Report from Dagstuhl Seminar 25091

Tradeoffs in Reactive Systems Design

Jerénimo Castrillén-Mazo*!, Chadlia Jerad*?, Edward A. Lee*3,
Claire Pagetti**, and Shaokai Jerry Linf®

TU Dresden, DE. jeronimo.castrillon@tu-dresden.de
University of Manouba, TN. chadlia.jerad@ensi-uma.tn
University of California — Berkeley, US. eal@berkeley.edu
ONERA — Toulouse, FR. claire.pagetti@onera.fr

University of California — Berkeley, US. shaokai@berkeley.edu

Uk W N

—— Abstract
Reactive systems — software systems that continuously interact with their physical or digital

environment — are central to safety-critical domains such as autonomous vehicles, industrial
automation, and medical devices. These systems face inherent design tensions: the need to be
predictable yet adaptable, timely yet accurate, consistent yet available, and secure yet accessible.
Addressing one requirement often undermines another, revealing tradeoffs that are not merely
engineering challenges but fundamental limits. This seminar aimed to confront these tradeoffs
directly, drawing on insights from real-time systems, distributed computing, formal methods,
machine learning, and security. By exploring case studies, formal frameworks, and practical tools,
we made progress in the understanding of how to make design decisions when no single solution
satisfies all competing goals. Interactive sessions and demos gave participants a tangible sense of
the costs and compromises involved. With all this, we achieved the seminar’s goal, namely, to
cultivate a shared understanding of how to navigate the complex design space of reactive systems
and chart paths toward more robust and principled solutions.

Seminar February 23-28, 2025 — https://www.dagstuhl.de/25091

2012 ACM Subject Classification Computer systems organization — Embedded and cyber-
physical systems; Computer systems organization — Dependable and fault-tolerant systems
and networks; Computer systems organization — Real-time systems; Computing methodologies
— Distributed computing methodologies; Computing methodologies — Concurrent computing
methodologies; Mathematics of computing — Mathematical analysis; Security and privacy —
Software and application security

Keywords and phrases reactive systems, cyber-physical systems, design tradeoffs, real-time
systems, distributed computing, predictability, adaptability, timeliness, accuracy, consistency,
availability, security, accessibility, machine learning, formal methods, system design, embedded
systems, safety-critical systems, tool support, programming models, runtime verification

Digital Object Identifier 10.4230/DagRep.15.2.126

* Editor / Organizer
T Editorial Assistant / Collector

Except where otherwise noted, content of this report is licensed
o

under a Creative Commons BY 4.0 International license
Tradeoffs in Reactive Systems Design, Dagstuhl Reports, Vol. 15, Issue 2, pp. 126-157
Editors: Jerénimo Castrillén-Mazo, Chadlia Jerad, Edward A. Lee, Claire Pagetti, and Shaokai Jerry Lin

\\v pagstunL Dagstuhl Reports
RePORTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jeronimo.castrillon@tu-dresden.de
mailto:chadlia.jerad@ensi-uma.tn
mailto:eal@berkeley.edu
mailto:claire.pagetti@onera.fr
mailto:shaokai@berkeley.edu
https://www.dagstuhl.de/25091
https://doi.org/10.4230/DagRep.15.2.126
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

J. Castrillon-Mazo, C. Jerad, E. A. Lee, C. Pagetti, and S. J. Lin

1 Executive Summary

Jerénimo Castrillon-Mazo (TU Dresden, DE)

Chadlia Jerad (University of Manouba, TN)

Edward A. Lee (University of California — Berkeley, US)
Claire Pagetti (ONERA — Toulouse, FR)

License @ Creative Commons BY 4.0 International license
© Jer6énimo Castrillén-Mazo, Chadlia Jerad, Edward A. Lee, and Claire Pagetti

Reactive systems are software systems that engage in a continual dialogue with their envir-
onment. They constitute the software parts of cyber-physical systems where timely reactions
are often critical to safety. Applications include autonomous vehicles, electric power systems,
industrial automation, healthcare electronics, and robotics. Because the software engages
in a continual dialog with its environment, it often has conflicting requirements. It needs
to be predictable, but robust to unpredictable events; it needs to react in a timely manner,
but this often requires reacting with inconsistent information; it needs to be adaptable, but
demonstrably safe; and it needs to be secure, but accessible and available. Many conferences
and workshops focus on one of the goals, such as achieving real-time behavior, without
explicitly acknowledging the costs and without providing sound strategies for dealing with
failures that prevent reaching the goals. The focus of this seminar was on the tradeoffs that
are intrinsic in the design of such systems. When you make a system predictable, available,
secure, or even demonstrably safe, what have you lost?

This seminar pulled in experts from manifold disciplines, both academic and industrial,
to identify and discuss the fundamental limits in reactive systems design that make tradeoffs
inevitable. In preparation for the seminar, the co-organizers reached out to leading experts
among the participants and invited them to deliver four talks to frame the discussions for
each of the first four days. Following this initial outreach, all participants were contacted and
invited to contribute through short talks, position statements, and demonstrations of any
relevant tools. The seminar format was kept flexible and open to allow space for ideas and
key discussion points to emerge organically. In this context, the working groups described in
Section 4 arose from the core ideas and challenges identified during the morning sessions.
These groups held their discussions during the first half of the afternoon sessions of the first
two days. The seminar was organized as described blow.

Day 1: Consistency vs. availability

Consistency is agreement on shared information across a distributed system. Availability
is the ability to act on that shared information in a timely way. It has been shown that
as latency increases when sharing such information, either consistency or availability or
both must be sacrificed. This topic focused on how to manage this tradeoff. It included
presentations proposing different ways to formalize the tradeoff, as well as examples of how
it arises in software design. Two breakout groups formed on the first day, focusing on the
topics “Distributed Music Challenge” and “Can AI Be Used in Critical Systems?”

Day 2: Timeliness vs. accuracy

Because reactive systems interact continuously with their environment, they need to sense
and interpret that environment. Today, many such systems need to include sophisticated
vision subsystems, audio information processing, motion sensing, etc. The computation
required to interpret sensor data often implies unacceptable delays or impossible energy

127

25091

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

128

25091 — Tradeoffs in Reactive Systems Design

requirements. It is not acceptable for an automated vehicle to identify a pedestrian after it
has hit the pedestrian. This topic focused on how to manage this tradeoff. Three breakout
groups formed on the second day, focusing on the topics “Benchmarks for RT systems”,
“Tradeoff of timeliness and accuracy”, and “Orchestration/coordination languages vs reactive
languages.”

Day 3: Predictability vs. adaptability

Reactive systems often perform critical tasks. We need for them to behave predictably
during normal operation, but also adapt to behave reasonably in abnormal situations. Recent
innovations in machine learning promise significant improvements for the latter requirement,
but it is unclear how to reconcile the use of ML with the former requirement. This topic
focused on how to manage this tradeoff.

Day 4: Security vs. accessibility

When systems are secure, nothing bad happens even when malicious players are present.
Achieving the goal that “nothing bad happens,” however, is trivially easy by ensuring that
nothing at all happens. Security measures often get in the way of other goals. This topic
will focus on how to manage this tradeoff. For example, techniques that offer tiered access to
capabilities, taint analysis, or mixtures of encrypted and unencrypted communication might
be explored. During the afternoon session, reports from the group discussions were shared,
along with brief previews of the software demonstrations (teasers) scheduled for Day 5.

Day 5: Tools and Demos

This topic focused on tools that support analysis and design and make explicit the management
of tradeoffs. The key goal of the groups was to feel the pain intrinsic to the tradeoffs that
are the theme of the seminar. A total of five software tools tutorials were presented (see
Section 5). Hands-on exercises were organized into two sessions, each consisting of parallel
tracks. This structure was designed to give participants the opportunity to experiment with
two of the five available tools, rather than one. The tools presented were: “Lingua Franca”,
“Timed SCCharts”, “QRML”, “Rebecca”, and “HipHop”.

J. Castrillon-Mazo, C. Jerad, E. A. Lee, C. Pagetti, and S. J. Lin

2

Table of Contents

Executive Summary

Jerénimo Castrillon-Mazo, Chadlia Jerad, Edward A. Lee, and Claire Pagetti . . . 2

Overview of Talks

Safety and Al Standards for Automobile: An overview

Andres Barriladoo 7
Modeling reconfigurable CPS using UML
Grzegorz Bazydlo e 7

Reactive systems: Optimizations and opportunities in domain-specific computing
Jerénimo Castrillon-Mazo e 7

Formalizing Tradeoffs in Reactive Systems Design

Samarjit Chakraborty 8
Security Efficiency Tradeoffs for Intelligent Systems

Anupam Chattopadhyay 11
Assurance of Neural Network-based Safety-Critical Avionics with Formal Methods
Arthur Claviére o o o e e e 11
A component model and modelling language for tradeoffs and multi objective
optimization

Marc Geilen o e 12
Exploring the memory / execution time tradeoff in dataflow graphs

Alain Girault e 12
Latency and Consistency Tradeoffs in Shared-Memory Systems

Andrés Goens Jokisch 13
Can we make COTS CPS Ultra-Reliable?

Arpan Gugaratio L 13

Necessary Conditions for Model Engineering to Ensure System Correctness
Jérome Hugues e e e 14

Introduction to Avionic Certification
Victor Jegu e e 14

A Motivating Example: Distributed Music
Erling Rennemo Jellum e 15

Time-Tarot: Toward a Quantitative Approach to Time-Predictability
Chadlia Jerad e e e e 15

Declarative Lifecycle Management in Digital Twins
Einar Broch Johnsen 16

Security vs. Accessibility Tradeoffs in Reactive Systems
Hokeun Kim e e e 16

Consistency vs. Availability in Reactive Systems Design
Edward A. Lee e e 17

CAL Theorem in Reactive Systems
Shaokai Jerry Lin 17

129

25091

130 25091 — Tradeoffs in Reactive Systems Design

Benchmarking Worst-Case Performance of Real-Time Systems
Martin Schoeberl, Erling Jellum, Shaokai Jerry Lin, Chadlia Jerad, Emad Jacob
Maroun, Marten Lohstroh, and Edward A. Lee 18

Certification of ML-based systems
Claire Pagetti and Arthur Claviere 18

Synergies between Timing Predictability and Microarchitectural Security
Jan Reineke oL 19

Observations on Formalizing Reactive Systems
Marcus Rossel e 19

Timing Tradeoffs in Timed Automata with Dynamic Ticks
Alexander Schulz-Rosengarten and Reinhard von Hanzleden 19

Fail-operational Systems in Autonomous Driving Applications
Katharinag Sedow e 20

The Functional, the Imperative, and the Sudoku
Manuel Serrano e e e e 20

Consistency versus Availability in Redundant Controllers — Formal Verification,
Test Design, Time Analysis
Marjan Sirjani o e 21

Tradeoffs in Accuracy and Timeliness in Transportation Cyber-Physical Systems
Jonathan Sprinkleo 21

Timeliness vs. Accuracy
Lothar Thiele e 22

Fundamental Tradeoffs in Reactive Systems for Smart Agriculture and Pollutants
Detection in Resource-Constrained Environments
Eric Tutu Tchao o 0 e e 22

Utility-Based System Design: Making Sense of Tradeoffs
Eugene Yip oo 23

Working groups

Can Al be used in critical Systems?

