In the context of ResNets, this is done by passing
forward the residue only (as in a identity function), thus not
executing the layers that are part of the block, as will be further
illustrated later.

Since initial layers extract low-level features required by later
layers, the authors propose that layers are dropped with a non-
uniform probability. To this end, they use a probability function
that decays with the depth, so that layers at the end of the
network are more likely to be dropped. In a ResNet with 𝐿
blocks and hyper-parameter 𝑝𝐿, block 𝑙 is kept with a probability
𝑝𝑙 = 1− 𝑙

𝐿 (1−𝑝𝐿). For example, with a 𝑝𝐿 = 0.2, 40% speedup
in training is achieved for ResNet-110 on CIFAR-10 (with the
same test error obtained with traditional training). In this work,
however, our main interest in Stochastic Depth is not speeding-
up training, but leveraging a property attributed to models trained
with stochastic depth - a higher skipping resiliency. As shown
in the plot of Figure 1 and later in section IV, models trained
with a stochastic drop of layers become resilient to skipping
after deployment.

B. Related Work

ConvNet-AIG [4] is a variation of skipping, in which layers
are dedicated to certain classes. This makes it possible to learn
to skip layers related to not-interesting classes. To train the
gates, authors model the gates as discrete random variables
over two states (skip or not) and use the Gumbel-Max trick
and its softmax relaxation. In the case of ConvNet-AIG, the
skip decision can be interpreted as a decision based on the
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Figure 3. Overview of the proposed framework.

importance of a given layer to a given sample. Inspired by the
biological brain, Jiang et al. proposed a two-branch network
with skipping [5]. Like the approach taken in SkipNet, the gates
are trained with the network weights. Interestingly, they report
an improved robustness to adversarial attacks as byproduct of
skipping. The Dual Dynamic Inference (DDI) framework [6]
uses skipping for IoT devices. It includes both layer and channel
skipping and optional early-exits. Decision gates are trained
with a supervised approach that employs a resource-aware loss
that can be either in terms of number of floating-point operations
(FLOPs) or energy.

Besides skipping, optimizations like early-exit [13] also offer
mechanisms for adaptive inference. Early-exit also works on a
sample-by-sample basis by identifying the “easier” ones that
can finish processing earlier by following exits (branching)
connected to the main set of layers. For example, works like [3],
[2], and [14] introduce frameworks to optimize and deploy such
models on embedded GPUs and edge environments. However,
the required additional branches incur in a memory footprint
overhead and, in case of not-taken exits, computation overhead.
Additionally, by relying on a fully runtime data-dependent
mechanism, early-exits (much like the traditional skipping)
cannot offer a predictable inference time.

Even though pruning [15], another optimization, was initially
proposed as a static optimization, it has also been extended
to be used dynamically in the state-of-the-art. The pruning-
created resource-accuracy trade-off was exploited on-device by
many works like [16], [17], and [18] (which even combines it
with early-exit). Despite pruning returning a fixed model (with
predictable runtime behavior), this optimization usually requires
re-training the model to recover the lost accuracy. Retraining
(or fine-tuning) the model, in turn, implies that multiple model
versions need to be produced at design-time and kept at runtime
if one wishes to adapt the inference processing, i.e., performing
model switching.

C. Our Contributions

Our proposal contributes to the state-of-the-art on adaptive
inference on the following. Zero-Overhead: our simple yet
effective gating mechanism avoids the need of complex training
methods and avoids overhead-prone decisions layers (common
on layer and block skipping models [4–6]). Predictability: for

Figure 4. A toy example of an adaptive ResNet with two skippable blocks.

time-sensitive applications such as autonomous driving, it is
imperative to deploy models that have predictable execution
times. Our approach enables a fully controllable inference that
is adaptable and predictable (unattainable for input-dependent
approaches [18, 19]).

II. ADAPTIVE SKIPPING WITH STOCHASTIC TRAINING

Figure 3 gives an overview of our framework for adaptive
inference. It works in two phases. In the first phase, models are
trained following the Stochastic Depth approach [9], and the
DNN design space is navigated to deliver operating points at the
Pareto front for the skipping configurations (i.e., different set of
skipped blocks deliver different accuracy-performance profiles).
The generation of the Pareto front consists of four steps (1 to
4 in the figure). The second phase happens at runtime after
the model has been trained and the Pareto front configurations
have been selected. At runtime, the selected operating points
(skipping configurations) can be switched at no cost (given this
approach’s single-model property, there is no need to load a
different set of weights) to adapt the inference processing to
current conditions. The list of configurations is passed to the
runtime algorithm which, based on the profile of the current
conditions at the edge, adapts the inference processing (step 5
in the Figure 3).

