
Fakultät Informatik Institut für Technische Informatik, Professur für Compilerbau

Diplomarbeit

Extensions and Improvements for
the Parallel Particle Mesh
Environment

Tobias Nett

August 10, 2016

Supervisor
Dr. Sven Karol
Supervising professors
Prof. Dr. Jeronimo Castrillon
Prof. Dr. Ivo Sbalzarini

Statement of authorship

I hereby certify that I have authored this thesisentitled Extensions and Improvements for
the Parallel Particle Mesh Environment independently and without undue assistance
from third parties. No other than the resources and references indicated in this thesis
have been used. I have marked both literal and accordingly adopted quotations as such.
They were no additional persons involved in the spiritual preparation of the present
thesis. I am aware that violations of this declaration may lead to subsequent withdrawal
of the degree.

Dresden, August 10, 2016

Tobias Nett

Fakultät Informatik, Institut für Technische Informatik, Professur für Compilerbau

Task Description for Final Thesis (Diplomarbeit)

For: Tobias Nett

Degree program: Informatik (Diplom)

Matriculation number: 3663974

E-mail: tobias.nett@tu-dresden.de

Topic: Extensions and Improvements for the Parallel Particle Mesh
Environment

Domain-specific languages (DSLs) are of utmost importance in scientific high-performance computing to
reduce development costs, raise the level of abstraction and, thus, make scientific programmer’s life easier.
The parallel particle-mesh environment (PPME) is a DSL and projectional editor for numerical simulations
based on the particle method. PPME implements a generative approach: it generates parallel Fortran
code that links with the parallel particle-mesh library (PPM), which is also implemented in Fortran. PPM
provides efficient implementations of the particle and mesh abstractions, discrete numerics, as well as an
abstraction layer on the underlying HPC hardware.

In its current state, PPME supports built-in abstractions such as particles, properties, fields, loops and
computation phases. Moreover, systems of partial differential equations, differential operators such as
the laplacian and fractals can be written using conventional mathematical notations. These concepts
have been developed and tested using the example of a Gray-Scott reaction diffusion system, which is
discretized and simulated using particles. However, while this example greatly shows the potentials of
PPME w.r.t. particle-based simulations, it only includes a small set of equations and only two simulation
phases—initialization and solve. Moreover, the editor lacks proper analysis features such as, for instance,
type analysis and dead-code analysis. Also, potential optimizations to improve the efficiency of generated
code or user experience were not considered yet.

This thesis therefore addresses these problems by extending and improving the PPME. In detail, it has
the following goals:

• investigation and integration of additional simulation example(s) with multiple move and solve
phases (e.g., Lennard-Jones),

• extension of PPME as needed to support the example(s),

• design and implementation of a type system (with support for physical units) and pending analyses,

• statically improve floating-point accuracy using abstract program equivalence graphs and

• provide an evaluation of the implemented optimization(s).

It is presumed that the student carefully analyses related work and tests his/her code using an appropriate
testing methodology.

Start: 01.12.2015

End: 10.05.2016

1st referee: Prof. Dr. Jeronimo Castrillon

2nd referee: Prof. Dr. Ivo Sbalzarini

Supervisor: Dr. Sven Karol
Prof. Dr. Jeronimo Castrillon

(Professor in charge)

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 Contributions . 2
1.3 Organization . 2

2 Background 3
2.1 Domain-specific Languages and Language Workbenches 3

2.1.1 Embedded DSLs . 4
2.1.2 Language Workbenches . 5

2.2 Parallel Particle-Mesh Methods . 9
2.2.1 Parallel Particle Mesh Library (PPM) 10
2.2.2 Parallel Particle-Mesh Language (PPML) 11

3 The PPM Environment (PPME) 13
3.1 Architecture . 14
3.2 Code Generation . 16

3.2.1 Main Transformations and Code Generation 17
3.2.2 Physical Unit Transformations . 23
3.2.3 Transformations for external analysis 24

3.3 Case Studies . 25
3.3.1 Lennard-Jones Potential . 25
3.3.2 Gray-Scott Reaction-Diffusion System 27

4 Types and Units 31
4.1 The PPME Type System . 31

4.1.1 Types in PPME . 32
4.1.2 Type Inference . 34
4.1.3 Typing Errors . 40
4.1.4 Implementation in PPME . 41

4.2 Physical Unit Annotations . 44
4.2.1 Units in PPME . 45
4.2.2 The PhysUnits Extension . 49
4.2.3 Evaluation of the Physical Unit Extension 52

5 Numerical Optimizations 55
5.1 Program Equivalence Graphs . 55

5.1.1 Formal Definition . 56

VII

5.1.2 Construction . 57
5.1.3 Exploration . 58

5.2 Herbie — Automatically Improving Floating-Point Accuracy 59
5.2.1 Integration into PPME . 60
5.2.2 Discussion . 67

6 Evaluation And Outlook On Future Work 75
6.1 Review of Contributions . 75
6.2 Maturity of MPS . 77
6.3 Base Languages and Generators . 78
6.4 A Roadmap for PPME . 79

Appendices 81

A Listings 83
A.1 PPME Generator Scripts . 83
A.2 Physical-Unit Conversion . 89

B Benchmarks 91
B.1 Gray-Scott Case Study . 91
B.2 Lennard-Jones Case Study . 95

List of Figures 101

List of Listings 103

List of Tables 105

List of Abbreviations 107

Bibliography 109

Disk Content 115

VIII

1. Introduction
Numerical simulations have a become an essential part of science, alongside theory and
experiments. As their implementation requires in-depth knowledge about the underlying
models, numerical methods, and high-performance computing, the requirements on a
researcher’s programming skills become more and more demanding. Making scientific
simulations accessible to a broad community — by providing state-of-the-art libraries
and frameworks, offering high levels of abstractions, and reducing implementation costs
and effort — is an ongoing task in the scientific computing community.

Domain-specific languages (DSLs) are of utmost importance to reach this goal by
reducing development costs and raising the level of abstraction for simulation program-
mers. As the field of language-oriented programming has advanced in the last years,
new tools for the design and implementation of DSLs have emerged.

The Parallel Particle-Mesh library (PPM) [Sba+06] is a framework for writing high-
performance simulations based on particle methods. The Parallel Particle-Mesh Envi-
ronment (PPME)1 is a DSL and projectional editor built for this framework. It uses a
generative approach to produce parallel Fortran code linked against PPM.

1.1. Motivation

PPME was developed as a research project and, in its current state, supports built-
in abstractions for particle-mesh methods. The existing prototype provides language
abstractions for particles, properties, fields, and loops, as well as systems of partial
differential equations and differential operators. The notation of these concepts is
kept close to the idiom of the domain, letting developers write differential equations in
conventional mathematical syntax. The capabilities of PPME were demonstrated with
an implementation of a Gray-Scott reaction-diffusion system, which was transfered from
the original PPML. The model was discretized and simulated using particles.

While the early prototype of PPME shows the potentials of an integrated development
environment for particle-based simulations, it is limited to a small set of domain abstrac-
tions, and usability has only been shown for a single use case. Moreover, the editor
lacks proper features for analysis, such as type analysis and domain-specific checks.
Although, domain knowledge can be used for potential optimizations to improve the
efficiency of generated code, this aspect of domain-specific tooling is not considered in
PPME yet.
1https://bitbucket.org/ppme/ppme

1

https://bitbucket.org/ppme/ppme

Thus, the objective of this thesis is to advance PPME to a full-fledged tool for scientific
simulations based on particle methods. Therefore, PPME’s feature set is expanded
to enable the realization of new case studies. In order to simplify future extensions, a
general framework for integrating external analysis tools is presented. The contributions
of this thesis are an enabler for the productive use of PPME and open up the platform
towards new case studies.

1.2. Contributions

The contribution of this thesis is three-fold. The existing prototype of the PPME is
extended to cover common use cases of particle-mesh based simulations. The system
is further improved by a complex type system and its implementation. Optional support for
physical-unit annotation and the integration of external tools underlines the extensibility
of the developed tool. Each of these points is addressed in the course of this thesis.

[C1] PPME Improvements and Case Studies The first contribution, as presented in
Chapter 3, is the extension of PPME to support new case studies. At the same time, the
applied changes prepare for extensions and plug-in solutions developed in this thesis.
Therefore, this item is divided into two parts. The first part covers enhancement of
PPME’s feature set and internal measure of restructuring. Second, with the Lennard-
Jones potential a second simulation example is transfered from the original PPML.

[C2] Types and Units The design and implementation of a formal type system with
optional support for physical units is the second contribution. Chapter 4 presents the
type system’s conception and its implementation in detail. The second part of the
chapter deals with the physical units extensions, which is an optional feature to harden
simulations against unit errors.

[C3] Numerical Optimizations The final contribution concerns static optimization of
floating-point expressions in PPME. Chapter 5 first presents an approach to numerical
optimizations via program-equivalence graphs. Thereafter, a framework for the integra-
tion of external programs is developed and used to connect with Herbie[Pan+15], a tool
for the optimization of floating-point expressions.

1.3. Organization

The remainder of this thesis is structured as follows. First background information
for the further understanding of domain-specific languages language engineering is
given in Chapter 2. In particular, the concept of language workbenches is explained.
Furthermore, basic information on particle and particle-mesh methods is conveyed. The
following three chapters treat the main contributions of this thesis.

Chapter 3 introduces the PPME development tool and points out specific features and
details on the implementation. Two case studies are shown as examples of application.
Subsequently, the second contribution in form of type system and physical unit extension
is elaborated in Chapter 4. Hereafter, Chapter 5 discusses approaches on optimizing
floating-point expressions. In addition, an external tool for the optimization of numerical
expressions is integrated with the development environment. Finally, Chapter 6 evaluates
the presented contributions and concludes the thesis with an outlook on future work.

2

2. Background
Writing fast and efficient code often requires not only in-depth knowledge about the
problem domain, but also competence in the programming language of choice, the
targeted systems (hard- and software prerequisites), and additional libraries. Domain-
specific languages aim to offer an environment focused on the former while trying to
hide the latter. In particular, this is an urgent issue in areas where more and more
knowledge on many (unrelated) fields is required to achieve good results. The field
of high-performance computing (HPC) with particle-based methods is affected by this
knowledge gap [Sba09].