Jérome Hugues, Andres Barrilado, Frédéric Boniol, Thomas Carle, Jerénimo
Castrillon-Mazo, Samarjit Chakraborty, Arthur Claviere, Victor Jegu, Claire Pagetti,
Marcus Rossel, Selma Saidi, Jonathan Sprinkle, Hasna Bouraoui, and Eugene Yip 23

Distributed music challenge

Grzegorz Bazydlo, Anupam Chattopadhyay, Andrés Goens Jokisch, Chadlia Jerad,
Erling Jellum, Einar Broch Johnsen, Hokeun Kim, Edward A. Lee, Shaokai Jerry

Lin, Jan Reineke, Manuel Serrano, Martin Schoeberl, Lothar Thiele, and Reinhard

von Hanxzleden e e 24

Orchestration/coordination languages vs reactive languages
Jérome Hugues, Edward A. Lee, Shaokai Jerry Lin, and Manuel Serrano 24

Tradeoffs in accuracy and timeliness

Andres Barrilado, Hasna Bouraoui, Anupam Chattopadhyay, Jerénimo Castrillon-
Mazo, Arpan Gujarati, Hokeun Kim, Lothar Thiele, Alexander Schulz-Rosengarten,
Katharina Sedow, and Jonathan Sprinkle 25

J. Castrillon-Mazo, C. Jerad, E. A. Lee, C. Pagetti, and S. J. Lin

Benchmarks for real-time systems
Thomas Carle, Samarjit Chakraborty, Arthur Claviére, Victor Jegu, Chadlia Jerad,
Claire Pagetti, Jan Reineke, and Martin Schoeberl

Software teasers

Timed Rebeca
Marjan Sirjanio

Lingua Franca
Erling Rennemo Jellum and Edward A. Lee

SCCharts
Alexander Schulz-Rosengarten

QRML
Marc Getlen e

HipHop
Manuel Serrano e e e e

Participants L

131

25091

132

25091 — Tradeoffs in Reactive Systems Design

3 Overview of Talks

3.1 Safety and Al Standards for Automobile: An overview
Andres Barrilado (NXP Semiconductors — Toulouse, FR)

License) Creative Commons BY 4.0 International license
© Andres Barrilado
Joint work of Andres Barrilado, Iban Guinebert

Presentation in which a short summary of recently published safety standards for Al in the
automotive domain is shared. Some selected extracts are discussed with regards to tradeoffs
linked to predictability and adaptability. Additionally, we provide an introduction to the
tradeoffs now being observed specifically by semiconductor manufacturers when having to
produce functionally safe inference accelerators.

3.2 Modeling reconfigurable CPS using UML
Grzegorz Bazydlo (University of Zielona Gora, PL)

License) Creative Commons BY 4.0 International license
© Grzegorz Bazydto

The presentation introduces an approach to designing reconfigurable cyber-physical systems
(CPS) using state machine diagrams from the Unified Modeling Language (UML). The UML
specification is transformed using model-driven development (MDD) techniques into an
efficient hardware description language (HDL) program, utilizing a concurrent finite state
machine (CFSM) as an intermediate model. The resulting HDL specification can be analyzed,
validated, synthesized, and ultimately implemented in field-programmable gate array (FPGA)
devices.

Dynamic partial reconfiguration — a feature of modern FPGAs — enables the replacement
of parts of the CPS algorithm without powering down the device. However, to leverage
this feature, the model must be safe, which, in the proposed approach, means incorporating
special idle states where control is transferred during the reconfiguration process. The CFSM
model significantly facilitates this task.

The proposed design method provides an efficient graphical modeling approach for the
control part of a reconfigurable CPS, along with an automated translation of the behavior
model into a synthesizable Verilog description. This Verilog code can be directly implemented
in FPGA devices and dynamically reconfigured as needed. A practical example from the
field of demand-side management illustrates the successive stages of the proposed method.

3.3 Reactive systems: Optimizations and opportunities in
domain-specific computing

Jeronimo Castrillon-Mazo (TU Dresden, DE)

License) Creative Commons BY 4.0 International license
© Jerénimo Castrillén-Mazo

This talk discusses optimizations for dataflow and reactive programs. This includes optimiz-
ations to the runtime system of Lingua Franca [5], initial work on decoupling timelines to
expose more parallelism [6], a system to explore energy-performance tradeoffs [7, 2], and a

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

J. Castrillon-Mazo, C. Jerad, E. A. Lee, C. Pagetti, and S. J. Lin

methodology to explore tradeoffs between performance and accuracy for ML workloads [3, 4].
The talk closes with an outlook on how domain-specific programming abstractions and
domain-specific computer architectures [1] may offer more control over system-level tradeoffs,
including performance, energy consumption, accuracy and reliability.

References

1 Asif Ali Khan, Hamid Farzaneh, Karl F. A. Friebel, Lorenzo Chelini, and Jeronimo Castrillon.
Cinm (cinnamon): A compilation infrastructure for heterogeneous compute in-memory and
compute near-memory paradigms. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPL0OS’25),
ASPLOS ’25. Association for Computing Machinery, March 2025.

2 Robert Khasanov and Jeronimo Castrillon. Energy-efficient runtime resource management
for adaptable multi-application mapping. In Proceedings of the 2020 Design, Automation
and Test in Europe Conference (DATE), DATE ’20, pages 909-914. IEEE, March 2020.

3 Guilherme Korol, Michael Guilherme Jordan, Mateus Beck Rutzig, Jeronimo Castrillon,
and Antonio Carlos Schneider Beck. Design space exploration for CNN offloading to FPGAs
at the edge. In 2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages
1-6, Los Alamitos, CA, USA, June 2023. IEEE, IEEE Computer Society.

4 Guilherme Korol, Michael Guilherme Jordan, Mateus Beck Rutzig, Jeronimo Castrillon, and
Antonio Carlos Schneider Beck. Pruning and early-exit co-optimization for CNN acceleration
on FPGAs. In Proceedings of the 2023 Design, Automation and Test in Europe Conference
(DATE), DATE’23, pages 1-6. IEEE, April 2023.

5 Christian Menard, Marten Lohstroh, Soroush Bateni, Mathhew Chorlian, Arthur Deng,
Peter Donovan, Clément Fournier, Shaokai Lin, Felix Suchert, Tassilo Tanneberger, Hokeun
Kim, Jeronimo Castrillon, and Edward A. Lee. High-performance deterministic concurrency
using Lingua Franca. ACM Transactions on Architecture and Code Optimization (TACO),
20(4):1-29, August 2023.

6 Julian Robledo, Christian Menard, Erling Jellum, Edward A. Lee, and Jeronimo Castrillon.
Timing enclaves for performance in Lingua Franca. In 2024 Forum for Specification and
Design Languages (FDL), pages 1-9, September 2024.

7 Till Smejkal, Robert Khasanov, Jeronimo Castrillon, and Hermann Hértig. E-Mapper:
Energy-efficient resource allocation for traditional operating systems on heterogeneous
processors, 2024.

3.4 Formalizing Tradeoffs in Reactive Systems Design

Samarjit Chakraborty (The University of North Carolina (UNC) at Chapel Hill, US)

License @ Creative Commons BY 4.0 International license
© Samarjit Chakraborty

Today, most complex reactive systems, and especially autonomous systems, are composed
of multiple subsystems such as controllers, schedulers, machine learning (ML) components,
and security systems. These subsystems are designed independently and are aimed to work
to perfection. But in reality they do not work perfectly and the imperfection is assumed to
be small enough that it may be ignored. We argue that design approaches should make the
imperfections in these components first class citizens, formalize specifying imperfections, and
allow tradeoffs in the design play a more prominent role.

Towards this, we first define a flexible notion of system-level safety to admit imperfect
behaviors. We then compute which component behaviors would ensure such a notion system
safety. This allows more component behaviors compared to those that would be admitted

133

25091

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

134

25091 — Tradeoffs in Reactive Systems Design

if the component was to be designed to perfection. These additional behaviors allow more
efficient component implementations. Further, they allow exploration of tradeoffs where the
deficiency of one component may be compensated by another component, while satisfying
the notion of system-level safety and the flexibility it allows. To arrive at a general notion of
imperfection, we consider the dynamics of closed-loop control systems. First, we determine
the trajectory followed by such systems in their state space, when all the system components
behave perfectly, e.g., when all the elements of the system state may be estimated exactly,
all machine learning components in the system always return accurate inferences, and the
deadlines of all software/control tasks are always met. For any given initial condition, such a
system trajectory represents the ideal behavior of the system, which might not be practically
realizable. To allow imperfect system behaviors, we consider a safety pipe around this ideal
trajectory. Any system trajectory that lies within this safety pipe is considered to be an
acceptable or safe behavior of the system [4].

It is, however, non-trivial to estimate component behaviors from such specifications of
safety pipes that capture system-level behaviors. In this talk we illustrated how this may be
done for the specific case of imperfect timing behaviors. In particular, we asked: Given a
safety pipe specifying allowed system behaviors, what are feasible timing behaviors that a
control task may experience? Our procedure to answer this question involves the following
two steps: (1) Guess a regular language £ of timing behaviors that a control task may
experience [1]. Such a language is a set of strings over the alphabet ¥ = {0,1}. Here, 0
represents the case where the control task in question misses its deadline at the specified
sampling period, i.e., the control input is not available at the time of actuation and an old
control input is used. On the other hand, 1 denotes the case that the control task successfully
completes its execution before the predetermined time of actuation. Hence, a string 101010. . .
denotes that the case where every alternate execution of the control task misses its deadline.
Equivalently, it also denotes the case where the control task is purposefully not scheduled in
every alternate sampling period to save computation bandwidth.