For instance, see the toy example on Figure 4 with a ResNet
with only two skippable blocks. There are three possible skipping
configurations for adapting the inference processing, skipping
block one, block two, or none. As explained earlier, these
combinations will show different accuracy, latency, and energy
profiles to be exploited dynamically in response to changes in
runtime conditions or requirements at the edge.

A. Design-Time

In this section, we describe the main innovations regarding the
design-time phase including the usage of Stochastic Depth for
skipping-resilient models, the insertion of the fully-controllable
gates, and the selection of skipping configurations for Pareto
configurations.

1) Inputs and Training: The design-time phase starts by
reading in the user CNN (in PyTorch) and the dataset. In Step
1 of this phase (see Figure 3), the CNN is trained with the
Stochastic Depth procedure described in subsection I-A).

2) Gate Insertion: After training, skip gates are inserted as
PyTorch classes before the skippable layers (Step 2 in Figure 3).
In this work, the Gated-CNN (gCNN, with the gates inserted) is
compiled for deployment at the edge. This means that we do not
rely on high-level interpreted frameworks such as TensorFlow or
PyTorch. Instead, we leverage the Intermediate Representation
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Figure 5. Our proposed skipping. Batch-normalization and activation layers
omitted for simplicity.

Execution Environment (IREE) [20]. IREE is an MLIR-based
end-to-end compilation flow that accepts models described in
multiple Deep Learning frameworks (e.g., PyTorch, Tensorflow,
and ONNX). Central to the IREE compilation flow is the
torch-mlir MLIR project for PyTorch and ONNX models.
For the gCNNs we extended torch-mlir to support lowering
input-dependent gates as blocks controlled by if statements.
This way, we seamlessly compile from Pytorch via ONNX
onto edge platforms (Odroid XU4 boards, in our case study)
using our modified IREE flow along with the IREE runtime
(responsible for controlling the executable loading and its inputs
and outputs). Apart from input images, a compiled gCNN also
takes the skipping configuration in form of an array as input.
Consequently, it is possible to change the model depth sample-
by-sample, without needing to reload new weights from disk.
That is, all skipping configurations lie within the same model
and executable.

Recall that in ResNets there are segments (usually three
or four) of residual blocks. All blocks of the same segment
have the same number of channels, at every new segment the
number of channels usually doubles (e.g., first segment with 16
channels, the next with 32, and the last one with 64 channels).
In this work, all blocks other than the first in a segment are
skippable and will have a gate placed in front. We define the
size of the skipping configuration as 𝐵𝑠 = 𝐵 − 𝑆𝑒𝑔, where 𝐵
is the number of blocks and 𝑆𝑒𝑔 is the number of segments.
The skip configuration (illustrated in Figure 5) is an array
𝑆 = [𝑠1, 𝑠2, .., 𝑠𝐵𝑠

] where 𝑠𝑖 ∈ {0, 1} defines whether the 𝑖-th
block is skipped (𝑠𝑖 = 0) or executed (𝑠𝑖 = 1).

3) Sensitivity Analysis: A problem central to skipping is not
only how much blocks should be skipped, but also which ones.
Given the huge number of possible skipping configurations,
evaluating all of them can quickly become untracktable. For-
mally, for selecting 𝑁 blocks among 𝐵𝑠 skippable blocks, there
are

(︀
𝐵𝑠

𝑁

)︀
options. Let us take the ResNet-110 as an example.

This ResNet has 110 layers distributed in three segments with
18 blocks of two layers each (plus the input and last fully-
connected layers). This give us 𝐵𝑠 = 54− 3 or 51 skippable
blocks. To select, let us say, 30 blocks, there would be necessary
1.4× 1015 evaluations.