Section 2.1 explains the approach of language-oriented programming (LOP) [War94].
The focus is put on language workbenches as a tool for designing and implementing
domain-specific languages. An in-depth presentation of the Metaprogramming System
(MPS) [Dmi04] is given, as it forms the foundation for the contributions of this thesis.

Section 2.2 covers particle and particle-mesh methods for scientific models. The
abstractions given by these methods allow to write simulations for a wide range of
problem domains with a single framework. As an instance of a particle-mesh software
toolkit the PPM library and the corresponding domain-specific language (PPML) [Awi+13]
are presented.

2.1. Domain-specific Languages and Language
Workbenches

The question what exactly a domain-specific language (DSL) is, is often subject to
debates. DSLs even occur under different names, e. g., application-oriented [Sam69],
special purpose [Wex81], or task-specific languages [Nar93]. All these names have in
common that they emphasize the nature of the languages to be tailored for a specific
task. In the following, the definition by Deursen et al. is used as a foundation [DKV00].
Note that the definition itself is still vague in terms of the problem domain.

“A domain-specific language (DSL) is a programming language or exe-
cutable specification language that offers, through appropriate notations
and abstractions, expressive power focused on, and usually restricted to, a
particular problem domain. ”

Many languages are tailored for specific domains. To illustrate the variety in the DSL
landscape, we name and categorize some domains and supplementing languages.
One thing to be noticed is the diversity of fields of application. The range extends from

3

the classical software engineering domain (such as financial products) over systems
software (e. g., video-driver specifications) to telecommunication (e. g., communication
protocols) [DK98]. Even the TEX macro language this document is written in is a DSL,
specifically tailored for typesetting documents.

Problem in
Domain

DSL

Procedure in
Domain

Solution in
Domain

Procedure in
Language

Solution in
Language

Figure 2.1.: DSLs allow for a direct implementation of a procedure defined in
the problem domain. For an implementation in a general purpose
language, the idiomatic procedure has to be translated to the lan-
guage.

In contrast to general purpose languages (GPLs), DSLs allow to express solutions in
an idiomatic way close to the level of abstraction of the problem domain. This enables a
better communication between domain experts and developers, or even allows domain
experts to become developers themselves. Figure 2.1 shows how the detour over
a GPL can be avoided, because the procedure specification in the problem domain
can directly be implemented in a DSL. Often, this means that solutions in a DSL are
more concise than an implementation in a conventional GPL [Hud96]. Furthermore,
studies have shown that DSLs can improve productivity and maintainability of software
systems [DK98]. Most importantly, they embody domain knowledge, which allows for
validation and optimization at the domain level, e. g., when processing catalytic chemical
reaction networks [Hsu+08].

However, a DSL has to be designed, implemented, and maintained. These costs have
to be taken into account when considering to introduce a domain-specific programming
solution [DKV00]. Mernik et al. have investigated when to develop DSLs, addressing
methodologies for their implementation [MHS05]. Moreover, availability of a DSL and
corresponding compilers may be a concern. Distributing complete solutions, containing
the DSL, compilers, and other tools, is one way to overcome this issue. The mbeddr
system takes this approach [Voe+13].
All in all, a domain-specific language is tailored for solving particular problems or

tasks while sacrificing expressiveness or usability for general problem solving. The key
point for end users is the expressive power they get by using a DSL. By synchronizing
the notations used in the DSL with common notations of the particular domain, DSLs
can help to reduce the knowledge gap, i. e., the efficient use of computing resources
requires more and more specialized knowledge and is thus restricted to a ever smaller
community [Sba09].

2.1.1. Embedded DSLs

In general, two types of DSLs can be distinguished. On the one hand, there are external
DSLs, which are standalone languages designed and implemented for a specific field of
application. On the other hand, embedded DSLs are integrated in another programming
language, lifting its expressiveness for a specific task. An external DSL is a newly

4

defined language (often designed from scratch). For the new language both syntax
and semantics can be defined freely, yielding great flexibility. However, developing
a standalone language takes a lot of time and runs the risk of reinventing the wheel.
Language designers have to balance these advantages and disadvantages. A prominent
example is SQL [DD94], which is tailored specifically for the defining, managing, and
querying relational databases.

In contrast to external DSLs, embedded DSLs (or internal DSLs [Fow10]) are built on
top of an existing language. A language that ist syntactically embedded in a general
purpose programming language offers both the specific language concepts related to
the problem domain, and the ability to solve general problems by means of the GPL it is
embedded in. Therefore, an embedded DSL does not restrict a programmer, but does
provide means for idiomatic problem solving of specific aspects. Although embedded
languages are often easier to develop, their syntax is restricted by the host language,
and new concepts and functionalities have to adhere to the parent language.
Internal DSLs occur in several styles, as integrated mini-languages, or as language

enhancements. The former refers to the deliberate decision of using only a particular
subset of the host language for concise notations. The syntactic schema of the parent
language is used to express the idiom of the domain. Often, the best notation for a
domain has to be compromised to be conformant to the host language. This allows to
provide a DSL as library, and existent tools and compilers can be used with the new
language. Kossakowski et al. present an embedding of JavaScript in Scala, which
enables safer client-side programming and more convenience by leveraging the host
language’s static type system and tools support [Kos+12]. The DSL is embedded
using lightweight modular staging [RO12], a technique that allows to embed DSLs as
libraries into host languages. Moreover, it enables domain-specific code generation,
e. g., allowing to compile a program to a specific target language.

The latter style refers to the extension of a GPL with domain-specific concepts, e. g., by
introducing new keywords. One way to implement language extensions is to pre-process
the source code and translate the extensions to statements in the host language. The
simplicity of this approach leads to some disadvantages when working with the DSL. For
instance, users are provided with compiler feedback on the level of the parent language.
Another option to implement embedded languages extensions are extensible compilers,
such as ExtendJ [EH07; Öqv12] or Polyglot [NCM03]. The preprocessing phase is
integrated in the compiler, which allows for type checking and optimization at the domain
level.

2.1.2. Language Workbenches

A key issue with software, and software reuse in particular, is the gap between reusing
concepts of problem solving and reusing the actual code [LR11b]. This discrepancy
can be explained by the conceptional translation of abstract concepts into programming
language patterns. For instance, the abstract concept of a state machine is often tangled
with other concepts when implemented in a GPL. Closing this gap would not only make
concepts behind implementations clearer, but it would also help to reduce the knowledge
gap.

The use of DSLs, whether internal or external, can aid in this problem in that they allow
programmers to code high-level abstractions directly. However, in order to be applicable
in real-world software systems the implementation of DSLs has to be simple and fast,
especially when one high-level construct touches another. Such interactions of DSLs
can be handled by a common platform, which advocates their syntactic and semantic
interoperability. This approach to software engineering is called Language-Oriented

5

Programming (LOP) [War94]. While the traditional approach for implementing a DSL
using compiler-generator tools such as Lex and Yacc [LMB92] or ANTLR [Par13] can
work for limited, fixed-size DSLs, it does not allow to define language concepts as
separate components which can be reused and extended [LR11b].
Different LOP approaches have emerged to overcome this limitation, namely LOP

languages and language workbenches, which both allow for flexible design and imple-
mentation of DSLs. LOP Languages like Cedalion [LR11a] are tailored to LOP [Ros10],
similar to how object-oriented programming languages are oriented towards object-
oriented programming (OOP). These languages are specifically designed to host internal
DSLs.

Language workbenches are integrated development environments (IDE) that simplify
the design and implementation of (domain-specific) languages [Fow05]. In addition,
they allow for modularization and composition of languages [Erd+13]. Moreover, they
provide some tooling like auto-completion and source-code navigation for free [LR11b].
In contrast to standard compiler-generator tools, language workbenches are specifically
designed for language interoperability. Dmitriev, initiator of the Meta Programming
System (MPS), describes language workbenches as a way to achieve independence
and freedom to create, reuse, and modify languages and their environments [Dmi04].

This section shall give an overview of the language workbench concept, explain how
languages are defined therein, and point out typical patterns for design and implemen-
tation. Erdweg et al. compare and discuss existing language workbenches in detail,
capturing the design space of language workbenches in a feature model [Erd+13]. In
the following, we outline the basic terminology of language workbenches.

One can differentiate two fundamental types of language workbench systems, parser-
based systems and projectional systems. The two approaches differ in the way lan-
guages are implemented and handled.

Parser-based systems utilize grammars to describe the syntax of code written in the
domain-specific language. A parser-generator is utilized to create a parser transforming
a program into a data structure, e. g., into an abstract syntax tree (AST). Further analyses
and transformations are performed on the AST and are usually applied before the final
code generation. The Spoofax language workbench [KV10] is a parser-based platform
for developing domain-specific languages and supplementing Eclipse editor plug-ins.
Other textual workbenches such as JastAdd [SH11], EMFText [Hei+11] and Xtext [EB10]
bring advances in editor and IDE technology to language engineering.

Abstract Syntax Tree/
Program Graph

Concrete Syntax

Figure 2.2.: In projectional editors, the user modifies the underlying model di-
rectly. The concrete syntax the user sees is projected from the
program graph (cf. [Voe14, Figure 6.1]).

Projectional systems do not rely on parsers or parser generators, but the user modifies
the abstract representation directly (cf. Figure 2.2). This approach is well-known from
editing diagrams, where the user does not modify the pixels of the image, but rather han-
dles geometric forms like rectangles as units. A projection engine provides one or more
representations of the program graph with which the user can interact. This projectional
editor (also structured editor [DHK84]) is a key factor for flexible representations. It allows
to deal with arbitrary concrete syntactic forms, e. g., textual or graphical representations.
Program elements in a projectional editor are stored as nodes with unique ID (UID).