In the next step: (2) We use approximate reachability analysis over a bounded time
horizon to check whether all the trajectories of the given closed loop system stay within
the specified safety pipe, when the control task is subjected to any timing behavior that
belongs to the language L£. Here, we use approzimate reachability to contain the state-space
explosion that would otherwise happen. If the language £ of timing behaviors result in safe
closed-loop behaviors (i.e., all the closed-loop trajectories are within the safety pipe) then
we add £ to the set of safe languages, viz., Lsafe = Lsafe U L, Where Ly,p. was initially
empty. By iteratively following this procedure, we create a set of timing behaviors L, ¢
that results in safe closed-loop system behaviors. Now, since the union of regular languages
is regular, L4, f. may be represented as a finite state automata. We can use this procedure
to synthesize safe schedules for a set of control tasks. For this, we rely on automata-theoretic
techniques [5, 9] to combine the Ly, fes of all the controllers to synthesize schedules where
the tasks of each controller is not always scheduled for execution (i.e., occasionally misses its
deadline), but the safety of all the closed-loop systems is guaranteed [10]. Such schedules
account for the dynamics of the closed-loop system [2, 3, 6] and cannot be reproduced by
standard scheduling policies like fixed priority or earliest deadline first (EDF) [7]. This
approach of using a flexible notion of system safety to allow multiple (imperfect) component
behaviors allows the exploration of different tradeoffs between the performance of different
system components. For example, the work in [11] uses the size of the reachable set as a
measure of safety and shows how the size of a neural network — and therefore its inference
quality — for state estimation in a closed-loop control system may be traded off with the

J. Castrillon-Mazo, C. Jerad, E. A. Lee, C. Pagetti, and S. J. Lin

magnitude of the control input. This is used to partition a deep neural network (DNN)
between edge and cloud resources. A similar approach was also used [8] to purposefully
choose DNNs with less than optimal size and inference accuracy, to fit multiple DNNs on
the same shared graphics processing unit (GPU), while ensuring that the dynamics of the
closed-loop systems using these DNN inferences remain safe.

While a safety pipe around an ideal system trajectory, or the size of the reachable set, are
two different notions of system safety, there are many other possibilities. For example, not
all trajectories within a safety pipe might be permissible. Most work on formal methods till
date have focused on specifying perfect or ideal system behaviors (e.g., all deadlines are met).
Specifying what kind of imperfect behaviors might be acceptable requires domain knowledge,
and those with such knowledge are usually not sufficiently conversant with formal methods
to be able to write formal specifications. Hence, new avenues for involving domain experts
— who are not specialists in formal methods — to write formal specifications, perhaps using
tools from machine learning will be needed.

References

1 Bineet Ghosh, Clara Hobbs, Shengjie Xu, F. Donelson Smith, James H. Anderson, P. S.
Thiagarajan, Benjamin Berg, Parasara Sridhar Duggirala, and Samarjit Chakraborty.
Statistical verification of autonomous system controllers under timing uncertainties. Real
Time Syst., 60(1):108-149, 2024.

2 Dip Goswami, Reinhard Schneider, and Samarjit Chakraborty. Co-design of cyber-physical
systems via controllers with flexible delay constraints. In 16th Asia South Pacific Design
Automation Conference (ASP-DAC), 2011.

3 Dip Goswami, Reinhard Schneider, and Samarjit Chakraborty. Re-engineering cyber-physical
control applications for hybrid communication protocols. In Design, Automation and Test
in Burope (DATE), 2011.

4 Clara Hobbs, Bineet Ghosh, Shengjie Xu, Parasara Sridhar Duggirala, and Samarjit
Chakraborty. Safety analysis of embedded controllers under implementation platform
timing uncertainties. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 41(11):4016-
4027, 2022.

5 Clara Hobbs, Shengjie Xu, Bineet Ghosh, Enrico Fraccaroli, Parasara Sridhar Duggirala,
and Samarjit Chakraborty. Quantitative safety-driven co-synthesis of cyber-physical system
implementations. In 15th ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS), pages 99-110. IEEE, 2024.

6 Martin Lukasiewycz, Reinhard Schneider, Dip Goswami, and Samarjit Chakraborty. Modular
scheduling of distributed heterogeneous time-triggered automotive systems. In 17th Asia
and South Pacific Design Automation Conference (ASP-DAC), 2012.

7 Florian Sagstetter, Sidharta Andalam, Peter Waszecki, Martin Lukasiewycz, Hauke Stéhle,
Samarjit Chakraborty, and Alois C. Knoll. Schedule integration framework for time-triggered
automotive architectures. In The 51st Annual Design Automation Conference (DAC), 2014.

8 Shengjie Xu et al. GPU partitioning & neural architecture sizing for safety-driven sensing
in autonomous systems. In IEEE International Conference on Assured Autonomy (ICAA),
2024.

9 Shengjie Xu, Bineet Ghosh, Clara Hobbs, P. S. Thiagarajan, and Samarjit Chakraborty.
Safety-aware flexible schedule synthesis for cyber-physical systems using weakly-hard con-
straints. In Atsushi Takahashi, editor, 28th Asia and South Pacific Design Automation
Conference (ASP-DAC), 2023.

10 Anand Yeolekar, Ravindra Metta, Clara Hobbs, and Samarjit Chakraborty. Checking
scheduling-induced violations of control safety properties. In 20th International Symposium
on Automated Technology for Verification and Analysis (ATVA), volume 13505 of Lecture
Notes in Computer Science. Springer, 2022.

135

25091

136

25091 — Tradeoffs in Reactive Systems Design

11 Tingan Zhu, Prateek Ganguli, Arkaprava Gupta, Shengjie Xu, Luigi Capogrosso, Enrico
Fraccaroli, Marco Cristani, Franco Fummi, and Samarjit Chakraborty. Controllers for edge-
cloud cyber-physical systems. In 17th IEEE International Conference on COMmunication
Systems and NETworks (COMSNETS), 2025.

3.5 Security Efficiency Tradeoffs for Intelligent Systems
Anupam Chattopadhyay (Nanyang TU - Singapore, SG)

License) Creative Commons BY 4.0 International license
© Anupam Chattopadhyay
Joint work of Anupam Chattopadhyay, Prasanna Ravi, Sourav Sen Gupta, Mustafa Khairallah, Zakaria Najm,
Shivam Bhasin, Arpan Jati, Naina Gupta, Anh Tu Ngo

Security and privacy are growing concerns across all forms of digital systems, including
Cyber-Physical Systems (CPS). Embedding intelligence in such systems are done to enhance
performance and autonomy. Such an inclusion compromises security, which is often fixed as
an afterthought. The talk highlights several instances across the stack of digital systems, from
machine learning, general purpose processors to hardened cryptographic implementations,
which showcase that security and efficiency present contrasting choices for a system designer.
This situation is exacerbated for autonomy, where Artificial Intelligence (Al) is invoked. Lack
of explanation in many Al systems directly falls into the hands of a malicious actor, who can
compromise the system in many subtle ways.

3.6 Assurance of Neural Network-based Safety-Critical Avionics with
Formal Methods

Arthur Claviére (Collins Aerospace — Blagnac, FR)

License @ Creative Commons BY 4.0 International license
© Arthur Claviere
Joint work of Arthur Claviére, Dmitrii Kirov, Darren Cofer

We present a process for the Verification of neural networks using formal methods, developed
to support the needs of Collins engineers working on neural networks for aircraft. The process
focuses on low-complexity neural networks (having hundreds or thousands of learnable
parameters) with simple input domains (less than 10 input features). It is especially
applicable when the neural network is used to approximate a given target function (such as
a complex optimization or large look-up table) at a lower computational cost. It compares
the behavior of the neural network to the target function by exhaustively verifying the
entire input space. Such an exhaustive verification, made possible by using formal methods,
analyzes how the neural network would respond not only on the training or test dataset but
also to any unseen data in its input range. We anticipate that this approach will be useful
for high-criticality neural network-based components (DAL-C and above). It can be used as
a means of compliance with certification objectives e.g., stability analysis and generalization
capability assessment as defined by the European Union Aviation Safety Agency (EASA).
The process is illustrated through a Collins use case, namely the Recommended Cruise Level
(RCL) function, which can be used to provide pilots with a suggested altitude to reduce the
operational cost of the flight. The process is used to verify a neural network implementation
of the RCL, that significantly reduces the computational cost and memory footprint of a
traditional implementation.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

J. Castrillon-Mazo, C. Jerad, E. A. Lee, C. Pagetti, and S. J. Lin

3.7 A component model and modelling language for tradeoffs and multi
objective optimization

Mare Geilen (TU Eindhoven, NL)

License @@ Creative Commons BY 4.0 International license
© Marc Geilen
Joint work of Marc Geilen, Twan Basten

Tradeoffs represent choices between multiple objectives that are determined by choices
between different configurations. This presentation introduces a mathematical framework, a
component model and a domain-specific language. The mathematical framework captures the
essential operations and requirements to support compositional computation of Pareto optimal

configurations of a system from descriptions of the (optimal) configurations of components.

It defines a number of relations on configurations, the sets of possible configurations of

components or systems to characterize which ones are considered better, worse, or equivalent.

The framework provides insight in requirements on the models and operations to work
effectively, preserve optimality, etcetera. We further introduce a component model for
Quality and Resource Management that builds on Pareto Algebra. It aims to describe
application and platform components in a virtualized platform setting. Components are
described in terms of input and out qualities, their required and provided budgets, their
optimization objectives and the parameters used to configure the component. The resulting
system semantics is a set of (Pareto optimal) configurations of the overall system. This set

can be implicitly captured as a set of equations in terms of the combined system parameters.

We have defined a Domain-Specific Language, called QRML, to specify such component
models generated different types of visualization and generate the set of constraints to be
checked for satisfiability, or for optimization, by a constraint solver, such as the Z3 SMT
solver. The tools are available through the web page https://www.qrml.org.

3.8 Exploring the memory / execution time tradeoff in dataflow graphs
Alain Girault (INRIA - Grenoble, FR)

License) Creative Commons BY 4.0 International license
© Alain Girault
Joint work of Alain Girault, Pascal Fradet, Alexandre Honorat

Many computing systems are constrained by a fixed amount of available shared memory.

Modeling applications with task graphs makes it possible to analyze and optimize their
memory usage. The NP-complete problem studied here is finding a parallel schedule of a
given task graph that minimizes its memory peak.

Our first contribution is an algorithm that finds optimal sequential schedules for a dataflow
task graph. This algorithm is based on graph transformation rules. On a large class of graphs,
it is able to compress the graph into a single node which contains a sequential schedule
optimal w.r.t. the memory peak. The approach also applies to SDF graphs after converting
them into task graphs. However, since that conversion may produce very large graphs, we
also propose a new suboptimal method, similar to Partial Expansion Graphs, to reduce
the problem size. We evaluate our approach on classic benchmarks, on which we always
outperform the state-of-the-art.

From this optimal sequential schedule, our second contribution is a dynamic parallel
schedule, which consists of a ready list scheduling that we adapt to take into account memory
requirements. Our approach always produces a parallel schedule that meets the constraints

137

25091

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.qrml.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

138

25091 — Tradeoffs in Reactive Systems Design

and enjoys very good speedups. It can also be applied to less harsh memory constraints,
leading to more substantial speedups. We compare with alternative approaches on multiple
applications expressed as task graphs (scientific workflows, signal processing filters). When
memory constraints are close to their minimum, our approach always succeeds in finding a
parallel schedule meeting the given constraints, whereas the other approaches mostly fail.
When memory constraints are significantly higher, our results are comparable to others for
speedup. Furthermore, our approach is faster and can deal with very large task graphs (up
to 50,000 nodes) using a naive Python implementation.