In this work, we approach this combinatorial problem by
selecting which blocks to skip with a sensitivity analysis (Step

3 in Figure 3)1. The sensitivity analysis ranks blocks individually
according to their accuracy impact (their importance). Every
block is removed (skipped) and the accuracy is evaluated. Then,
an ordered list of blocks is created from the lowest accuracy
(given by the removal of the most important block) to the highest
accuracy (least important block).

Regarding the time to build the sensitivity list, when compared
to training the models, the list does not seriously increase
training time. Precisely, it is necessary to run only one evaluation
on the test set for every skippable block. As an example, take
the training of ResNet-20 and -100. It took 500 epochs in our
experiments, meaning 500 evaluations (plus the many more
training iterations). In contrast, it takes only 7 evaluations (just
1% of the evaluations run during training) and 51 evaluations
(10% of the training evaluations) for building the sensitivity
lists for ResNet-20 and -100, respectively. If one considers also
the time spent on the trainings set, the costs of building the
sensitivity list decreases even further in comparison with the
time for training those models.

4) Pareto Front Generation: With the sensitivity list at
hand, all filtered skipping configurations are evaluated on the
complete test set according to their accuracy and execution time
for deriving an approximation of the Pareto front (Step 4 in
Figure 3). By ranging the number of skipped blocks 𝑁 from
zero (meaning no skipping, 𝑆 = [1, 1, .., 1]) to 𝑁 = 𝐵𝑠 (where
all blocks are skipped, 𝑆 = [0, 0, .., 0]), a initial set of skipping
configurations is generated. These configurations are obtained
by skipping the least sensible 𝑁 blocks. Nevertheless, when
evaluated, those configurations are not guaranteed to deliver
Pareto operating points. That is, the sensitivity list regards
blocks individually, only one is skipped at a time, and it does
not evaluates their execution time.

Therefore, in this step, the Pareto front is found by
evaluating the accuracy versus inference time of the skipping
configurations. For example, out of the 51 possible skipping
configurations in the evaluated ResNet-110, 32 configurations
made into the Pareto front. In the next step, the list of Pareto
configurations supports the runtime adaptation (as a file, where
rows, holding a Pareto 𝑆 configuration, are sorted by the
number of skipped blocks).

B. Runtime

On top of the IREE runtime, we developed an adaptive
runtime to exploit the operating points at the Pareto front. It
is in charge of selecting the skipping configuration that is fed
to the executable along with the input image. The adaptive
algorithm is presented in Algorithm 1. First, the user’s inputs
(Δ𝑟𝑒𝑞 and 𝑚𝑖𝑛𝑎𝑐𝑐) along with the Pareto configurations are
read. Then, all skipping configurations with accuracy below the
minimum acceptable are discarded (line 1, done once). After
this initialization, at every new inference request (e.g., arrival
of new input image in line 4), two outcomes are possible. If

1In our experiments, ranking blocks with a sensitivity analysis performed
better than other methods (i.e., l2-norm, fisher, hessian, and random search).
Still, thanks to the modularity of the proposed framework, new methods can
be easily incorporated.



Algorithm 1 Pseudocode for the runtime adaptation.
Require: 𝑃𝑎𝑟𝑒𝑡𝑜 with sorted configurations 𝑐𝑓𝑔𝑖 for 0 < 𝑖 < 𝐵𝑠

Require: Δ𝑟𝑒𝑞 for maximum idle time before decreasing skipping
Require: 𝑚𝑖𝑛𝑎𝑐𝑐 for the minimum acceptable accuracy
1: 𝑃𝑎𝑟𝑒𝑡𝑜 ← 𝑃𝑎𝑟𝑒𝑡𝑜[𝑖] ∀𝑖 (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑐𝑓𝑔𝑖) > 𝑚𝑖𝑛𝑎𝑐𝑐) {Filter out

configurations with accuracy below the user’s threshold}
2: 𝑐𝑢𝑟𝑟_𝑐𝑓𝑔 ← 𝑃𝑎𝑟𝑒𝑡𝑜[0] {Start with no skipping}
3: loop
4: 𝑟𝑒𝑞 = 𝑛𝑒𝑤_𝑟𝑒𝑞𝑢𝑒𝑠𝑡() {Wait for new inference request}
5: if 𝑏𝑢𝑠𝑦() then
6: 𝑑𝑟𝑜𝑝_𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑟𝑒𝑞)
7: 𝑐𝑢𝑟𝑟_𝑐𝑓𝑔 ← 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒_𝑠𝑘𝑖𝑝𝑝𝑖𝑛𝑔() {Increase number of skipped

blocks by one if possible, otherwise returns 𝑃𝑎𝑟𝑒𝑡𝑜.𝑙𝑎𝑠𝑡()}
8: else
9: if 𝑡𝑛𝑜𝑤 − 𝑡𝑙𝑎𝑠𝑡 > Δ𝑟𝑒𝑞 then