6

References between elements are stored as references to the UIDs, lifting a plain AST
to a program graph [Voe14]. The projectional editor establishes these references and
aids developers with code completion. The Intentional Software Workbench [SCC06]
is a commercial language workbench based on projectional editing. The view-based
approach allows to mix graphical, tabular, and textual notations for programs. MPS is an
open-source language workbench developed by JetBrains1. The tool supports language
extension and modularization as well as different forms of concrete syntax [Voe11].

A language definition in a language workbench consists, in its core, of a schema, an
editor, and a generator. These three parts define a language’s metamodel and how it
is presented, modified, and translated to a target language. The following paragraphs
explain this in more detail.

Schema The schema defines the structure of the language and its elements, i. e., the
abstract syntax or metamodel of the language. A schema definition therefore
defines the abstract representation of program in the DSL. Typically, language
concept is comprised of properties, child concepts, and references to other con-
cepts. The definition of new language concepts usually starts with the schema
definition.

To cite an example, a conditional statement consists at least of a boolean expres-
sion as condition and a body with statements to perform in case the condition
evaluates to true. The common if-then-else construct, as used in many program-
ming languages, further holds the optional child concept for the else-branch.

Editor The editor defines an element’s presentation, i. e., the concrete syntax of the
language. Thus, the editor defines the projectional view on the AST and in particular
how the user can modify it. The technical details of editor specifications are subject
to the language workbench instances, but usually they will access an element’s
properties, child concepts, and concept references and construct a textual or visual
representation for the user.

Multiple editors for the same language concept can provide a different editing
experience. A different representation of the abstract model is just a different
projection, e. g., when showing the transitions of a state machine in a diagram or
a table.

Generator The generator defines how the program graph is translated to an executable
representation. Therefore, the generator defines the semantics of the DSL. The
generator can be a compiler producing an executable binary, but often the target
format is plain text or a base GPL such as Java, C, or Fortran. During the generation
process, concept instances and their references can be analyzed and domain
knowledge can be incorporated. Some language workbenches allow also for
transformations between languages, e. g., from a high-level DSL to a lower-level
base language.

Schema, editor, and generator are aspects of the language definition. Some work-
bench systems and frameworks have extended the set of language aspects for better
separation of concerns and more flexibility. For instance, an attached type system
simplifies type checking on the DSL and designated transformation descriptions allow to
specify automatic code refactorings.

1http://www.jetbrains.com/mps/

7

http://www.jetbrains.com/mps/

JetBrains Meta-Programming System (MPS)

MPS is an instantiation of the language workbench concept. It offers a wide range
of language aspects to adapt and customize the presentation and behavior of DSLs.
Language elements are called concepts which are defined via different aspects. MPS
has extended the pool of core aspects, consisting of structure, editor, and generator, by
several new aspects, e. g., type system, dataflow, and find usages. For the specification
of these aspects MPS provides a set of DSLs. Figure 2.3 gives an overview of the most
important language aspects in MPS. Note that languages can be extended, and the
generation process allows for transformations between languages. In the following, we
present the main aspects involved in language definitions (cf. [Voe14; MPS15d] for more
information).

Language

Structure

Editor

Type
System

Transfor-
mations

Constraints

Concepts, Properties
Inheritance, Relationships

Projection Rules, Intentions,
Side Transformations

Typing Rules, Type Checks,
Other Validations

Reduction Rules, Weaving
Rules, Transformation Prios

Scopes, Usage Restrictions,
Property Value Limitations

extends 0..*

generates to

provides editors for

specifies
priority 0..*

defines static sem
a

ntics for

defines execu
tion sem

an
tics for

+ Refactorings, Find Usages, Syntax Coloring, Debugging

Figure 2.3.: Languages in MPS are defined through several aspects (structure
is used in MPS for the language schema). A language definition
can be based and generate to another language. Such transforma-
tions can be provided with priorities, from which MPS calculates a
transformation schedule automatically [Voe14, Figure 6.3].

Structure Structure is MPS’ terminology for schema. A language concept in MPS
consists of a name, primitive properties, child concepts, and references to other
concepts. Similar to Java classes, structures can form hierarchies. A concept can
implement any number of concept interfaces and it can extend up to one other
concept.

Editor Editors in MPS consist of cells, where each cell can contain a constant (e. g.,
a keyword, symbol, or image), a property value of a concept, a child cell, or
a reference. Furthermore, collection cells allow specific formatting for multiple
elements. In addition, some editor reactions to specific user interactions in a given
cell are defined in the editor aspect.

Transformations (Generators) Model transformations between languages in MPS are
defined by generators. The optimal workflow is to lower high-level DSLs through
transformations step-wise to a base language. Only the last stage of this multi-
stage process performs a final translation to textual representation. A generator in
MPS consists of a mapping script which contains transformation rules. A schedule
for transformations is automatically created.

8

Textgen The textgen aspect for a concept defines the actual translation to an external
target language. Ideally, this aspect is only used for concepts of a base language,
such as BaseLanguage, the MPS implementation of Java. For higher-level con-
cepts generators should be used as described above.

Type System The type system aspect allows to define typing rules for concepts. The
rule set includes rules for type inference (e. g., the type of a variable reference is
the type of the referenced variable), subtyping (e. g., int is a subtype of float),
and checking rules to verify a model. A checking rule can evaluate any part of a
model, e. g., to check for uniqueness of names or naming conventions.

Behavior The behavior aspect allows for custom methods on concepts, just like classes
can hold methods in OOP. Such methods can be invoked on any instance of the
concept in a polymorphic way. Hence, the concept instance can carry behavior in
addition to their properties.

Structure and editor are sufficient to define a small, usable language in MPS. The
textgen aspect enables the translation of the custom DSL to a target language. All other
aspects are optional and improve the language’s usability.

2.2. Parallel Particle-Mesh Methods

Modeling and simulation are essential parts of modern science. The hypothesis a model
gives about a process or system can be used to answer questions about the system
through simulations. Simulations show how a model behaves in specific situation,
e. g., for specific parameter values. They are useful, or even necessary, when it is
complicated or impossible to change these parameters directly in the model, e. g., the
diffusion constant of a molecule cannot be changed. For this reason, simulations are
well established in science, alongside theory and experiments [Sba09].

In scientific computing, particles can be used to simulate a variety of models com-
putationally [Sba+06]. Particle methods are numerical schemes which can be used to
simulate both discrete and continuous models. The basic mechanism of a particle-based
simulation are particle interactions. When simulating a discrete model the simulation is
called item-based, simulations of discretized continuous models are called field-based.
This distinction is made to clarify the nature of the underlying model. Discrete models
are naturally expressed with particles which directly represent discrete entities of the
model, thus the term item-based simulation. Entities in the model can be atoms in
molecular-dynamics or cars in traffic simulations, for instance. The properties these
entities hold become particle properties, and particle interactions model the evolution of
properties over time. Particles in field-based simulations do not directly correspond to
entities in the model. Instead, the continuous fields to model are discretized, i. e., the
field’s values are only computed and stored at selected discretization points. Particles
then correspond to these discretization points. Particle interactions are then discretized
differential operators describing the continuous evolution of the model.

In any case, a particle is a point-like localized object to which several properties, such
as volume, mass, velocity, or acceleration, can be ascribed. A particle’s position can
be in any space, and the properties can hold arbitrary information. The evolution of
a particle denotes a change in its position and/or properties. Usually, the evolution is
determined by pair-wise particle interactions.

Due to its generality, particle methods can be used for a variety of models. For instance,
in molecular-dynamics simulations [FS01], particles represent atoms and the particle

9

interaction describes the molecular force field. Smooth particle hydrodynamics [Mon92]
is a particle method to simulate the field-based model of continuum fluid flow. The
differential operators in the governing equations are discretized for the computation.
Particle methods can also be used to solve image segmentation problems over field-
based models,e. g., region competition [CPS12]. Here, particles mark boundary pixels
between image regions.

Particle methods are designed for close-ranged particle interactions. An alternative
way for evaluating long-range particle interactions are meshes. A mesh defines a
grid laid over the simulation space and consists of a neighborhood relation of its cells.
Furthermore, mesh cells can hold arbitrary properties. Thus, meshes define topological
abstractions over the simulation domain, where the focus is to divide the domain in
cells which can be computed effectively. The combination of particles and meshes form
hybrid particle-mesh methods. A historic example for combined use of particles and
meshes are plasma physics simulations [Hoc70].

(a) particles (b) mesh (c) connections (d) topology

Figure 2.4.: Data abstractions in the PPM framework for particle-mesh simula-
tions. Hybrid particle-mesh simulations can be expressed in terms
of particles (a) and meshes (b). Connections (c) allow for associa-
tions of particles with each other, and a topology (d) decomposes
the simulation domain [Awi+13, Figure 1].

The data and topology abstractions of hybrid particle-mesh methods can be utilized for
highly parallel scientific computations [Sba+06]. Figure 2.4 presents a schematic view
of these abstractions. Particle-particle connections enable to represent associations
between particles, e. g., bonds in molecular dynamics. A domain decomposition given
by a topology can be used to assign sub-domains to parallel processes for efficient
computation. All in all, particle-mesh methods are a unifying framework for scientific
simulations of both item-based and field-based models.

2.2.1. Parallel Particle Mesh Library (PPM)

The Parallel Particle Mesh library (PPM)2 is a middleware layer which provides several
abstractions for parallel hybrid particle-mesh simulations [Sba+06; BAS13]. In particular,
PPM hides details about the underlying specifications of heterogeneous parallel hardware
architectures without losing generality in terms of particle-mesh simulations. The current
implementation is an object-oriented Fortran 2003 library which supports 2D and 3D
models [ADS10]. By using standard technologies, languages (Fortran, C), and libraries
(e. g., MPI [GLT99], METIS [KK98]) the library is portable and applicable on single
processor machines as well as on high-performance computing clusters.