3.9 Latency and Consistency Tradeoffs in Shared-Memory Systems
Andrés Goens Jokisch (University of Amsterdam, NL)

License @ Creative Commons BY 4.0 International license
© Andrés Goens Jokisch

Shared-memory systems are a reality of today’s hardware, and current trends are to increase
their scale and complexity, with heterogeneous shared-memory architectures and hierarchical
systems with protocols like CXL. These systems, however, have complex behaviors that
trade consistency with latency, through out-of-order execution and weak guarantees in the
protocols, resulting in weak memory consistency models, i.e. models weaker than sequential
consistency. In this talk, I present some of the architectural guarantees, and open questions
in this context, which give us primitives to express and control tradeoffs in consistency and
latency. I argue we should build higher-level abstractions on top of these primitives to reason
about these tradeoffs at a higher level of abstraction in the design process, e.g. programming
languages or runtime systems.

3.10 Can we make COTS CPS Ultra-Reliable?
Arpan Gujarati (University of British Columbia — Vancouver, CA)

License @@ Creative Commons BY 4.0 International license
© Arpan Gujarati

In the avionics domain, “ultra-reliability” refers to the practice of ensuring quantifiably
negligible residual failure rates in the presence of transient and permanent hardware faults.
In this talk, I discuss the need for new mechanisms that can help us make contemporary and
next-generation CPS, which use inexpensive, relatively unreliable off-the-shelf components,
more reliable and, if possible, ultra-reliable (as airplanes). I will frame the discussion around
the problem of Byzantine fault tolerance (BFT). Specifically, I will briefly present our RTSS
2022 work, where we proposed a novel BFT timed key-value store, called Achal, designed
specifically for Ethernet-based distributed real-time control applications. I will then describe
our current work on understanding two key limitations of Achal-like systems. First, can
they be seamlessly ported to real, complex CPS applications? Second, can precision time
synchronization be considered a reliable primitive? Finally, I wrap up with my key takeaway,
that we must focus on systems / middleware / tools that make it easier to engineer reliable
systems, as opposed to designing new fault-tolerance protocols from scratch.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

J. Castrillon-Mazo, C. Jerad, E. A. Lee, C. Pagetti, and S. J. Lin

3.11 Necessary Conditions for Model Engineering to Ensure System
Correctness

Jérome Hugues (Carnegie Mellon University — Pittsburgh, US)

License @@ Creative Commons BY 4.0 International license
© Jérome Hugues

Engineering Reactive Systems primarily involves evaluating the accuracy of computations,
as well as the system’s quality attributes (such as safety, security), or its functions or data
(such as availability, consistency). This list is not exhaustive, and neither is this mapping.
These properties can be assessed by testing the final system. A more timely and cost-
effective approach is to rely on models and verification and validation (V&V) techniques
such as simulation or model checking. Evaluating these quality attributes necessitates the
construction of an additional system: a model and a demonstration that the model is
sufficiently accurate to both represent the system and support a verification objective.

In this presentation, I propose some considerations in the scope of Dagstuhl Seminar 25091.
Firstly, when considering a model as a system, it is crucial to define its requirements. The
term “capturing a system behavior” is too ambiguous. A model should support an engineering
goal, such as evaluating a system attribute. Therefore, the selection of a modeling language,
the creation of the model, and the property to be evaluated cannot be separated. It is
essential to ensure that the evaluation of an attribute or a tradeoff analysis among multiple
attributes can be initially expressed in a model and then analyzed by some techniques.
This can only be achieved if the modeling language is sound, the model captures a domain
taxonomy, and, of course, it is correct.

3.12 Introduction to Avionic Certification
Victor Jegu (Airbus S.A.S. — Toulouse, FR)

License @@ Creative Commons BY 4.0 International license
© Victor Jegu

Before aircrafts are approved to carry passengers, the industry has to provide evidence to the
aviation authorities of the safety and conformity of their products. This approval is called
“certification”. And is achieved by conducting a very thoroughly documented process of
addressing every foreseeable failure with safety impact. This process is particularly stringent
with failures of catastrophic or hazardous consequences. This talk briefly describes this
process for avionic equipment (computers). For functions with minor safety impact, COTS
or COTS-like “Design Assurance Level” (DAL) could be considered. At such a level, low
energy (edge) Al technology could already be considered. But for higher Assurance Level,
achieving this objective may require a thorough understanding of the technology, exhaustive
(including formal) design checking, use of diverse strategies for error detection, and resource
redundancy. The purpose of this talk is to give academics with intent to assist industry
by providing tools, methods, languages and IP in general, an understanding of the level
and nature of information (documentation and support) the industry needs to adopt their
proposals.

139

25091

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

140

25091 — Tradeoffs in Reactive Systems Design

3.13 A Motivating Example: Distributed Music
Erling Rennemo Jellum (University of California — Berkeley, US)

License @ Creative Commons BY 4.0 International license
© Erling Rennemo Jellum
Joint work of Edward A. Lee, Erling Jellum

This talk will introduce the Distributed Rhythm Generator, a distributed real-time program
written in Lingua Franca. Distributed real-time systems are intriguingly challenging systems,
as they must balance two opposing requirements. First, they must often only actuate based on
a consistent view of the shared variables of the overall system, and second, they must actuate
in a timely manner. Without time-predictable networks, reconciling these requirements
might not be possible and a tradeoff must be made. We will show how the reactor-oriented
programming paradigm introduced by Lingua Franca, enables an elegant specification of
such consistency-available tradeoffs.

3.14 Time-Tarot: Toward a Quantitative Approach to
Time-Predictability

Chadlia Jerad (University of Manouba, TN)

License) Creative Commons BY 4.0 International license
© Chadlia Jerad
Joint work of Chadlia Jerad, Martin Schoeberl, Emad Jacob Maroun, Edward A. Lee, Shaokai Lin, Erling Jellum

The current trends in hardware design aim at improving the average performance. Together
with the increase in software complexity, this trajectory runs contrary to time-predictability,
especially when designing safety-critical and real-time systems, as timing requirements need
to be guaranteed a priori. Literature is rich with valuable attempts to define and measure
time-predictability. Still, a quantitative approach that covers all the different features at
the different abstraction levels is missing. This talk suggests the design of a concept map
for time-predictability levels. It is based on results from different research papers and is
meant to be extensible to accommodate future inventions. It is also derived from expert
knowledge in the different fields. The concept map, when combined with multi-criteria
decision techniques, can formalize the choice among two or more designs. The techniques to
be used are the Brown-Gibson Model and the Analytic Hierarchy Process. The former has
the advantage of combining objective and subjective factors that immediately derive from
the concept map. Because weighted scoring is required in this method, we use the Analytic
Hierarchy Process to weigh the features among each other. A challenge though is about the
support of multi-processor systems with different architectures. In addition, the use of the
worst-case performance can be decided to be used either as a validation tool or to perform
fusion of the results.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

J. Castrillon-Mazo, C. Jerad, E. A. Lee, C. Pagetti, and S. J. Lin

3.15 Declarative Lifecycle Management in Digital Twins
Einar Broch Johnsen (University of Oslo, NO)

License @ Creative Commons BY 4.0 International license
© Einar Broch Johnsen
Joint work of Einar Broch Johnsen, Eduard Kamburjan, Nelly Bencomo, Silvia Lizeth Tapia Tarifa

Together, a digital twin and its physical counterpart can be seen as a self-adaptive system:
the digital twin monitors the physical system, updates its own internal model of the physical
system, and adjusts the physical system by means of controllers in order to maintain given
requirements. As the physical system shifts between different stages in its lifecycle, these
requirements, as well as the associated analyzers and controllers, may need to change. The
exact triggers for such shifts in a physical system are often hard to predict, as they may be
difficult to describe or even unknown; however, they can generally be observed once they
have occurred, in terms of changes in the system behavior. This talk presents an automated
method for self-adaptation in digital twins to address shifts between lifecycle stages in a
physical system, based on recent work [1]. Our method is based on declarative descriptions
of lifecycle stages for different physical assets and their associated digital twin components.
Declarative lifecycle management provides a high-level, flexible method for self-adaptation of
the digital twin to reflect disruptive shifts between stages in a physical system.

References

1 Eduard Kamburjan, Nelly Bencomo, Silvia Lizeth Tapia Tarifa, and Einar Broch Johnsen.
Declarative lifecycle management in digital twins. In Proceedings of the ACM/IEEE 27th
International Conference on Model Driven Engineering Languages and Systems, MODELS
Companion ’24, page 353-363, New York, NY, USA, 2024. Association for Computing
Machinery.

3.16 Security vs. Accessibility Tradeoffs in Reactive Systems
Hokeun Kim (Arizona State University — Tempe, US)

License @@ Creative Commons BY 4.0 International license
© Hokeun Kim

In this framing discussion, I explore the fundamental tradeoffs between security and accessib-
ility in designing reactive and cyber-physical systems (CPS). This discussion examines how
secure access mechanisms — such as authentication, encryption, detection, and mitigation —
must balance with the need for accessibility. Through real-world examples and case studies,
I highlight the challenges of designing secure reactive systems and CPS while managing the
tradeoffs between security and accessibility, considering threat models, costs, and security re-
quirements of the target systems. Various design decisions, including connectivity, encryption
strategies, and the choice between prevention and detection of cyber threats, are analyzed in
the context of modern threat models. This framing discussion also presents a methodology
for enforcing security without sacrificing essential accessibility, ensuring the domain-specific
reactive systems and CPS are secure and protected yet accessible.

141

25091

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

142

25091 — Tradeoffs in Reactive Systems Design

3.17 Consistency vs. Availability in Reactive Systems Design
Edward A. Lee (University of California — Berkeley, US)

License @ Creative Commons BY 4.0 International license
© Edward A. Lee
Joint work of Edward A. Lee, Ravi Akella, Soroush Bateni, Shaokai Lin, Marten Lohstroh, Christian Menard

Distributed software systems often require consistent shared information. For example, con-
nected vehicles require agreement on access to an intersection before entering the intersection.
It is far from trivial, however, how to achieve consistency, or even how to define it rigorously
enough to know when it has been achieved. In this talk, I will show how strong and weak
forms of consistency can be defined, how software infrastructure can provide reasonable
guarantees and efficient implementations, and what are the fundamental costs of achieving
consistency that no software system can avoid. Specifically, I will outline the CAL theorem,
which quantifies consistency, availability, and latency, and gives an algebraic relation that
shows that as latency increases, either availability or consistency or both must decrease. |
will describe a coordination language called Lingua Franca that enables programmers to
explicitly work with the tradeoffs between these three quantities.