10: 𝑐𝑢𝑟𝑟_𝑐𝑓𝑔 ← 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒_𝑠𝑘𝑖𝑝𝑝𝑖𝑛𝑔() {Decrease the num-
ber of skipped blocks by one if possible, otherwise returns
𝑃𝑎𝑟𝑒𝑡𝑜.𝑓𝑖𝑟𝑠𝑡()}

11: end if
12: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑟𝑒𝑞, 𝑐𝑢𝑟𝑟_𝑐𝑓𝑔)
13: 𝑡𝑙𝑎𝑠𝑡 ← 𝑡𝑛𝑜𝑤

14: end if
15: end loop

the device is busy, the inference requested cannot be processed
and it is dropped (line 6). The rationale behind it follows the
MLPerf inference server standard [21] that defines a request as
dropped if it arrives at a busy device. Therefore, in such cases,
the runtime increases the number of skipped blocks by one
(line 7). This way, the inference processing gradually moves
to a faster skipping configurations in the Pareto Front. This
adaptation mechanism only sacrifices accuracy when inference
requests cannot be served due a lack of processing capabilities.

As second outcome, when the device is free (else block in
line 8), the runtime can feed the executable with the input and
current skipping configuration. However, if the time elapsed
since the last request is greater than a pre-defined value (Δ𝑟𝑒𝑞),
the inference processing is assumed to safely go to a slower
(but of higher accuracy) configuration (i.e., decrease the number
of skipped blocks - line 10). In our experiments, we set Δ𝑟𝑒𝑞 to
the time taken by the zero-skipping model and 𝑚𝑖𝑛𝑎𝑐𝑐 to 10%
below the accuracy of the original model. We also note that it
is possible to incorporate more sophisticated methods in our
solution to dynamically adapt the Δ𝑟𝑒𝑞 and 𝑚𝑖𝑛𝑎𝑐𝑐 parameters
at runtime (e.g., with reinforcement learning methods).

III. METHODOLOGY

A. CNNs and Datasets

We evaluate our approach on two datasets (CIFAR-10 [22]
and CIFAR-100 [22]) and two residual models (ResNet-20 and
ResNet-110). All input images follow CIFAR standard sizes
of 32x32. All models are trained for 500 epochs. Learning
rate starts at 0.1 for the first 250 epochs, 0.01 for the next
175, and 10−4 until the end. All models are trained in PyTorch
on an Nvidia Geforce RTX 3080. Accuracy reports are given
on TOP-1 accuracy. After training, all models follow the same
compilation steps, they are exported to ONNX files and compiled
by our modified IREE flow with the same default compiler flags.
Skipping configurations are saved as binary files and deployed
with the executables.

We use two baselines for the evaluation, the original ResNets
without skipping and the state-of-the-art skipping approach,
SkipNet [1]. Further, we follow SkipNet’s supervised training
of feedforward decision gates. For ResNet-20, the ffgate1 [1]
gate is used consisting of an initial maxpool layer followed
by two convolutional layers (both with batch normalization
and ReLU), an average pool layer, and a final convolutional
layer. For the larger ResNet-110, the evaluated SkipNet uses the
ffgate2 [1] gate configuration, which does not make use of an
initial maxpool layer for dimension reduction (as in ffgate1).
The decision to whether or not to skip in SkipNet is given by
comparing the output neuron of the gates to a threshold 𝛼. We
set 𝛼 = 0.5 following the default configuration in [1].

B. Evaluation Platform and Scenarios

All evaluated models are deployed on Odroid XU4 board
hosting an Exynos 5422 big.LITTLE chip with four Cortex-A15
and four Cortex-A7 cores, fixed at frequencies of 1.8 GHz and
1.5 GHz respectively (inference processing is pinned at a big
core). Performance is measured from within the IREE runtime
that was modified to record inference time. Power and energy
are measured using the ZES Zimmer LMG450 Power Analyzer
connected to DC input with an external readout rate of 20Sa/s.