PPM is divided into two parts: PPM core and a PPM numerics library, as can be seen
in Figure 2.5. The core library contains domain-specific routines and different modules
for adaptive domain decomposition, communication through halo layers, load balancing,
particle-mesh interpolations, and communication scheduling [Sba+06]. The numerical
2http://www.ppm-library.org/

10

http://www.ppm-library.org/

PPM language

PPM core PPM numerics

single processordistributed memoryshared memoryvector

Message Passing Interface (MPI) PETSc METIS FFTW

Figure 2.5.: The PPM software stack separates client programs from techni-
cal specifications. PPM consists of two encapsulated libraries,
PPM core and PPM numerics. The numerics library uses rou-
tines provided by the core to implement numerical solvers. The
domain-specific PPM Language aims to provide simpler access to
particle-mesh simulations (cf. [Sba09, Figure 2]).

library supplements the core routines with frequently used numerical methods, e. g.,
mesh-based solvers, evaluation procedures for differential operators, and multi-stage
ODE integrators [ADS10].

In addition to thesemodules, PPM provides bindings for some of the external libraries in
case custom adjustments to simulations have to be made. By hiding technical details and
deliberately focusing on the abstractions of particle-mesh methods, the PPM software
stack provides a handy toolkit for scientific simulations.

2.2.2. Parallel Particle-Mesh Language (PPML)

The PPM Language (PPML) is a top-level abstraction layer for writing particle-mesh-
based simulation code, i. e., a DSL for particle and particle-mesh simulations, located
on top of the core library layer. It extends the PPM toolkit with a concise set of language
abstractions reflecting the idiom of particle-mesh abstractions and a corresponding
compiler.
The domain-specific language is “softly embedded” in Fortran, i. e., it syntactically

forms an extension of the Fortran language. Technically, it is implemented by staged
macro processing, transforming PPML client code to basic Fortran. This means that
PPML code is not valid Fortran code but has to be (pre-) processed by the PPML compiler
(or PPML preprocessor). In particular, the additional language constructs are macros
which are statically expanded by the preprocessor to standard Fortran 2003 code. In
a final step, the client code has to be compiled and linked to PPM. The language is
located on top of the PPM architecture stack [Awi+13].
Figure 2.6 illustrate how a PPML client application is transformed to an executable

program. The PPML compiler is build with the ANTLR parser generator and scans the
client code for domain-specific concepts. The macro collection contains templates that
are evaluated during compilation of the client. All data abstractions and convenience
macros for frequently tasks (e. g., iterating over a particle list) are translated to Fortran
code. The compiler and language design based on macros allows to extend PPML by
simply adding new macros to the collection [Awi+13].

11

Parser

Tree parser

Macro processor
PPML

compiler

Fortran generation
classes

Macro
collection

PPML
client

Fortran PPM
client

PPM abstractions

MPI

OpenCL

forthreads

BLAS

FFTW
Fortran

compiler

Figure 2.6.: The PPML framework and its compilation process. Line arrows
denote usages, e. g., the PPML compiler a generated parser and
the processed macros. Hollow arrows represent processing steps.
The processing starts with a PPML client which is expanded by
the PPML compiler using the macro collection to Fortran 2003
code [Awi+13, Figure 3].

PPML as an access layer to PPM helps to reduce the knowledge gap for writing
scientific simulations with particle-mesh methods for high-performance computing. This
is achieved by providing concise domain-specific instructions that allow to develop
applications close to the idiom of the domain. Furthermore, full expressiveness is
guaranteed as developers can fall back to Fortran as host language. Extensibility of the
language is given through the open macro collection which allows to add new instructions
and operations.

The main drawback of the current implementation of PPML is its lack of transparency.
The staged macro expansion process hides details and semantic connections between
instructions which may not be clear to the user. Moreover, the PPML compiler does not
perform semantic checks on the source but solely relies on the syntactic structure of
the macros. Thus, compilation errors are not reported until the Fortran compilation, and
all errors are reported in the host language instead of the the PPML code. These error
message are often of little help for a developer working with the DSL front-end [Kar+15].

12

3. The PPM Environment (PPME)

The PPM Environment (PPME) is an IDE and DSL for developing numerical simulations
using the parallel particle-mesh method. It aims to reduce the knowledge gap, that is,
the mismatch between domain experts and the required expertise for an efficient use of
HPC resources [Sba09]. Therefore, it provides high-level abstractions and notations that
are well-known to domain experts and, thus, aligns with the class of problems relevant
in particle-mesh-based simulations. The development environment integrates with the
existing software stack of PPM and does not require any adaption in the underlying
framework.

The overall development process of applications can be improved by DSLs and de-
velopment tools with regard to several criteria. Namely, these criteria are productivity,
software quality, performance/accuracy, and forward scalability [Voe+12]. The produc-
tivity of scientists (i. e., developers) can be increased by providing high-level abstractions
for computational models, such that the developer is not bothered with details about
the programming language or the underlying architecture. The goal is to make users
feel comfortable working with the environment. Although software quality is a criterion
which is hard to measure, it can be stated that an IDE can check for common errors
up-front and present the developer with meaningful warnings and error messages without
running a compiler. For instance, PPME performs type checks on-the-fly, highlighting
type errors directly in the editor. Additionally, static program analysis paired with domain
knowledge can be used to improve performance, accuracy, and/or efficiency of simula-
tions. Depending on the underlying technology, third-party tools can be incorporated for
various compile-time optimizations. This allows to reuse established tools for analysis
and program transformation instead of reimplementing their features. Finally, forward
scalability is guaranteed by instantiating a flexible language workbench. Modularity and
extensibility of the language and editor design allow to easily adapt to changes in the
PPM framework and add new (language) features [Rat+12].

This chapter shall give an overview of PPME, its structure, implementation, and
functionality. Combined, the presented aspects form contribution [C1], improvements for
PPME and the implementation of a new case study. Section 3.1 explains how the MPS
language workbench is instantiated and aligned with the PPM framework. Section 3.2
breaks down the internal transformations and code generation phase. Section 3.3
presents two case studies for simulation programs written in PPME.

13

3.1. Architecture

PPME is located on top of the existing PPM stack as a new access layer and is thus
part of an extended PPM stack. It integrates with the layered architecture, generating
source code against the PPML, and therefore makes use of the established work
flow. Figure 3.1 illustrates how PPME fits between the user’s programs and the PPM
middleware. Application developers interact with the development environment to write
simulation programs and related configuration files. Furthermore, the IDE provides a
simpler access to the PPM library than PPML. The purpose of PPML and PPM of hiding
technical details, specific realizations, and the explicit target platform is preserved. In
contrast to PPML’s macro extensions to Fortran, the IDE offers a consistent syntax and
semantically incorporates domain-specific elements into the language.

PPM language

PPM core PPM numerics

single processordistributed memoryshared memoryvector

Message Passing Interface (MPI) PETSc METIS FFTW

PPM Environment

Figure 3.1.: PPME is a new access layer to the underlying PPM library for
simulation developers [Sba09, Figure 2].

PPME itself is organized in language packages, called solutions in MPS. The clean
separation between different sub-languages enables a good separation of concerns.
The lower layers form a base DSL containing general language constructs such as
expressions, literals, and statements. These concepts are reused in the upper layers to
define domain-specific language concepts for particle-mesh methods on top of the base
language. The reuse of lower layers and their extension is a key part in the design of
PPME. It does not only allow for easier maintenance but also enables custom extensions
for specific use cases as plug-ins to the IDE.

JetBrains MPS

ppme.modules

ppme.statements ppme.expressions

ppme.core

extensions

PPML/Fortran

text generation

ppme.physunits ppme.analysis

Figure 3.2.: PPME is built using a modular layered architecture approach.

14

Figure 3.2 shows a schematic view of PPME’s language stack. The bottom layers
form the main DSL for particle-mesh simulation programs that can be written in PPME.
We use sub-languages to keep the implementation modular and understandable. At the
interface to the underlying PPM library MPS is utilized to manage code transformations
and code generation, as further explained in Section 3.2. The top-layer of PPME
is open to extensions and allows to add application-specific languages. Such DSL
extensions provide high-level abstractions that are only used in some domains. To cite
an example, continuous and discrete simulations may use different constructs which
are only meaningful in one domain. Another example could be particle-mesh methods
for image processing [AS16]. Working with image data on particles may benefit from
specific language features, e. g., for loading, storing, and visualizing images.

In the following, we present the contained sub-languages. A short characterization of
their purpose should help the reader to get an understanding of PPME’s design concept
of modularity and extensibility.

de.ppme.expressions This solution provides general expressions as can be found
in most programming languages, e. g., mathematical and logical expressions, and
literals for integer and floating-point numbers. Moreover, the base types available
in PPME are defined in this solution, as well as essential parts of the type system.
Chapter 4 goes into more detail on the type system implementation.

de.ppme.statements The statements sub-language contains a basic set of impera-
tive statements, such as expression statements, if-else clauses, and loops. Fur-
thermore, variable declarations and references are part of this package. The type
system of de.ppme.expressions is extended for variables where necessary.
Overall, the elements of this language are general in the sense that they are
independent of the domain they are used in.

de.ppme.core The core package is comprised of most domain-specific elements.
It extends the solutions for expressions and statements by adding new domain-
specific types, expressions, and statements. Selected constructs of PPML are
modeled to be reflected in PPME while stying consistent with the base language’s
concepts. For instance, the timeloop construct available in PPM clients is
implemented in this solution.

de.ppme.modules A module in PPME is the top-level structure for client programs
written in PPME. It contains the simulation code and optional specifications for
imported control parameters. A module corresponds to a PPM client, but the IDE
can utilize additional knowledge about the domain better than PPML, e. g., by
referencing external control files and inspecting the code.

The set of core languages of PPME are grouped in a devkit, a concept to treat a set of
interconnected languages as one unit in MPS. To get the base functionality of PPME’s
language it suffices to include the devkit in a solution project.

de.ppme.lang The devkit containing the base languages of PPME. The developer
does not have to worry about implementation dependencies of the core languages
but can simply rely on the devkit. All language dependencies are covered by the
devkit.

Above these central languages there is room for custom extensions and plug-ins. This
work presents two additional languages, one for the integration of physical units into
simulations, and one for the integration of an external analysis tool. Both should serve
as examples for further extensions tailored for specific use cases.