3.18 CAL Theorem in Reactive Systems
Shaokai Jerry Lin (University of California — Berkeley, US)

License) Creative Commons BY 4.0 International license
© Shaokai Jerry Lin
Joint work of Shaokai Jerry Lin, Edward A. Lee

In 2000, Eric Brewer (UC Berkeley) famously stated the CAP theorem during the PODC
keynote. However, the tradeoffs mentioned in the theorem was not formally specified. Lee et
al. [1] later proposed the CAL theorem, which establishes a mathematical relationship among
the three properties: Consistency, Availability, and Latency (extending Partitioning in the
CAP theorem). In this talk, we present a work-in-progress formalism based on the CAL
theorem, which aims to 1) be easily applicable to programming frameworks, and 2) capture
the behavior of a reactive system over time. We demonstrate the formalism on a simple stock
exchange application written in the Lingua Franca (LF) coordination language. We derive
timing constraints from the semantics of the LF language and the application, formulating a
system of equations calculating earliest firing times of reactions from previous firing times
and asynchronous inputs. We represent the system of equations into a linear difference
equation using the max-plus algebra and show that the eigenvalue of a coefficient matrix
represents the threshold of the system’s responsiveness.

References

1 Edward A. Lee, Ravi Akella, Soroush Bateni, Shaokai Lin, Marten Lohstroh, and Christian
Menard. Consistency vs. availability in distributed cyber-physical systems. ACM Trans.
Embed. Comput. Syst., 22(5s), September 2023.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

J. Castrillon-Mazo, C. Jerad, E. A. Lee, C. Pagetti, and S. J. Lin

3.19 Benchmarking Worst-Case Performance of Real-Time Systems

Martin Schoeberl (Technical University of Denmark — Lyngby, DK), Erling Jellum (University
of California — Berkeley, US), Shaokai Lin (University of California — Berkeley, US), Chadlia
Jerad (Univrsity of manouba, TN), Emad Jacob Maroun (Technical University of Denmark —
Lyngby, DK), Marten Lohstroh (University of California — Berkeley, US), and Edward A.
Lee (University of California — Berkeley, US)

License @@ Creative Commons BY 4.0 International license

© Martin Schoeberl, Erling Jellum, Shaokai Jerry Lin, Chadlia Jerad, Emad Jacob Maroun, Marten
Lohstroh, and Edward A. Lee

Real-time systems rely on tasks with well-defined worst-case execution times (WCET) to
ensure predictable behavior. To facilitate accurate WCET estimation, some researchers
advocate for processor architectures that simplify timing analysis, known as precision-timed
or time-predictable architectures. However, the precise definition and quantification of time
predictability remain open questions. This talk examines the concept of time predictability
and the challenges in measuring it. Instead of focusing solely on architectural properties,
we argue that worst-case performance should be evaluated as a combined property of the
processor, compiler, and WCET analysis tool. To enable systematic evaluation, we propose
to standardize on a benchmark suite for assessing time-predictable processors, compilers, and
WCET analysis tools. We define worst-case performance as the geometric mean of WCET
bounds across this benchmark set.

3.20 Certification of ML-based systems

Claire Pagetti (ONERA - Toulouse, FR) and Arthur Claviére (Collins Aerospace —
Blagnac, FR)

License) Creative Commons BY 4.0 International license
© Claire Pagetti and Arthur Claviere

The purpose of the talks was to present some of the results reached for introducing ML
(Machine Learning) algorithms in Airborne systems. First a brief introduction on certification
and on current drafted standards for ML was done. Indeed, EASA is writing roadmaps
and preliminary guidance. SAE/EUROCAE working group is in parallel writing a future
ED/ARP document. The presentation then has dug to two use cases. The first was the
simplest: how to replace a set of LUT (look-up tables) — here for the avoidance collision system
ACAS Xu — with neural networks while preserving the intended function. For that, formal
verification was successfully applied. These kinds of surrogate models to compress existing
code is a way forward. The seconds case is exploratory: vision-based perception algorithm to
detect runway during an aircraft landing. Again formal verification was successfully applied
to check robustness against some foreseeable perturbations. These preliminary results open
the path for certification.

143

25091

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

144

25091 — Tradeoffs in Reactive Systems Design

3.21 Synergies between Timing Predictability and Microarchitectural
Security

Jan Reineke (Universitit des Saarlandes — Saarbriicken, DE)

License @ Creative Commons BY 4.0 International license
© Jan Reineke
Joint work of Marco Guarnieri, Gideon Mohr, Zilong Wang, Klaus v. Gleissenthall, Jan Reineke

Timing attacks exploit variations in execution time to leak sensitive information. Hardware-
software leakage contracts are a new security abstraction that augments the instruction-set-
architecture (ISA) to capture microarchitectural leakage at software level. In recent work we
have shown how to verify that open-source RISC-V processors satisfy particular contracts and
how to synthesize precise leakage contracts for a given processor. In this talk, I motivate and
introduce leakage contracts and I discuss two equivalent notions of contract satisfaction that
suggest synergies between research on timing predictability and microarchitectural security.

3.22 Observations on Formalizing Reactive Systems
Marcus Rossel (Barkhausen Institut — Dresden, DE)

License) Creative Commons BY 4.0 International license
© Marcus Rossel

Reactive systems have a rich history of rigorous modeling and verification techniques. As
modern verification efforts become more ambitious, they require the composition of a growing
number of techniques. This composition necessitates interfacing between different formalisms
and tools, which can lead to error-prone discontinuities in the verification pipeline. While
there exist systems for coherently verifying reactive systems, they are limited in expressivity.
Interactive theorem provers (ITPs) provide a means of verification with virtually unbounded
expressiveness, but do not natively capture the semantics of notions like concurrency and
mutability. We discuss the problems encountered when attempting gap-free verification of
reactive systems in I'TPs.

3.23 Timing Tradeoffs in Timed Automata with Dynamic Ticks

Alexander Schulz-Rosengarten (Universitit Kiel, DE) and Reinhard von Hanzleden (Uni-
versitit Kiel, DE)

License @ Creative Commons BY 4.0 International license
© Alexander Schulz-Rosengarten and Reinhard von Hanxleden

Synchronous languages build on an abstraction from physical execution time by dividing
the execution into logical ticks. However, they say little about when to execute the ticks
and traditionally lack built-in support for physical time. This makes it rather cumbersome
to express things like time-outs or periodic executions. We present Timed SCCharts that
use a timed automata formalism and combine it with the concept of dynamic ticks. This
enables specifying time-dependent behavior while addressing tradeoffs in timing in the face
of imperfections of execution with physical time.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

J. Castrillon-Mazo, C. Jerad, E. A. Lee, C. Pagetti, and S. J. Lin

One application area we plan to explore is the railway domain, as part of the REAKT
initiative. This initiative aims to revitalize rural rail lines, using the line Bad Malente —
Litjenburg as real world laboratory. As an aside, in Germany alone, about 5000 km of rural
train lines have been put out of service since the 1990s. This corresponds to about 30% of
the total network, and it directly affects more than 3 million citizens.

3.24 Fail-operational Systems in Autonomous Driving Applications

Katharina Sedow (Saneon GmbH — Ismaning, DE)

License @ Creative Commons BY 4.0 International license
© Katharina Sedow

As the automotive research and development field approaches automated driving levels
SAE 1.4 and L5, the introduction of the requirement for the driving function to continue
operation when an abnormal system behavior occurs becomes crucial. Highly automated and
autonomous systems cannot use a human driver as the fallback decision-maker and actuator,
and, in order to be safe, they must possess the ability to function until the vehicle reaches a
safe state. This talk briefly introduces the concept behind fail-operational systems. First, we
introduce the advances of such systems when compared to the fail-safe implementations. We
further provide an example of a fail-operational architecture. In the last part of the talk,
we discuss the challenges the automotive industry faces when developing fail-operational
driving functionality. They include the assurance of independent redundancy, tradeoffs in
performance and safety, as well as the development costs. Finally, we address the approaches
intended to handle those issues, such as redundant system design, the introduction of
monitoring safety components, and the handling of the high safety integrity levels.

3.25 The Functional, the Imperative, and the Sudoku
Manuel Serrano (INRIA — Sophia Antipolis, FR)

License @@ Creative Commons BY 4.0 International license
© Manuel Serrano
Joint work of Manuel Serrano, Robert Bruce Findler

Conventional wisdom suggests that the benefits of functional programming no longer apply in
the presence of even a small amount of imperative code, as if the addition of imperative code
effectively subtracts. And yet, as we show in this talk, combining functional programming
with the special imperative language Esterel provides a multiplicative improvement to the
benefits of functional programming.

To illustrate these benefits, the bulk of this talk consists of an in-depth exploration
of HipHop code (a mashup of JavaScript and Esterel) that implements a Sudoku solver,
showing how it is possible to write code that is as easy to understand as if it were written in
a pure functional programming style, even though it uses multiple threads, mutable state,
thread preemption, and even thread abortion. Even better, concurrent composition and task
canceling provide significant program structuring benefits that allow a clean decomposition
and task separation in the solver.

145

25091

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

146

25091 — Tradeoffs in Reactive Systems Design

3.26 Consistency versus Availability in Redundant Controllers — Formal
Verification, Test Design, Time Analysis

Marjan Sirjani (Mdalardalen University — Visterds, SE)

License @ Creative Commons BY 4.0 International license
© Marjan Sirjani

A potential problem that may arise in the domain of distributed control systems is the
existence of more than one primary controller in redundancy plans which may lead to
inconsistency. We worked on an algorithm called NRP FD (Network Reference Point
Failure Detection), proposed by industry, to solve this issue by prioritizing consistency over
availability. I explain how by using modeling and formal verification, we discovered an issue
in NRP FD where we may have two primary controllers at the same time. We then provide
a solution to mitigate the identified issue, thereby enhancing the robustness and reliability of
such systems. In the same context, I will also show how we used model checking for making
informed decisions in designing test cases for fault-tolerant systems. I will add a discussion
on how this approach may be generalized in different contexts.