A workload generator requests 500 test images for evaluation
(i.e., inference requests of batch size one). For ResNet-20
models, the workload generator sends one request every 5
seconds. For ResNet-110, it sends one request every 30 seconds.
Besides, to emulate an edge environment with factors like
Inference Per Second (IPS) fluctuation and network congestion,
the base rate of inference requests (one every 5 or 30 seconds)
varies over time [21], represented as 25% random workload
deviation every 10th request.

IV. RESULTS

A. Design Space

1) Accuracy: Figure 6 presents the accuracy (left-side plots),
energy consumption (center plots), and the speedup (right-side
plots) for our approach over the number of skipped blocks
(x-axis) for ResNet-110 (upper plots) and ResNet-20 (bottom
plots) on CIFAR-10/100. Note that the baselines are shown for
comparison only and are not following the number of skipped
blocks in x-axis. From the accuracy plots, we see that our
approach without skipping achieves a similar accuracy to the
baselines. On CIFAR-10, the best accuracy is delivered by
our approach at 91.44% for ResNet-20 and by SkipNet at
92.67% for ResNet-110. On CIFAR-100, the original models
give the highest accuracy at 73.59% and 67.37% for ResNets-
110 and -20, respectively. More importantly, the plot shows the
adaptability opportunities enabled by our approach, by allowing
full control over the model size (i.e., selecting the number of
skipped blocks). For instance, for ResNet-110/CIFAR-10 (top-
left plot, solid blue curve) the accuracy remains close (within
1%) to the original one until around 20 blocks are skipped
(out of the 54 possible). With 20 blocks, the accuracy drops
only 0.23% but 37% of blocks are skipped. At a 10% accuracy
drop, 36 blocks can be skipped in the ResNet-110 on CIFAR-10
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Figure 6. Accuracy and Energy per infrence for original, SkipNet, and Ours on the left and center plots, respectively. Speedup over the Original baseline
(right-most plots) for SkipNet and Ours. ResNet-110 on top plots, ResNet-20 on bottom plots. Dashed curves for CIFAR-100 dataset, solid curves for CIFAR-10.
Note that original and SkipNet models are shown for comparison and do not follow the number of skipped blocks in the x-axis.

(delivering 81.51%). Similar behavior is observed across the two
evaluated datasets and ResNets. The gains from our skipping
approach are especially clear for speedup and energy.

2) Inference Time: Despite Skipnet’s high accuracy, we can
see that the overhead introduced by its decision gates can
become an issue for inference time for some models and datasets.
For instance, for ResNet-20, SkipNet ends up slowing down the
inference when compared to the original model (speedups of
0.96× and 0.92× on CIFAR-10 and CIFAR-100, respectively).
This is primarily due to SkipNet’s low number of skipping
blocks on ResNet-20 (from none to just three blocks are skipped).
Therefore, the overhead from the layers in the decision gates
become more apparent. Our approach, on the other side, presents
significant speedup levels over the original ResNet-20 on CIFAR-
10 (up to 3.33×) and CIFAR-100 (up to 3.13×).

For the larger ResNet-110, SkipNet improves over the
original model (1.50× speedup on CIFAR-10). For this model
and dataset, SkipNet runs also faster than our approach for
skipping configurations of up to 14 skipped blocks – at which
point SkipNet delivers an accuracy 1.18% higher than our
approach (Figure 6). However, for configurations of over 14
skipped blocks, our approach delivers inferences faster than
both baselines (up to 19.7× over the original ResNet-110 on
CIFAR-10). See the zoom-in from none to 20 skipped blocks in
the top-center plot. Additionally, recall that the SkipNet curves
in Figure 6 give the result over the full test set and due to its
input-dependent behavior the inference time can vary drastically
from input to input. On the evaluated models and datasets, we
observe that SkipNet inference time can vary as much as 13×
(between skipping all or executing all blocks), which severely
impacts SkipNet’s predictability.