15

de.ppme.physunits The physical units integration is an optional extension of the
core DSL to integrate dimensional analysis capabilities in PPME. It adds means
for unit specifications and a new type system layer. The language is presented in
detail in Section 4.2.

de.ppme.analysis The analysis language consists of an exemplary binding of an
external tool. We elaborate a general framework enabling the access of custom
tools in the environment. Section 5.2 explains how Herbie [Pan+15], a tool for
improving floating-point accuracy, is integrated in PPME.

The overall implementation effort for the current state of PPMEwas approximately eight
person months. In the course of this thesis, the first IDE prototype was gradually enriched
with new features and extended to cover additional case studies. This required major
refactorings in the existing code base and various new implementations. Additionally, we
investigated the integration of external tools and optional extensions in form of plug-ins.

3.2. Code Generation

The code generation in PPME is implemented by several intermediate transformation
stages and a final text generation stage. A transformation maps one program to another.
In the context of MPS, we usually work with transformations between different languages.
A program specified using a high-level DSL is translated to a language closer to the
target language. During the transformation, the program graph can be enriched with
additional information which is explicitly required in the target language. For instance, a
list of variables accessed in a loop can be extracted from the loop’s body and explicitly
stored in an intermediate representation.
The transformation concept allows for different fields of application. On the one

hand, several transformations for the same model could be executed in parallel, yielding
several representations of a single input program (e. g., producing customized versions
for several target platforms). On the other hand, transformations can be chained, i. e., the
result of one transformation is used as the input of the next one. Since PPME aims for
modular language extension and composition, the underlying language workbench has to
support transformations introduced by different language extensions. The transformation
engine of MPS is able to resolve dependencies and compute a global transformation
sequence for a given model. This allows to extend the language with new features and
plug in transformations without changes to other mappings.

To avoid unnecessary overhead during the generation phase, e. g., producing textual
representations of intermediate models, transformations are mostly limited to AST-to-AST
mappings. Textual output is produced in only two cases: (a) when the final output in the
target language is generated, and (b) when external tools and analyses require textual
input. This restriction enables full control of the transformation phase within MPS. Taking
into account the enrichments of various transformations and results of external tools,
the platform is able to generate the final output in the target language. The produced
source code can then be compiled using a regular compiler, i. e., the PPML compiler to
create a Fortran binary of the simulation program.

Figure 3.3 illustrates this process. It starts with a simulation program implemented as
a PPME module. The module contains domain-specific concepts such as a timeloop
and various constructs to create and set up particle-based simulations. In the example of
Figure 3.3, the timeloop statement is analyzed in the first transformation stage and a
right-hand side specification is extracted. Similarly, the creation of particles is expanded
to several initialization and macro calls in the representation of the module that is closer
to the target language.

16

ppme.modules

ppme.core

create...

PPME Module PPME Module
+ Annotationsexpand

PPM Client

Fortran Binary

timeloop

init

<macro>

timeloop

rhs
extract

T G

P

C

Fortran

Figure 3.3.: Domain-specific abstractions in a PPME module are transformed
(T) into lower-level representations. From this enriched module
PPM client code is generated (G) which is subsequently processed
(P) to Fortran code and compiled (C) to a Fortran binary.

In the following, a selection of transformations is presented. We elaborate how model
transformations are used in PPME and how language extensions can add new mappings.

3.2.1. Main Transformations and Code Generation

The majority of the transformations is contained in de.ppme.modules, the top-level
language of PPME which enables developers to write simulation clients. The mapping
scripts are used to pre-process the input model, i. e., modify the source model by adding,
removing, replacing, and changing nodes in the program tree. Pre-processing scripts
are used for collecting certain information to be used in further transformations from
the input model, or to perform non-template based model transformations. Mapping
scripts have to be referenced from a mapping configuration in order to be invoked as
part of its generation step [MPS15a]. A mapping configuration contains references to
the pre-processing scripts to be invoked during the generation phase. Furthermore, it
may contain other generator rules for template-based model transformations, reductions,
or weaving.

1 mapping configuration main
2 top-priority group false

...
34
35 pre-processing scripts:
36 collect_differentialOperators
37 discretize_op
38 populateRHS
39 create_ode_macros
40 copyUsedCtrl
41 replaceRandoms
42 populateAddArgMacros
43 populateCreateFieldMacros
44 populateCreatePropertyMacros
45 transformForEachStatements
46 addMKAnnotations
47
48 post-processing scripts:
49 << ... >>

Listing 3.1: The mapping configuration of de.ppme.modules, containing refer-
ences to pre-processing scripts to invoke non-template based model
transformations.

17

Listing 3.1 shows the main mapping configuration used in PPME. A series of map-
ping scripts is referenced to be invoked during the generation step (ll. 25 – 46). In
the following, we present three of them in detail, namely replaceRandoms (l. 41),
transformForEachStatements (l. 45), and populateRHS (l. 38). Overall, the
mapping scripts collect information from the input model and modify only specific parts of
the model. Subsequent mapping scripts may use and reference the results of previous
ones, e. g., the initialization of ODE macros requires a corresponding right-hand side to
be present. The instantiation of several macros prepares for the code generation in the
target language.

Generating Target Source Code In order to produce the target source code, MPS’
text gen capabilities are utilized [MPS15b]. For each language concept a text generation
component can be specified which creates a textual representation of the program node.
The text generation composition can be as simple as printing the name of a variable
(VariableReference), but it can also be more complicated, e. g., when producing
the source code for a conditional loop statement.

We use several transformation scripts to prepare the text generation phase. Therefore,
we have defined multiple intermediate concepts resembling macros in PPML, e. g., right-
hand side definitions, or particle loops. The use of these intermediate representations
simplifies the generation of PPML/Fortran code as the input model is stepwise enriched
with the required information.

1 text gen component for concept PartLoopsMacro {
2 (context, buffer, node)->void {
3 indent buffer ;
4 append {foreach } ${node.variable.name} { in } ;
5 if (!node.pset.isInstanceOf(NeighborsExpression)) {
6 append {particles(} ${node.pset} {)} ;
7 } else {
8 append ${node.pset} ;
9 }

10 append { with } ;
11 append {positions(x} ;
12 if (node.writePos) {
13 append {, writex=} ${node.writePos + ""} ;
14 }
15 append {)} ;
16
17 if (node.sca_field.isNotEmpty) {
18 append modifiers node.sca_field, " sca_fields(", ")" ;
19 }
20 if (node.vec_field.isNotEmpty) {
21 append modifiers node.vec_field, " vec_fields(", ")" ;
22 }
23 if (node.sca_props.isNotEmpty) {
24 append modifiers node.sca_props, " sca_props(", ")" ;
25 }
26 if (node.vec_props.isNotEmpty) {
27 append modifiers node.vec_props, " vec_props(", ")" ;
28 }
29 append \n ;
30
31 with indent {
32 append ${node.body} ;
33 }
34
35 indent buffer ;
36 append {end foreach} \n ;
37 }
38 }

Listing 3.2: Textgen specification for PartLoopsMacro.

Listing 3.2 shows the text generation component for the particle loop macro. MPS
allows to print strings (append) and control the indentation of the output (indent
↪→ buffer and with indent). We use the explicit information which is collected
during the transformation phase and stored in the macro, e. g., the list of accessed fields
and properties. The text generation for the loop’s body is deferred to the respective
program node.

18

Replacing Random Number Expressions The script entitled replaceRandoms is
an example for a transformation script that analyzes the input model, adds new nodes,
and replaces nodes of the input model. The script works on RandomNumberExpression
(RNE), a concept offered by PPME to easily include random numbers in a simulation.
The developer can choose the expression to be of a specific type, e. g., a random integer
number random<integer>. If no type is specified, a random real number is assumed.
During the code generation phase, the generic random number expressions have to be
replaced by statements actually computing random numbers.

20 foreach e in exprs {
21 // keep track of variables already referenced in expression ’e’
22 nlist<VariableDeclarationStatement> used = new nlist<VariableDeclarationStatement>;
23
24 foreach rne in e.descendants<concept = RandomNumberExpression> {
25 node<LocalVariableDeclaration> varDecl;
26 node<VariableDeclarationStatement> stmnt;
27
28 // check whether a variable can be reused - if not, create a new variable declaration
29 if (rne.type.isNull) {
30 stmnt = decls.where({~it => it.variableDeclaration.type.isInstanceOf(RealType); }).disjunction(used).first;
31 varDecl = <LocalVariableDeclaration(
32 name: "rnd_" + cnt,
33 type: RealType())>;
34 } else {
35 stmnt = decls.where({~it => it.variableDeclaration.type == rne.type; }).disjunction(used).first;
36 varDecl = <LocalVariableDeclaration(
37 name: "rnd_" + cnt,
38 type: # rne.type)>;
39 }
40
41 // no variable for reuse was found - create a new declaration statement and add it to the list
42 if (stmnt.isNull) {
43 stmnt = <VariableDeclarationStatement(variableDeclaration: # varDecl)>;
44 decls.add(stmnt);
45 rne.containing root.descendants<concept = Phase>.first.body.statement.addFirst(stmnt);
46 cnt += 1;
47 }
48 // add the referenced variable to the list of ’used’ variables
49 used.add(stmnt);
50
51 node<VariableReference> varRef = <VariableReference(variableDeclaration: # stmnt.variableDeclaration)>;
52 rne.replace with(varRef);
53 e.ancestor<concept = Statement>.add prev-sibling(<CallRandomNumber(var: # varRef)>);
54 }
55 }
56 }

Listing 3.3: Excerpt from the mapping script replaceRandoms to replace
generic random number concepts with random number calls for
local variables.