3.27 Tradeoffs in Accuracy and Timeliness in Transportation
Cyber-Physical Systems

Jonathan Sprinkle (Vanderbilt University — Nashville, US)

License) Creative Commons BY 4.0 International license
© Jonathan Sprinkle
Joint work of Jonathan Sprinkle, George Gunter, Daniel B. Work, the CIRCLES Consortium

This talk explores the timing and accuracy tradeoffs from application problems in transport-
ation cyber-physical systems. The talk demonstrates previous proof of dampening traffic
waves in closed road scenarios, and evidence that existing adaptive cruise controllers amplify
(rather than reduce) traffic waves. To address these issues, the work discusses the use of
hierarchical high-latency and low-latency controllers, which were shown to be successful.
These approaches utilize shared information of the road network that may be gathered over
recent minutes, for the purposes of reducing stop and go traffic waves. Given the dynamics of
freeway traffic, where speeds of up to 35 m/s regularly encounter stop and go waves traveling
at -4 m/s (i.e., against the flow), the lookahead of the on-vehicle sensors is insufficient to
dampen these waves, and external information is needed. Using only local sensors it is
possible to avoid collisions, but it is not trivial to also dampen the traffic waves. Thus it is
important to understand how to share data on downstream state information, with timing
information to help understand how to interpret those data. The talk transitions to discussion
on how to design and utilize safety envelope controllers for future experiments, in which Al
or other untrusted controllers are fielded in open road scenarios. While these controllers can
be theoretically shown to be safe, the theory requires information from vehicle sensors (such
as derivatives of velocity or acceleration) which are difficult to obtain, and for which filtering
delays the availability of the data — requiring an additional following gap for safety that may
reduce the effectiveness of the approach. The conclusion calls for continued exploration in
determining the accuracy of these distributed systems, which are loosely coordinated, when
it is impossible to recreate the situations in which they were fielded. Further, it calls for

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

J. Castrillon-Mazo, C. Jerad, E. A. Lee, C. Pagetti, and S. J. Lin 147

understanding how one can safely field Al-based controllers to gather field training data,
when there may be significant limitations in understanding how safe the safety envelopes are
for general use.

This work is supported by the US National Science Foundation, and the US Department
of Energy.

3.28 Timeliness vs. Accuracy

Lothar Thiele (ETH Zirich, CH)

License @ Creative Commons BY 4.0 International license
© Lothar Thiele

This talk surveys the research landscape surrounding the fundamental tradeoff between
timeliness and accuracy in complex systems. It explores formal and informal approaches
to managing this tradeoff from multiple perspectives, including neuroscience and psycho-
logy, scheduling theory, algorithm design, system architecture, and multi-agent systems.
Connecting research from the late 1980s to cutting-edge developments, the talk examines
how current abstractions, particularly those related to accuracy (e.g., algorithmic precision)
and timeliness (e.g., system timing requirements), hold up in the face of increasing system
complexity. A core question explored is whether these abstractions remain adequate, or
if we need fundamentally new approaches beyond reliance on testing and benchmarking
in real-world environments, to effectively address the timeliness-accuracy tradeoff across
algorithms, runtime systems (including hardware), and requirements. Finally, the talk
identifies key open research questions in this area.

3.29 Fundamental Tradeoffs in Reactive Systems for Smart Agriculture
and Pollutants Detection in Resource-Constrained Environments

Eric Tutu Tchao (Kwame Nkrumah University of Science and Technology, GH)

License) Creative Commons BY 4.0 International license
© Eric Tutu Tchao

In resource-constrained environments like rural Ghana, designing reactive systems for critical
applications, such as smart agriculture and detecting pollutants from illegal mining activities,
demands confronting unavoidable tradeoffs. These systems must balance competing priorities
shaped by limited energy, connectivity, and financial resources. This has forced researchers to
examine how fundamental engineering limits force compromises between accuracy, timeliness,
security, and scalability. Researchers cannot eliminate compromises but formalize them,
embedding transparency into system architecture. By doing so, they create solutions that are
survivable, equitable, and aligned with the pragmatic realities of communities like Ghana’s
— where “good enough” is not a concession but a necessity. My presentation at Dagstuhl
Seminar 25091 illustrates a broader truth that in resource-constrained environments, tradeoffs
are not design failures but fundamental constraints.

25091

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

148

25091 — Tradeoffs in Reactive Systems Design

3.30 Utility-Based System Design: Making Sense of Tradeoffs
Eugene Yip (GLIWA — Weilheim, DE)

License @ Creative Commons BY 4.0 International license
© Fugene Yip
Joint work of Eugene Yip, Gerald Liittgen

Selecting software components to reuse as a means to reduce development time and costs
can be challenging, especially when multiple components provide the same functionality but
offer different non-functional properties, e.g., numerical accuracy, memory footprint, power
rating, timeliness, robustness, security, or financial cost. In this talk, we seek to model the
benefit that a system gains from a component’s non-functional properties using so-called
“Property-Utility Functions” (PUFs) as a means to formally analyse tradeoffs in component
selection. We will discuss how a PUF can model the incremental benefit (utility) that a
system would receive for each additional unit of resource that a component consumes. We
will explore open challenges in how the utility of a datum or event is transformed by the
PUFs of the components they flow through, how to tradeoff one component for another based
on their qualities, how to compose and decompose PUFs for bottom-up and top-down system
design, and how to diagnose violations in expected utilities.

4 Working groups

4.1 Can Al be used in critical Systems?

Jérome Hugues (Carnegie Mellon University — Pittsburgh, US), Andres Barrilado (NXP
Semiconductors — Toulouse, FR), Frédéric Boniol (ONERA - Toulouse, FR), Thomas
Carle (Toulouse University, FR), Jerénimo Castrillon-Mazo (TU Dresden, DE), Samarjit
Chakraborty (University of North Carolina at Chapel Hill, US), Arthur Claviére (Collins
Aerospace — Blagnac, FR), Victor Jegu (Airbus S.A.S. — Toulouse, FR), Claire Pagetti
(ONERA — Toulouse, FR), Marcus Rossel (Barkhausen Institut — Dresden, DE), Selma Saidi
(TU Braunschweig, DE), Jonathan Sprinkle (Vanderbilt University — Nashville, US), Hasna
Bouraoui (TU Dresden, DE) and Eugene Yip (GLIWA — Weilheim, DE)

License) Creative Commons BY 4.0 International license
© Jérome Hugues, Andres Barrilado, Frédéric Boniol, Thomas Carle, Jerénimo Castrillén-Mazo,
Samarjit Chakraborty, Arthur Claviére, Victor Jegu, Claire Pagetti, Marcus Rossel, Selma Saidi,
Jonathan Sprinkle, Hasna Bouraoui, and Eugene Yip

The working group concluded that deploying Al in safety-critical systems hinges on balancing
two tightly linked factors — accuracy and timeliness — because longer training or inference
windows can enhance correctness but may violate real-time constraints. Across the four
domains discussed (avionics, automotive, medical devices such as pacemakers, and rail),
regulators are cautiously expanding standards: avionics currently only certifies off-line-trained
ML components, automotive guidelines are rapidly evolving, medical devices show promising
results under tight safeguards, and rail is changing slowly. Participants agreed Al is most
defensible when it supplements rather than replaces human judgment or expensive hardware
(e.g., monocular camera + AT distance estimation versus LIDAR) and when robust mitigation
layers — observers, simplex architectures, safety “nets,” or treating Al like an imperfect
sensor — contain the impact of inevitable errors. Defining what constitutes a “good” Al
therefore means specifying clear functional and safety requirements, acknowledging residual

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

J. Castrillon-Mazo, C. Jerad, E. A. Lee, C. Pagetti, and S. J. Lin

failure probabilities, and ensuring retraining or adaptation does not void certification credits.
Finally, the group underscored that verification strategies must scale with AI complexity:
small-state reinforcement learning can leverage formal methods, whereas high-dimensional
perception models require new notions of coverage, traceability, and explainability, reinforcing
that full autonomy remains out of reach today while incremental, supervised uses continue
to gain traction.

4.2 Distributed music challenge

Grzegorz Bazydlo (University of Zielona Gora, PL), Anupam Chattopadhyay (Nanyang TU
— Singapore, SG), Andrés Goens Jokisch (University of Amsterdam, NL), Chadlia Jerad
(University of Manouba, TN), Erling Rennemo Jellum (University of California — Berkeley,
US), Einar Broch Johnsen (University of Oslo, NO), Hokeun Kim (Arizona State University
— Tempe, US), FEdward A. Lee (University of California — Berkeley, US), Shaokai Jerry
Lin (University of California — Berkeley, US), Jan Reineke (Universitit des Saarlandes
— Saarbriicken, DE), Manuel Serrano (INRIA - Sophia Antipolis, FR), Martin Schoeberl
(Technical University of Denmark — Lyngby, DK), Lothar Thiele (ETH Ziirich, CH) and
Reinhard von Hanzleden (Universitit Kiel, DE)

License @ Creative Commons BY 4.0 International license
© Grzegorz Bazydlo, Anupam Chattopadhyay, Andrés Goens Jokisch, Chadlia Jerad, Erling Jellum,
Einar Broch Johnsen, Hokeun Kim, Edward A. Lee, Shaokai Jerry Lin, Jan Reineke, Manuel Serrano,
Martin Schoeberl, Lothar Thiele, and Reinhard von Hanxleden

In the breakout group session titled “Distributed Music Challenge,” we explored the practical
aspects of the Distributed Rhythm Generator introduced in the preceding talk. This hands-on
activity involved running a distributed real-time program written in Lingua Franca across
two laptops, simulating the behavior of a networked rhythm generator. The session provided
a concrete illustration of the tradeoffs between consistency and availability in distributed
real-time systems. Participants experimented with three distinct conditions: normal network
operation, a scenario with network overload, and one with disrupted clock synchronization.
Through these scenarios, the group observed how the Lingua Franca runtime handled timing
and consistency under different constraints, deepening the discussion on how reactor-oriented
programming can be used to model and manage such tradeoffs elegantly in distributed
systems.

4.3 Orchestration/coordination languages vs reactive languages

Jérome Hugues (Carnegie Mellon University — Pittsburgh, US), Edward A. Lee (University
of California — Berkeley, US), Shaokai Jerry Lin (University of California — Berkeley, US),
and Manuel Serrano (INRIA — Sophia Antipolis, FR)

License) Creative Commons BY 4.0 International license
© Jérome Hugues, Edward A. Lee, Shaokai Jerry Lin, and Manuel Serrano

The breakout group discussed the relationship between coordination languages, synchronous
reactive languages, and choreographic languages. First, we started by reviewing examples
of each language category, namely Reo, Choral, Rebeca, Esterel, and Lingua Franca. The
group recognized that all these languages do some form of coordination. Some also have

149

25091

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

150

25091 — Tradeoffs in Reactive Systems Design

the capability to support the full implementation either within their own language such as
Esterel, or through the integration with other programming languages like Lingua Franca.
In other cases, the functional code is considered opaque, and the language only defines the
interface of these containers.

The group noted that these languages define how the synchronization of the execution
of some containers happen. More specifically, their semantics define when (time), why
(causality), and which action is executed. These containers are stateful, and they react to
multiple, possibly simultaneous, inputs. Hence, it is critical to address when these events
are sent, how they are processed, and how to change the container’s state to guarantee
determinism. These questions become more complicated when considering an implementation
on resource-constrained embedded targets, as opposed to larger machines.

Finally, the group noted that this reasoning can be extended to not just mathematical
formalisms such as communicating sequential processes (CSP) or Kahn process networks
(KPN), but also synchronization/communication APIs such as POSIX or MPI. They also
define some notion of stateful containers. However, in the case of API-based solutions, the
actual boundary of the container and its interface is not a first-class citizen: asserting the
correctness or determinism of a concurrent system, e.g., built on top of POSIX APIs, is more
complex than a similar system expressed in a dedicated coordination language.