3) Energy: A behavior similar to inference time can be
observed in energy consumption (center plots of Figure 6). For
instance, see the SkipNet’s overhead on ResNet-20 w.r.t the
original model (3.46𝐽 overhead on CIFAR-10 and 2.93𝐽 on
CIFAR-100). For the consumption of ResNet-110 (center top
plot) on CIFAR-10, we can see that SkipNet saves energy over
the original model (30% energy savings). Regarding SkipNet

Table I
ACCURACY, NUMBER OF PROCESSED INFERENCES, AND INFERENCE PER
WATT FOR SKIPNET AND OUR PROPOSAL W.R.T THE ORIGINAL RESNET

MODELS. THE HIGHER, THE BETTER FOR ALL TABLE.

Accuracy Proc. Inferences Inf/Watts
SkipNet Ours SkipNet Ours SkipNet Ours

CIFAR-10 ResNet-20 2.83% -6.64% 0.94× 1.48× 0.97× 1.54×
ResNet-110 2.27% -3.13% 1.47× 1.97× 1.46× 2.00×

CIFAR-100 ResNet-20 0.26% -2.40% 0.94× 1.15× 0.95× 1.18×
ResNet-110 2.88% -0.71% 1.28× 1.22× 1.29× 1.26×

against our approach for ResNet-110/CIFAR-10, SkipNet shows
a more efficient processing for up to 15 skipped blocks. When
more than 15 blocks are skipped, our approach shows the
lowest energy consumption. For ResNet-110 at the larger dataset
(CIFAR-100), our skipping starts to show energy consumption
lower than SkipNet at around 10 blocks. It can be also observed
that our approach delivers an almost linear improvement in
energy consumption w.r.t the number of skipped layers - thanks
to our zero-overhead gates. In short, our approach makes
the performance-energy-accuracy trade-off easily accessible
(switching skipping configurations at no cost) by the user or
runtime adaptive engines (as seen next).

B. Runtime Evaluation

Table I summarizes the runtime evaluation (recall from
section III) on the average accuracy, total number of processed
inferences, and the processed inferences per Watt ratio. All
results are presented w.r.t the Original baseline for the sake of
simplicity. First, note the clearly higher accuracy delivered by
SkipNet for most models and datasets. The exception is ResNet-
20 on CIFAR-100, in which the original model delivered an
accuracy 0.26% higher than that of SkipNet. Throughout our
evaluation, the accuracy drops of our approach lie within the
10%, defined by the parameter 𝑎𝑐𝑐𝑚𝑖𝑛 (see Algorithm 1). This
leads to great improvement in inferences and inferences per
Watt, as shown in the table.

In terms of the number of processed inferences, our approach
achieves higher performance than both baselines in almost all



evaluation cases. The best case scenario for our adaptive infer-
ence happens at the ResNet-110 on CIFAR-10, where it almost
doubled (1.97×) the number of processed inferences (at a small
3.13% accuracy drop) when compared to the original baseline.
The exception is the ResNet-110/CIFAR-100 evaluation, where
SkipNet achieved the highest performance. This is due to the
steeper accuracy drop with our skipping approach (recall the
accuracy plot in Figure 6). With less operating points (i.e.,
skipping configurations) delivering accuracy above 𝑎𝑐𝑐𝑚𝑖𝑛, our
runtime has less operating points available to adapt the inference
and ends up with a speedup over the the other two baselines
smaller than in the other evaluation cases.

Another important factor for edge deployment is the power
efficiency (see right-most columns of Table I). The last column
highlights the power efficiency delivered by our zero-overhead,
controllable skipping. Even though SkipNet achieves the best
results for the ResNet-110 on CIFAR-100, in all the other
evaluation cases, our gated models achieve better efficiency
and, contrarily to SkipNet, is constantly better than the original
ResNet-20 and ResNet-100 models. original ResNet-20 and
ResNet-100 models.

V. CONCLUSIONS

Based on the observation that CNNs become more resilient
to arbitrary skipping when trained with the stochastic depth,
our framework trains CNNs that can be leveraged for fully-
controllable, zero-overhead, runtime adaptive inference as gated
CNNs. However, selecting which layers to skip (i.e., the skipping
design space) is a combinatorial problem which quickly becomes
intractable. To cope with this, we compute a sensitivity list of
the model’s layers to approximate the Pareto front of skipping
configurations. At runtime, the generated operating points are
exploited to adapt the inference processing.
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