The script in Listing 3.3 iterates over each expression in a model containing RNEs
and replaces them with references to variables holding a random number, reusing
variables where possible. First, the script checks whether a variable to reuse can be
found (ll. 29–39). If no variable was found, a new variable declaration with a unique
identifier depending on the RNE’s type is created. The new variable declaration is
added to the beginning of the program (ll. 42–47). In contrast to Fortran, the developer
does not have to declare a variable for each random number at the beginning of a
procedure. Finally, the original expression is replaced by a reference to this variable (ll.
51–52). Since the abstract concept of a random number expression is lowered by the
transformation to match the target language better, the random number is initialized by
a call to Fortran’s RANDOM_NUMBER, modeled by CallRandomNumber. Therefore, this
call is inserted right before the expression containing the random number (rootExpr)
(l. 53). Thus, for each random number expression a new variable is introduced which is
initialized right before the expression it occurs in. Figure 3.4 illustrates this transformation.
The random number expression is replaced by a variable reference to rnd_1, and a
random value is assigned to the variable right before the expression statement via the
CallRandomNumber instance.

19

Expression

....

ExpressionStatement

Expression

....

ExpressionStatement

VariableReference

CallRandomNumber

rnd_1

....

VariableReference

rnd_1

....

random

T

Figure 3.4.: Program-graph transformation translating random number expres-
sions to variable references (red arrows).

TransformingParticle Loops Themapping script transformForEachStatements
exemplarily shows how implicit information is extracted from a particle loop and then is
encoded in a lower-level concept in an explicit form. PPML offers a convenient macro
for iterating over each particle in a particle list. This macro requires explicit information
about the accessed fields and properties of a particle. Furthermore, it has to be explicitly
stated if particle positions are modified in the loop. The transformation script extracts
this information from PPME particle loops and instantiates a corresponding intermediate
concept PartLoopsMacro, modeling the PPML macro in PPME.

10 nlist<AssignmentExpression> assignments = particleLoop.body.descendants<concept = AssignmentExpression>.toList;
11 nlist<Expression> lhs = assignments.left.toList;
12 boolean writeX = lhs.findFirst({~it =>
13 if (it.isInstanceOf(ArrowExpression) && it : ArrowExpression.operation.isInstanceOf(PositionMemberAccess)) {
14 if (it : ArrowExpression.operand.isInstanceOf(VariableReference)) {
15 return it : ArrowExpression.operand : VariableReference.variableDeclaration == particleLoop.variable;
16 }
17 }
18 return false;
19 }).isNotNull;

...
28 particleMemberAccesses
29 .where({~it => it.operand.isInstanceOf(VariableReference); })
30 .where({~it => it.operand : VariableReference.variableDeclaration == particleLoop.variable; })
31 .forEach({~it => {
32 node<IVariableDeclaration> decl = it.operation : ParticleMemberAccess.decl;
33 node<VariableReference> ref = new node<VariableReference>();
34 ref.variableDeclaration.set(decl);
35
36 concept switch (decl.type) {
37 subconcept of FieldType :
38 if (decl.type : FieldType.ndim == 1) {
39 if (loop.sca_field.findFirst({~it => it.isInstanceOf(VariableReference) && it : VariableReference.

↪→ variableDeclaration == ref.variableDeclaration; }).isNull) {
40 loop.sca_field.add(ref);
41 }
42 } else {
43 if (loop.vec_field.findFirst({~it => it.isInstanceOf(VariableReference) && it : VariableReference.

↪→ variableDeclaration == ref.variableDeclaration; }).isNull) {
44 loop.vec_field.add(ref);
45 }
46 }
47 skip;

Listing 3.4: Excerpt from themapping script transformForEachStatements
to transform particle loop statements into particle loop macros.

Listing 3.4 depicts two key parts of the mapping script. First, by analyzing the original
loop body the mapping script determines whether particle positions are written (ll. 12–18).
Secondly, the script determines the accessed fields and properties in the loop’s body.
Particle member accesses are sorted into scalar/vector field/property usages. The listing
shows the case distinction for particle fields (ll. 36–47). Finally, the original loop body
is copied over to the macro, and the original loop is replaced by the created macro
instance.

20

Overall, the slim and concise notation of a particle loop in PPME is enriched through
the mapping with information implicitly available in the program. Since the full program
graph is available to the mapping scripts, analyzing types of and dependencies be-
tween variables becomes easier. Access operations to particles are represented by
specific language concepts and can be collected from the loop’s body. Furthermore,
complications when parsing the program for string-based macro processing are avoided.
The comparison of the original loop in PPME and the generated macro code in PPML
in Listing 3.5 reveals the collected information on the accessed properties. Since the
particle position is written (p→pos occurs on the left-hand side of an assignment), the
position is annotated with writex=true.

foreach particle p in parts do
p→a = p→F / mass
p→pos = p→pos + p→v * delta_t + 0.5 *

↪→ p→a * delta_t2

p→F = 0.0
p→E = 0.0

end foreach

foreach p in particles(parts) with positions(x, writex=true)
↪→ sca_props(E) vec_props(F, a , v)

a_p(:) = F_p(:) / mass
x_p(:) = x_p(:) + v_p(:) * delta_t + 0.5 * a_p(:) * (delta_t**2)
F_p(:) = 0.0
E_p = 0.0

end foreach

Listing 3.5: Comparison of particle loop in PPME (left) and in PPML (right).

Extract Right-hand Side Specifications The third transformation we present in detail
is populateRHS which is responsible for extracting right-hand side definitions from
ODE statements. A right-hand side specification in PPML contains directives for the
computation of an ODE over a particle list. Our goal is to extract the corresponding code
from differential equations written as part of a PPME simulation. Therefore, the script
iterates over all ODEStatement blocks in a program and creates RHSMacro instances
for each of them, where one ODE specification only works on one particle list plist.
The key factor in extracting RHS definitions is to identify the differential operators in use
and create a particle loop macro computing the differential equations.

25 // populate list of differential operators
26 result.diffops.clear;
27 ode.descendants<concept = DifferentialOperator>.forEach({~it => {
28 if (result.diffops.where({~elem => it.equals(elem); }).isEmpty) {
29 result.diffops.add(it.copy);
30 }
31 } });
32
33 // create field declarations for the used differential operators
34 result.diffops.forEach({~it => {
35 node<LocalVariableDeclaration> decl = new node<LocalVariableDeclaration>();
36 decl.name.set("d" + it.operand.operation : ParticleListMemberAccess.decl.name);
37 decl.type.set(it.operand.getType().copy);
38 result.appliedOps.add(decl);
39 } });

Listing 3.6: Extraction of differential operators from a PPME simulation.
(populateRHS, ll. 25–39; Listing A.3)

Listing 3.6 shows how the distinct differential operators are assembled into a list.
Within the loop over all ODE blocks, the occurrences of differential operators in the ODE
block are collected. The function searching for descendants of a specific concept is
conveniently provided by MPS, showing one advantage of the language workbench.
Furthermore, a field declaration is created for each operator to store the intermediate
result of applying the operator to a particle field in the macro instance. Finally, the
declaration is added to the list of applied operators in the right-hand side macro. Note
that the actual target source code is produced after all transformations have been
executed, taking information from concepts for intermediate representation such as
RHSMacro.

21

62 node<IVariableDeclaration> diffField = rhsStmnt.argument.operation : ParticleListMemberAccess.decl;
63 nlist<DifferentialOperator> diffops =
64 result.diffops.distinct
65 .where({~it => it.operand.operand.isInstanceOf(VariableReference) && it.operand.operand :

↪→ VariableReference.variableDeclaration == plist : VariableReference.variableDeclaration; })
66 .where({~it => it.operand.operation.isInstanceOf(ParticleListMemberAccess) && it.operand.operation :

↪→ ParticleListMemberAccess.decl == diffField; }).toList;

78 node<DifferentialOperator> diffop = diffops.first.copy;
79 diffop.operand.set(<ArrowExpression(
80 operand: VariableReference(variableDeclaration: # loop.variable),
81 operation: ParticleMemberAccess(decl: # rhsStmnt.argument.operation : ParticleListMemberAccess.decl))>);

Listing 3.7: Assembly of differential operators on particle attributes from
RHSStatement (ll. 62–81; Listing A.3).

Next, the script scans all statements in the ODE block for right-hand side definitions
(RHSStatement). The particle attribute affected by the operation is extracted from
the statement as shown in line 62 of Listing 3.7. The subsequent statement selects
the corresponding differential operator matching the equation, i. e., where the operand
equals the particle attribute (ll. 64 ff.). Finally, the differential operator concept is set up
with this information (ll. 79 ff.). Beforehand, the script assures that the applied differential
operator is unambiguous. We assume that there is a single differential operator in the
equation corresponding to the operand. Thus, the list of applied operators diffops
should contain only a single element. The concrete differential operator used by the
developer is assigned to the general concept of the partial differential equation. Note
that the differential operator, specified over the particle list, works on the loop variable of
the produced particle loop after the transformation.

Since the RHS statements in the ODE blocks of PPME operate on the particle list as a
whole, all references to the particle list have to be transformed to references to a particle.
Listing 3.8 shows how all these expressions are mapped to expressions over a single
particle. Again, we utilize MPS’ functionality to find descendants depicting particle list
access and iterate over these occurrences (l. 87).

87 right.descendants<concept = ArrowExpression>.where({~it => it.operation.isInstanceOf(
↪→ ParticleListMemberAccess); }).forEach({~it =>

88 node<> t;
89 if (it.operation : ParticleListMemberAccess.decl.isInstanceOf(VariableDeclaration)) {
90 t = it.operation : ParticleListMemberAccess.decl : VariableDeclaration.getType() ;
91 } else {
92 t = it.operation : ParticleListMemberAccess.decl.type : Type;
93 }
94
95 node<ArrowExpression> foo = it.replace with new(ArrowExpression);
96 foo.operand.set(<VariableReference(variableDeclaration: # loop.variable)>);
97 foo.operation.set(<ParticleMemberAccess(decl: # it.operation : ParticleListMemberAccess.decl)>);
98 });

Listing 3.8: Transformation of particle list accesses to direct particle accesses
(ll. 87–98; Listing A.3).

Similar to the transformation of particle loops, the fields and properties used in the com-
putation of the differential equations are extracted and explicitly added to the RHSMacro
(cf. Listing 3.4). Finally, the RHSMacro is assembled using information about the particle
list, the applied differential operators, and the equations itself. PPME’s mechanisms
ensure that the program is well-formed and that these transformations are applicable.