4.4 Tradeoffs in accuracy and timeliness

Andres Barrilado (NXP Semiconductors — Toulouse, FR), Hasna Bouraoui (TU Dresden,
DE), Anupam Chattopadhyay (Nanyang TU — Singapore, SG), Jerénimo Castrillén-Mazo
(TU Dresden, DE), Arpan Gujarati (University of British Columbia — Vancouwver, CA),
Hokeun Kim (Arizona State University — Tempe, US), Lothar Thiele (ETH Ziirich, CH),
Alexander Schulz-Rosengarten (Universitat Kiel, DE), Katharina Sedow (Saneon GmbH —
Ismaning, DE) and Jonathan Sprinkle (Vanderbilt University — Nashville, US)

License) Creative Commons BY 4.0 International license
© Andres Barrilado, Hasna Bouraoui, Anupam Chattopadhyay, Jerénimo Castrillén-Mazo, Arpan
Gujarati, Hokeun Kim, Lothar Thiele, Alexander Schulz-Rosengarten, Katharina Sedow, and
Jonathan Sprinkle

This breakout session addressed the challenges, methodologies, and future directions involved
in managing tradeoffs between accuracy and timeliness in computational systems. The central
theme built on Lothar Thiele’s earlier seminar presentation and drew parallels with Thinking,
Fast and Slow [1], asking how systems could dynamically respond with appropriately timed
decisions and varying confidence levels. The key questions and themes were:

What methodologies can be used to manage accuracy vs. timeliness tradeoffs?

What are the real costs of missing a timeline in industry today?

How do real-time systems currently handle uncertainty or degraded performance?

What is the role of resource scaling (e.g., parallelism) in trading accuracy for time?

During the discussion, Andrés Goens emphasized the benefits of early-exit strategies
and iterative answer refinement for real-time constrained systems, raising concerns about
how uncertainty compounds in extended predictions — illustrated with a motor motion
example where the sine wave frequency is unknown. He suggested connecting these ideas
to computationally aware model predictive control (MPC), citing Jonathan’s earlier work,
and posed the question: “Getting something quick converges eventually, but what issues
expand with extended predictions?”. Anupam Chattopadhyay contributed by stressing the

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

J. Castrillon-Mazo, C. Jerad, E. A. Lee, C. Pagetti, and S. J. Lin

importance of leveraging parallel resources to improve accuracy under time constraints,
especially in embarrassingly parallel applications. He framed timeliness and accuracy as just
two among many competing objectives, and discussed the challenge of managing out-of-order
answers in anytime systems, noting that “getting more accuracy with unbounded time might
not be worth it.”

The discussion on use case and domain examples highlighted challenges in automotive and
rail systems, particularly regarding decision timelines, fallback mechanisms, and uncertainty
handling. In autonomous vehicles across L2 to L5 levels, issues such as classification errors —
like braking for an image of a person rather than a real one — underscored the difficulty of
making safe decisions when initial data is ambiguous. Real-world cases included Waymo’s
geofenced operations in Phoenix and the contrast between fast emergency fallback systems
and more complex uncertainty mitigation strategies in advanced vehicles. In rail systems,
the focus shifted to multi-modal data fusion from LiDAR and cameras, emphasizing the
challenge of resolving inconsistencies, especially when distinguishing between humans and
other objects on the tracks. The layered processing approach — comprising rapid object
detection, slower identification, and subsequent motion tracking — was presented as a method
to incrementally refine understanding while balancing timeliness and accuracy.

Human-centered analogies highlighted how people naturally adjust processing time based
on perceived threat and proximity, serving as an implicit model for soft real-time systems.
For example, humans allocate more cognitive resources to assessment when a potential
hazard appears distant, whereas immediate threats like the need to brake demand rapid
reaction. Additionally, the way distractions — such as animals — can temporarily obscure
more critical upcoming stimuli like vehicles illustrates how prioritization and attention shifts
occur dynamically, a concept relevant to designing systems that must manage changing
real-time demands.

Key technical considerations included debates on online training and distribution drift,
particularly whether it is preferable to adapt models dynamically at runtime or to preserve
memory of rare edge cases that could be critical. Shadow mode simulation emerged as a
strategy for evaluating new algorithms alongside active systems, especially within virtual or
“metaverse” environments, offering a non-intrusive way to test improvements. Additionally,
sensor cascades were discussed, where secondary sensors are activated based on outputs
from primary sensors to refine decision accuracy, enabling more responsive and adaptive
perception pipelines.

To visually support and extend the conceptual discussions, several figures (Figure 1,
Figure 2, Figure 3) were sketched throughout the session. These illustrations capture the
tradeoffs between accuracy, time, and computational effort in real-time and soft real-time
systems. They also highlight architectures that mirror human-inspired decision strategies
and progressive refinement models.

A key focus of the discussion was on the complex challenges of designing systems that
must operate across multiple timelines while adapting to shifting, context-sensitive deadlines.
Participants explored how systems can meaningfully react to outdated but potentially
valuable information, and the risks associated with making premature decisions based on
incomplete data. A recurring theme was the importance of metadata — such as timestamps
and confidence scores — to inform decision-making under uncertainty. Additionally, the need
to establish acceptance criteria for degraded or “poisoned” data, and the integration of
error-correcting mechanisms in fault-tolerant designs, was emphasized. These challenges
raised several open questions about the future of dynamic system design.

151

25091

152

25091 — Tradeoffs in Reactive Systems Design

F
1
Accuracy
T Decisions
-
cali A/
»
e — % Time

Ressources

Figure 1 Anytime Algorithm Convergence: Anytime algorithms will converge on a specific
accuracy, which improves over time. Understanding any mid-execution accuracy (decision points)
can help approximate what the final accuracy may be. Additional resources for parallel activity
may further improve the convergence time. Axes: Y-axis: accuracy, X-axis: time, Z-axis: resources
required to obtain the particular decision points).

*ﬁ.ccuran:y'

Accuracy Decision

T+ 10ms Time

——» System

| Time

Figure 2 Frame-based Decision Enhancement: Taking into account regular processing of frame
rates: enabling parallel access with in-process updates (not early exit) could open the pathway to
taking 2 data values from two frames, and using the combined information to make a more informed
decision (Axes: Y-axis: accuracy, X-axis: time).

J. Castrillon-Mazo, C. Jerad, E. A. Lee, C. Pagetti, and S. J. Lin 153

*.ﬂ.ccuracy

: 3
Time

Figure 3 A “Thinking Fast, Thinking slow” explicit example: Component 1 can arrive with
something above the accuracy threshold, but will not maximize accuracy quickly. The result from its
quick response can trigger the next component, which should (with initial criteria) arrive at a better
solution, faster than starting without that information. Axes: Y-axis: accuracy, X-axis: time).

Key System Design Challenges:

Managing multiple, context-sensitive timelines and deadlines
Handling outdated but potentially valuable data

Mitigating the cost of incorrect early decisions

Timestamping decisions and including confidence metadata

Defining acceptance criteria for incomplete or degraded input
Building fault-tolerant systems that can still reason under uncertainty

Open Questions:

How can contextual deadlines be defined in reactive systems?

What are effective methods to systematically integrate fault models and fallback strategies?
Beyond automotive and rail, which domains are best suited for designs emphasizing
dynamic tradeoffs in accuracy and timeliness?

As a closing summary, the group emphasized that:

Timeliness vs. Accuracy must be treated not as static tradeoffs but as part of a system’s
runtime behavior.

Current systems rarely pay a high cost for delayed decisions, but future high-stakes
autonomous platforms (e.g., L5 vehicles, medical robotics) will.

There is opportunity in revisiting layered decision systems, sensor fusion under uncertainty,
and the reuse of older data in dynamic ways.

Jeronimo Castrillén-Mazo’s Debriefing Thought: “When the trigger changes your deadline,
you are in a new kind of reactive system.”

References
1 Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

25091

154

25091 — Tradeoffs in Reactive Systems Design

4.5 Benchmarks for real-time systems

Thomas Carle (Toulouse University, FR), Samarjit Chakraborty (The University of North
Carolina (UNC) at Chapel Hill, US), Arthur Claviére (Collins Aerospace — Blagnac, FR), Vic-
tor Jegu (Airbus S.A.S. — Toulouse, FR), Chadlia Jerad (University of Manouba, TN), Claire
Pagetti (ONERA — Toulouse, FR), Jan Reineke (Universitit des Saarlandes — Saarbriicken,
DE) and Martin Schoeberl (Technical University of Denmark — Lyngby, DK)

License) Creative Commons BY 4.0 International license

© Thomas Carle, Samarjit Chakraborty, Arthur Claviére, Victor Jegu, Chadlia Jerad, Claire
Pagetti, Jan Reineke, and Martin Schoeberl

The work group on “Benchmarks for Real-Time Systems” discussed the shortcomings of
existing benchmark suites like TACLeBench and explored possible directions for developing
more representative and useful benchmarks. TACLeBench was criticized for being largely
composed of small, non-real-time benchmarks, lacking multi-threaded code, and using only
fixed inputs. Furthermore, it does not offer standardized licensing, nor does it provide
clear guidance on the context in which benchmarks should be executed or evaluated. These
limitations make it ill-suited for evaluating modern real-time systems, which are increasingly
complex and heterogeneous.

Participants noted that existing real-time benchmarks are used for a range of evaluation
purposes — such as analyzing the worst-caes performance and/or predictability of microar-
chitectures, assessing WCET (Worst-Case Execution Time) analysis tools, and evaluating
scheduling algorithms. Depending on the benchmarks’ purpose they could consist of indi-
vidual tasks, full applications, or even complete systems where specific software and hardware
combinations are considered together.

A key theme in the discussion was the importance of designing benchmarks that reflect
actual real-time workloads and applications. Real-time systems span diverse domains
and benchmarks should reflect this diversity. Instead of relying exclusively on small code
fragments, participants suggested a potential shift towards specification-based benchmarks:
defining the intended behavior rather than a fixed implementation, with the goal of deriving
implementations that exhibit predictable worst-case performance.

Domains that are particularly representative of modern real-time systems include vision
and perception (e.g., camera or LIDAR input), sensor fusion, control algorithms such as
model-predictive control, and mixed workloads running on heterogeneous architectures (e.g.,
involving both CPUs and GPUs). These domains may feature execution time variation
depending on the nature of the input data, a characteristic that existing benchmark suites
largely fail to capture.

Several participants pointed to tools like Simulink and Lustre as valuable sources for
generating realistic benchmarks. Simulink, in particular, includes many example controllers
that are already central to real-world safety-critical systems. These models can be used to
generate C code, with support for different code generation configurations, including full
closed-loop systems that simulate both controllers and plants. Similarly, code generated
from Lustre, or real-world code bases like Autoware, could serve as useful starting points for
building a more diverse and representative benchmark suite.

Another important aspect raised was the need to define reference contexts for benchmarks.
This includes specifying the hardware architecture and microarchitecture, selecting reasonable
parameter values, and ideally providing baseline results obtained using known analysis tools.
Benchmarks should also include annotations — such as loop bounds — to ensure they are
compatible with WCET analysis tools like AbsInt.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

J. Castrillon-Mazo, C. Jerad, E. A. Lee, C. Pagetti, and S. J. Lin 155

5 Software teasers

In this session, various seminar participants demonstrate programming languages and tools
they are developing.

5.1 Timed Rebeca
Marjan Sirjani (Mdalardalen University — Vasterds, SE)

License @ Creative Commons BY 4.0 International license
© Marjan Sirjani

Timed Rebeca is an actor-based modeling language equipped with a model-checking tool. It
is designed to be both accessible and usable for software engineers and grounded in formal
semantics, ensuring formal verification support. A cyber-physical system is represented as a
set of communicating actors, and safety and liveness properties can be verified using the model-
checking tool, Afra. Rebeca homepage can be accessed here: https://rebeca-lang.org/.

5.2 Lingua Franca

Erling Rennemo Jellum (University of California — Berkeley, US), Edward A. Lee (University
of California — Berkeley, US)

License @@ Creative Commons BY 4.0 International license
© Erling Rennemo Jellum and Edward A. Lee

Lingua Franca is a reactor-oriented coordination language for implementing cyber-physical
systems. Due to its declarative syntax, automatic diagramming is possible. By separating
the concerns of coordination and timing from the computation, it is a promising target for
code generated by large language models. Lingua Franca homepage can be accessed here:
https://www.lf-lang.org/.

5.3 SCCharts
Alexander Schulz-Rosengarten (Universitit Kiel, DE)

License @ Creative Commons BY 4.0 International license
© Alexander Schulz-Rosengarten

SCCharts is a reactive synchronous programming language with sequentially constructive
semantics. It supports dynamic ticks, which are driven by a minimal interface to the
environment. As such, it may be integrated with other runtimes, such as Lingua Franca,
to provide its ticks. SCCharts rely on several model-to-model transformations to turn an
SCChart model into code. SCCharts has sophisticated diagram generation, the same that
is used in Lingua Franca. Each compilation step can also be inspected graphically, making
the compiler transparent and easing development. Links to SCCharts can be accesses here:
https://github.com/kieler/semantics/wiki/Quick-0Overview.

25091

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://rebeca-lang.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.lf-lang.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/kieler/semantics/wiki/Quick-Overview

156

25091 — Tradeoffs in Reactive Systems Design

5.4 QRML
Mare Geilen (TU Eindhoven, NL)

License @ Creative Commons BY 4.0 International license
© Marc Geilen

QRML is a domain-specific language for formulating multi-objective optimization problems
for cyber-physical systems. The problems can be exported to several formats and solved
by tools like Z3. QRML also runs in the browser. QRML tool can be accessed here:
https://qrml.org/qrml.

5.5 HipHop
Manuel Serrano (INRIA — Sophia Antipolis, FR)

License) Creative Commons BY 4.0 International license
© Manuel Serrano

HipHop is a synchronous-reactive language embedded in Javascript. It connects the asyn-
chronous world of Javascript with the synchronous world of Esterel. The HipHop program
describes a deterministic and concurrent response to external inputs, and the embedding
Javascript decides when to trigger the HipHop program. HipHop can be downloaded from
GitHub (https://github.com/manuel-serrano/hiphop).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://qrml.org/qrml
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/manuel-serrano/hiphop

J. Castrillon-Mazo, C. Jerad, E. A. Lee, C. Pagetti, and S. J. Lin

Participants

- Andres Barrilado
NXP Semiconductors —
Toulouse, FR

= Grzegorz Bazydlo
University of Zielona Gora, PL
= Frédéric Boniol

ONERA — Toulouse, FR

= Hasna Bouraoui
TU Dresden, DE

= Thomas Carle

Toulouse University, FR

= Jerénimo Castrillén-Mazo

TU Dresden, DE

= Samarjit Chakraborty
University of North Carolina at
Chapel Hill, US

= Anupam Chattopadhyay
Nanyang TU — Singapore, SG

= Arthur Claviere

Collins Aerospace — Blagnac, FR
= Marc Geilen

TU Eindhoven, NL

= Alain Girault

INRIA — Grenoble, FR

= Andrés Goens Jokisch
University of Amsterdam, NL

= Arpan Gujarati

University of British Columbia —
Vancouver, CA

= Jérome Hugues
Carnegie Mellon University —
Pittsburgh, US

= Victor Jegu
Airbus S.A.S. — Toulouse, FR

= Erling Rennemo Jellum
University of California —
Berkeley, US

= Chadlia Jerad
University of Manouba, TN

= Einar Broch Johnsen
University of Oslo, NO

= Hokeun Kim

Arizona State University —
Tempe, US

= Edward A. Lee

University of California —
Berkeley, US

= Shaokai Jerry Lin
University of California —
Berkeley, US

= Claire Pagetti
ONERA — Toulouse, FR

= Jan Reineke
Universitat des Saarlandes —
Saarbriicken, DE

= Marcus Rossel
Barkhausen Institut —
Dresden, DE

= Selma Saidi
TU Braunschweig, DE

= Klaus Schneider
RPTU
Kaiserslautern-Landau, DE

= Martin Schoeberl

Technical University of Denmark
— Lyngby, DK

= Alexander Schulz-Rosengarten
Universitat Kiel, DE

= Katharina Sedow
Saneon GmbH — Ismaning, DE

= Manuel Serrano

INRIA — Sophia Antipolis, FR
= Marjan Sirjani

Malardalen University —
Visteras, SE

= Jonathan Sprinkle
Vanderbilt University —
Nashville, US

= Eric Tutu Tchao

Kwame Nkrumah University of
Science and Technology, GH

= Lothar Thiele

ETH Zirich, CH

= Reinhard von Hanxleden
Universitat Kiel, DE

= Eugene Yip
GLIWA — Weilheim, DE

157

25091

	Executive Summary (Jerónimo Castrillón-Mazo, Chadlia Jerad, Edward A. Lee, and Claire Pagetti)
	Table of Contents
	Overview of Talks
	Safety and AI Standards for Automobile: An overview (Andres Barrilado)
	Modeling reconfigurable CPS using UML (Grzegorz Bazydło)
	Reactive systems: Optimizations and opportunities in domain-specific computing (Jerónimo Castrillón-Mazo)
	Formalizing Tradeoffs in Reactive Systems Design (Samarjit Chakraborty)
	Security Efficiency Tradeoffs for Intelligent Systems (Anupam Chattopadhyay)
	Assurance of Neural Network-based Safety-Critical Avionics with Formal Methods (Arthur Clavière)
	A component model and modelling language for tradeoffs and multi objective optimization (Marc Geilen)
	Exploring the memory / execution time tradeoff in dataflow graphs (Alain Girault)
	Latency and Consistency Tradeoffs in Shared-Memory Systems (Andrés Goens Jokisch)
	Can we make COTS CPS Ultra-Reliable? (Arpan Gujarati)
	Necessary Conditions for Model Engineering to Ensure System Correctness (Jérôme Hugues)
	Introduction to Avionic Certification (Victor Jegu)
	A Motivating Example: Distributed Music (Erling Rennemo Jellum)
	Time-Tarot: Toward a Quantitative Approach to Time-Predictability (Chadlia Jerad)
	Declarative Lifecycle Management in Digital Twins (Einar Broch Johnsen)
	Security vs. Accessibility Tradeoffs in Reactive Systems (Hokeun Kim)
	Consistency vs. Availability in Reactive Systems Design (Edward A. Lee)
	CAL Theorem in Reactive Systems (Shaokai Jerry Lin)
	Benchmarking Worst-Case Performance of Real-Time Systems (Martin Schoeberl, Erling Jellum, Shaokai Jerry Lin, Chadlia Jerad, Emad Jacob Maroun, Marten Lohstroh, and Edward A. Lee)
	Certification of ML-based systems (Claire Pagetti and Arthur Clavière)
	Synergies between Timing Predictability and Microarchitectural Security (Jan Reineke)
	Observations on Formalizing Reactive Systems (Marcus Rossel)
	Timing Tradeoffs in Timed Automata with Dynamic Ticks (Alexander Schulz-Rosengarten and Reinhard von Hanxleden)
	Fail-operational Systems in Autonomous Driving Applications (Katharina Sedow)
	The Functional, the Imperative, and the Sudoku (Manuel Serrano)
	Consistency versus Availability in Redundant Controllers – Formal Verification, Test Design, Time Analysis (Marjan Sirjani)
	Tradeoffs in Accuracy and Timeliness in Transportation Cyber-Physical Systems (Jonathan Sprinkle)
	Timeliness vs. Accuracy (Lothar Thiele)
	Fundamental Tradeoffs in Reactive Systems for Smart Agriculture and Pollutants Detection in Resource-Constrained Environments (Eric Tutu Tchao)
	Utility-Based System Design: Making Sense of Tradeoffs (Eugene Yip)

	Working groups
	Can AI be used in critical Systems? (Jérôme Hugues, Andres Barrilado, Frédéric Boniol, Thomas Carle, Jerónimo Castrillón-Mazo, Samarjit Chakraborty, Arthur Clavière, Victor Jegu, Claire Pagetti, Marcus Rossel, Selma Saidi, Jonathan Sprinkle, Hasna Bouraoui, and Eugene Yip)
	Distributed music challenge (Grzegorz Bazydło, Anupam Chattopadhyay, Andrés Goens Jokisch, Chadlia Jerad, Erling Jellum, Einar Broch Johnsen, Hokeun Kim, Edward A. Lee, Shaokai Jerry Lin, Jan Reineke, Manuel Serrano, Martin Schoeberl, Lothar Thiele, and Reinhard von Hanxleden)
	Orchestration/coordination languages vs reactive languages (Jérôme Hugues, Edward A. Lee, Shaokai Jerry Lin, and Manuel Serrano)
	Tradeoffs in accuracy and timeliness (Andres Barrilado, Hasna Bouraoui, Anupam Chattopadhyay, Jerónimo Castrillón-Mazo, Arpan Gujarati, Hokeun Kim, Lothar Thiele, Alexander Schulz-Rosengarten, Katharina Sedow, and Jonathan Sprinkle)
	Benchmarks for real-time systems (Thomas Carle, Samarjit Chakraborty, Arthur Clavière, Victor Jegu, Chadlia Jerad, Claire Pagetti, Jan Reineke, and Martin Schoeberl)

	Software teasers
	Timed Rebeca (Marjan Sirjani)
	Lingua Franca (Erling Rennemo Jellum, Edward A. Lee)
	SCCharts (Alexander Schulz-Rosengarten)
	QRML (Marc Geilen)
	HipHop (Manuel Serrano)

	Participants