The comparison of the PPME ODE block (top) and the extracted right-hand side defini-
tion in PPML as shown in Listing 3.9 demonstrates the effect of the model transformation.
The developer conveniently defines an ODE over attributes of the particle list c, and
the IDE automatically extracts the required information. First, the mapping identified
two applications of differential operators, ∇2c→U and ∇2c→U. As mentioned before,

22

the local variables dU and dV hold the intermediate result of applying the operator to
the respective particle fields. Both the particle loop and the right-hands side block itself
hold explicit information about the accessed particle fields, U and V. Furthermore, dU
and dV are treated like other scalar fields. Note that the access of particle list attributes
(c→U) is transformed to access of particle attributes, i. e., accessing attributes of the
loop variable U_p.

ode method "rk4" on c
∂c→U
∂t

= constDu * ∇2 c→U - c→U * c→V2 + F * (1.0 - c→U)
∂c→V
∂t

= constDv * ∇2 c→V + c→U * c→V2 + (F + kRate) * c→V
end ode

rhs grayscott_rhs_0(U=>c, V)
get_fields(dU, dV)

dU = apply_op(L, U)
dV = apply_op(L, V)

foreach p in particles(c) with positions(x) sca_fields(U, V, dU, dV)
dU_p = (((constDu * dU_p) - ((U_p * V_p) * V_p)) + ((1.0_mk - U_p) * F))
dV_p = (((V_p * (U_p * V_p)) + (V_p * (-(kRate + F)))) + (constDv * dV_p))

end foreach
end rhs

Listing 3.9: Comparison of and ODE specification in PPME (top) and the ex-
tracted right-hand side specification in PPML (bottom).

3.2.2. Physical Unit Transformations

PPME enables developers to enrich simulations with additional information about phys-
ical units of variables and constants. This functionality is provided by the language
extension de.ppme.physunits which allows to attach unit information to declara-
tions and expressions. The language is further explained in Section 4.2. However, the
generation process does not know about the annotations. Therefore, we utilize MPS’
capabilities to define new mapping scripts in a solution and add them to the generation
plan. The IDE will sort out the order of mappings based on the languages involved.
de.ppme.physunits directly extends the main language of PPME by wrapping

types and expressions with additional information about physical units, i. e., a type or
expression can be replaced by a new annotated concept holding the original node and
the annotation. The IDE uses this information to perform checks for consistency over
the unit annotations. The developer gets visual feedback in the editor in case of errors.
However, the target language cannot handle unit annotations wherefore they have to be
removed from the model during the generation phase. Listing 3.10 shows the simple
script replacing annotated types and expressions with the original type or expression,
respectively.

1 mapping script removeUnitAnnotations
2
3 script kind : pre-process input model
4 modifies model : true
5
6 (genContext, model, operationContext)->void {
7 foreach annotatedType in model.nodes(AnnotatedType) {
8 annotatedType.replace with(annotatedType.primtype.copy);
9 }

10 foreach annotatedExpr in model.nodes(AnnotatedExpression) {
11 annotatedExpr.replace with(annotatedExpr.expr.copy);
12 }
13 }

Listing 3.10: Removal of annotated physical units from expressions and types.

23

We marked the generator priority of de.ppme.physunits to be higher than the
generator of de.ppme.modules [MPS15d, Generator]. This ensures that the input
model of the main transformation scripts will contain no annotated types or expressions.
Note that this dependency is unidirectional where the extending language specifies an
explicit dependency.

3.2.3. Transformations for external analysis

The integration of Herbie [Pan+15], a tool for optimizing floating-point expressions, allows
to mark expressions in the editor for external analysis. PPME runs the analysis on the
developer’s request and annotates the marked expressions with optimized variants. We
present the framework for integrating external tooling in detail in Chapter 5, including
examples of simulations optimized by Herbie.

TA

ExpressionStatement

Expression

Statement

AnnotatedExpression

Statement

HerbieAnnotationH Expression

ExpressionStatement

orig

replacement

Figure 3.5.: A plain PPME expression is annotated (A) by the user and stored
as orig in the annotation instance (red arrow). The replacement
statement is created from the output of the external tool. During the
transformation (T) the whole sub-tree is replaced by the optimized
statement (blue dotted arrow).

During the code generation phase, annotated expressions have to be replaced by the
annotated alternative (cf. Figure 3.5). A custom transformation script allows to add this
functionality without modifying existing mappings. The script HerbieOptimizations
from de.ppme.analysis, shown in Listing 3.11, iterates over all expressions with
annotations. The parent statement of an annotated expression is then replaced by the
optimized statement (i. e., the optimized regime) as found by the external tool. Note
that the transformation does not check whether the replacement changes the program
semantically. However, the replacement has to be a valid statement in PPME.

7 foreach expr in model.nodes(AssignmentExpression).where({~it => it.@herbie != null; }) {
8 if (expr.@herbie.replacement.isNotNull) {
9 node<Statement> parentStmnt = expr.ancestor<concept = ExpressionStatement>;

10 if (parentStmnt.isNotNull) {
11 info "[Herbie Generator] replacing expression with optimized regime ...";
12 parentStmnt.replace with(expr.@herbie.replacement);
13 }
14 }
15 }

Listing 3.11: Expressions with annotated Herbie optimizations are re-
placed with the corresponding optimized regime by the
HerbieOptimizations mapping script (ll. 8–15, Listing A.4).

24

As mentioned before, MPS prepares a generation plan based on dependencies
between modules. The pre-processing script is classified to be run before the mapping
scripts defined in de.ppme.modules. Thus, further transformations get a modified
model as input where annotated expressions are replaced by their optimizations.

3.3. Case Studies

In order to demonstrate the capabilities of PPME we implemented two simulation case
studies with the system. They exemplarily show the implementation of two kinds of
models. First, the Lennard-Jones potential serves as an example for interacting particles,
i. e., a discrete deterministic model. Second, the Gray-Scott reaction-diffusion system is
implemented to show a continuous stochastic model of molecular dynamics with a low
molecule number. In the following, we present both implementations in PPME and point
out a few language features.

When simulating a discrete model, the simulation is called an item-based simulation, in
contrast to simulating a continuous model which is called field-based simulation. These
terms are used to clarify the nature of the underlying model, as the simulation itself is
always discrete. For item-based simulations each item is represented by a particle in the
simulation. As the name suggests, the particles model a field in field-based simulations,
e. g., a concentration field. The diversity of the case studies underlines the flexibility of
PPME and particle-based methods.

3.3.1. Lennard-Jones Potential

The implemented Lennard-Jones (LJ) potential [Ver67] is an instance of molecular
dynamics [FS01], an item-based simulation to study atomic processes. The atoms
subject to simulation are directly represented as particles, located in continuous space.
Pairwise potentials between atoms define the continuous forces acting on them. While
the basic algorithm for the simulation, i. e., computing pairwise interactions of particles
and updating their positions and properties, stays the same, the exact definition of the
forces is specific to the application. Thus, other use cases can be derived from the
general scheme of the Lennard-Jones example.

The implementation of the chosen case study is based on the PPML implementation.
The pairwise potential of atoms is based on the distance between them (r), the depth of
the potential well (ε), and the fall-off distance (σ). Particle properties such as acceleration
(a) or velocity (v) are updated with regard to the potential and cause the particles to
move. Additionally, a cutoff radius for negligibly small long-range interactions is applied.
We go through the PPME simulation module and explain the key parts of the program in
detail.

Figure 3.6.: [LJ] The module definition and referenced runtime constants of the
Lennard-Jones potential simulation.

To begin with, the simulation is contained in a PPME module. Figure 3.6 shows the
first lines of this module. The module references a control file (ctrl) which provides
symbols for runtime constants. For each constant a default value, a minimal value, and

25

a descriptive text can be supplied. For instance, the constant epsilon has a default
value of 1.0, a minimal value of 0.0, and denotes the depth of the potential well in the
model. Note that the exact value of these constants is not known at compile time but
only on runtime of the simulation. Nevertheless, referencing a default configuration
makes sure that all necessary symbols are defined and of the expected type. Besides
the simulation client, the referenced control file is also generated.

Figure 3.7.: [LJ] Initialization of topology, particles, and neighbor list.

The simulation body starts with a creation and initialization phase (cf. Figure 3.7).
First, the topology for the simulation is created. In particular, we used a topology with
periodic boundary condition ("ppm_param_bcdef_periodic"). Next, the particles
are created over this topology. PPME allows to define an initial distribution of the
particles in the simulation space (displacement) which is not used in this example.
However, four properties are declared on the particle list. If not further specified, the
type of a property defaults to a real number, and its default dimension is the dimension
of the simulation (ppm_dim). The developer should provide a descriptive name for
each property, e. g., velocity. The boolean flag indicates whether the property can be
zero. Thus, the property E is a scalar denoting the energy value of a particle as a
real number. Finally, the neighbor list nlist over the particles is computed, and the
boundary condition is applied to the particles.
The essential part of simulating the potential is located in the timeloop depicted

in Figure 3.8. Therein, the force acting on the particle in form of pairwise interactions
is computed and applied. The loop can be divided into four parts. First, the particle
positions (p→pos) are updated based on the values of velocity (p→v) and acceleration
(p→a). Since the particles’ positions have changed the boundary condition is applied
again, and the mappings and neighbor list are updated afterwards.
The block of two nested particle loops contains the actual particle interaction. For

each particle p the pairwise interaction with its neighbor particles q, retrieved via
neighbors(p, nlist), is computed. The force F acting between two particles
and the potential (or energy) E are given by

~F (r) = 24εr(2
σ12

r7
− σ6

r4
), VLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]

26

Figure 3.8.: [LJ] The simulation loop computing pairwise interactions of parti-
cles.

The corresponding lines of code are the assignments to dF and p→E, respectively. The
last update on the particle list modifies the velocity with regard to the updated force field.

Figure 3.9.: [LJ] A sanity check computing the total energy over all particles.
Additionally, the intermediate simulation state is written out.

The final block shown in Figure 3.9 computes the total energy over all particles. The
print statement generates an output file every 100 time steps, containing the values
for the particles’ energy, velocity, and force. The write directive, enclosed in square
brackets, is copied directly to the generated source code. This enables developers to
make adjustments using plain Fortran code.
The PPME module is translated to PPML client code using MPS’ code generation

capabilities. The simulation’s output can be visualized with ParaView [Aya15], a data
visualization tool. The particles are scattered in three-dimensional space, their movement
governed by the potential. Figure 3.10 shoes a snapshot of the simulation. The particles
are colored based on their current energy level.

3.3.2. Gray-Scott Reaction-Diffusion System

The second case study is the implementation of a reaction-diffusion model in PPME.
Such continuous deterministic system models the time and space evolution of concen-
tration fields of several species. The species react with each other and diffuse over

27

-1e-12

0

"energy"

-1.8e-12

5.58e-13

Figure 3.10.: [LJ] Visualization of the Lennard-Jones potential.

time [Awi+13]. The diffusion of a scalar quantity U(x, t) is governed by partial differential
equations ∂U/∂t = ∆U .

We implemented the Gray-Scott (GS) reaction-diffusion model [GS84] for two species
U and V , based on the PPML implementation of the simulation. The reactions are
modeled by the following differential equations

∂U

∂t
= DU∇2U − UV 2 + f(1− U),

∂V

∂t
= DV∇2V − UV 2 + (f + k)V (3.1)

where DU and DV are diffusion constants of species U and V , and f and k are reaction
rates. Overall, the simulation can be divided into two sequential parts, first the initializa-
tion phase, and second the simulation loop. During the initialization phase, topology,
particle list, and neighbor list are set up. The simulation loop simply contains a block of
differential equations to model the evolution of the concentration fields. The notation
is kept concise and close to the domain’s idiom as most boilerplate code in the target
language can be generated.

Figure 3.11.: [GS] Module definition and referenced runtime constants of the
Gray-Scott reaction-diffusion system.

Similar to the Lennard-Jones case study, the reaction-diffusion system is implemented
in a PPME module. Figure 3.11 shows the module definition and referenced runtime
constants. Obviously, constDu and constDv correspond to the diffusion constants
DU and DV , and F and kRate correspond to the reaction rates f and k, respectively.
Likewise the other case study, topology, particle list, and neighbor list are set up

at the beginning of the simulation body. Figure 3.12 shows the directives to initialize
the simulation environment. First, the topology is created, using the same boundary
condition as for the Lennard-Jones potential. Then, the particle list c is created on the
topology. This time, the displacement block is used to randomly distribute the particles.
During the particle creation, scalar fields for the species U and V are defined. In the
following particle loop the starting concentrations for the species are set up. Finally, the
neighbor list is computed on the particles with a custom cutoff radius.

28

Figure 3.12.: [GS] Initialization of topology, particle list, and neighbor list. In
addition, the species concentrations for U and V are modified.

22 c = create_particles(topo)
23
24 allocate(rnd_0(ppm_dim,c%Npart))
25 call random_number(rnd_0)
26 allocate(displacement(ppm_dim, c%Npart))
27 displacement = (rnd_0 - 0.5_mk) * c%h_avg * 0.15_mk
28 call c%move(displacement, info)
29
30 call c%apply_bc(info)
31 global_mapping(c, topo)
32
33 U = create_field(1, "U")
34 V = create_field(1, "V")
35 discretize(U, c)
36 discretize(V, c)
37
38 ghost_mapping(c)

Listing 3.12: Target source code generated from the particle creation statement.

Note that the continuous fields U and V are automatically discretized on the particle
list during the code generation. Listing 3.12 shows the code snippet generated from
the particle creation statement (create particles). Lines 24–28 correspond to the
distribution directive, computing the displacement and applying it to the particle list. In
lines 33–36 the continuous fields U and V are created and directly discretized on the
particle list c.

The simulation logic is contained in the timeloop and is solely defined through
differential equations. For the ODE block, the developer has to specify the particle
list the equations are working on, and the method to approximate the solution of the
ODE. The key "rk4" stands for the 4th order Runge-Kutta method, defined in the PPM
library. The following two equations correspond to Equation (3.1). Note how closely the
mathematical notation is resembled in PPME.

29

Figure 3.13.: [GS] Simulation loop containing the ODE describing the evolution
of concentration fields U and V .

During the generation phase the simulation loop is analyzed and transformed into
several macro instantiations in PPML. On the one hand, the code is scanned for
differential operators in use which are set up before entering the loop. In this case, the
Laplace operator Lap was discretized, as can be seen in Listing 3.13. Furthermore, a
right-hand side definition is extracted from the ODE block as shown in Listing 3.9. The
ODE is evaluated in each simulation step nstages times.

55 o_0, nstages_0 = create_ode([U, V], grayscott__single_phase__rhs_0, [U=>c, V], rk4)
56 L = discretize_op(Lap, c, ppm_param_op_dcpse, [order=>2, c=>1.0_mk])
57
58 t = timeloop()
59 do istage=1, nstages_0
60 ghost_mapping(c)
61 ode_step(o_0, t, time_step, istage)
62 end do
63 print([U=>c, V=>c], 1)
64 end timeloop

Listing 3.13: Target source code generated from the simulation loop.

The output of the simluation was again visualized using ParaView. Figure 3.14 shows
the concentration field of the species U and V after 4 · 103 time steps. In the initial
concentration, a cicular spot of species V was surrounded by species U . Over time, this
visible patterns formed out, based on the chosen paramters for Du, Dv, f and k.

Figure 3.14.: [GS] Visualization of the Gray-Scott reaction-diffusion system.

30

4. Types and Units

An essential part of PPME is the implementation of a domain-specific language tailored
for particle-mesh simulations and its static analysis of types. The type system does not
only cover common aspects of programming languages but also includes type checks
for constructs special to the given domain.

The work presented in this chapter covers contribution [C2]. A formal type system, its
type hierarchy, typing rules, and error detection capabilities are presented in Section 4.1.
The second part of this chapter deals with the question how information on physical

units can be added to PPME. Section 4.2 presents a unit calculus as a modular language
extension. Unit annotations are an optional feature of the development environment,
aiding development and debugging in a constructive way.

4.1. The PPME Type System

The DSL of PPME is backed up by a type system implementation using the language
aspects provided by MPS [MPS15c; MPS14]. Making type system implementations
easier is also a concern of other research. JastEMF by Bürger et al.[Bür+11] integrates
the JastAdd system [EH07], a generator for reference attribute grammars, with the
Eclipse Modeling Framework (EMF), a metamodeling framework. Heidenreich et al.
present a textual DSL build with JastEMF, and Bürger et al. created SiPLE, an imperative
programming language, with JastEMF and Xtext [Bür+11; Hei+11]. Bettini’s Xsemantics
is a DSL for writing type systems for Eclipse Xtext, and the Veritas workbench by Grewe
et al. aims to provide a high-level specification language for type systems from which
soundness proofs can be derived [Bet15; Gre+15]. MPS’ typing language aspects head
for the same goal. The type system is a key part constructively in improving the code
quality of simulation written in PPME as it detects errors at compile time and gives
meaningful feedback to the developer.
First, we introduce the notions and notations used to describe and formalize the

type system in section 4.1.1. Second, we give an overview of the available types and
operations in PPME, i. e., basic and domain-specific types and operations. The type-
inference rules of PPME are elucidated (section 4.1.2) as well as sources of typing
errors and how they are reported to the user (section 4.1.3). Finally, the technical
implementation is presented in section 4.1.4.

31

Notions and Notations

We want to give some basic notational agreements and terminology for a general
understanding of the type system. A typing environment Γ associates variable names
and types, i. e., it is a set of pairs 〈x, τ〉, commonly written as x : τ , denoting that the
variable x has type τ within the environment. We denote the lookup of a variable’s type
by Γ(x), where Γ(x) = τ if the environment contains an entry for the variable 〈x, τ〉 ∈ Γ.

For some rules, the subtype relationship is of importance. If T and S are types, then
T ≤ S denotes that T is a (direct) subtype of S, and S is a supertype of T . T ≤∗ S is the
reflexive transitive closure of ≤, that is, S can be reached from T in the type hierarchy. In
the remainder of this chapter, we use ≤ for simplicity and refer it to the transitive closure.

The inference rules for types and units are syntactically based on the representation
in [Clé+86]. Each rule defines the conclusion that can be drawn from the given premises:

premise1 . . . premisen

conclusion

We allow typings as premises as well as other predicates, e. g., for specifying a subtype
relation.

4.1.1. Types in PPME

In MPS, any language element can function as a type in the internal type system. For
the implementation of PPME’s language a common super element Type was employed
from which all other types are derived. As a whole, the type system in PPME can be
seen as the combination of two parts — a general base type system on the one hand,
and a domain-specific extension thereof on the other hand. Subsequently, the sets of
basic and domain-specific data types of PPME are introduced. Afterwards, the inference
rules of the type system are presented.

Base Types The base type system is defined in de.ppme.expressions. It consists
of a set of fundamental types and type-inference rules over this set. The set P of
elementary or primitive types is tailored to the domain of PPME. It contains the well-
known types String for character sequences, Boolean for truth values, Integer for
integers, and Real as an abstraction for the real numbers.

P = {String,Boolean,Real, Integer}
Additionally, PPME knows two kinds of parameterized types for vectors and matrices,
denoted by Vector<X> and Matrix<X> where X is a type parameter. A vector and
matrix represent one-dimensional and two-dimensional arrays with components of type
X, respectively. These polymorphic types are joined under an abstract ContainerType
in the implementation and are denoted by the set C.

C = {V ector〈X〉,Matrix〈X〉}
The set of base types TBase is then defined as the union of primitive typesP and container
types C.

TBase = P ∪ C
Figure 4.1 illustrates the hierarchy of types in de.ppme.expressions. In this case,

Type, Primitive, and Container<X> are abstract types and do not occur directly
in programs. Thus, the only case of subtyping is Integer ≤ Real, expressing that
every integer is also a real number. Furthermore, the container types V ector〈X〉 and
Matrix〈X〉 are parameterized with a type parameter X which defines the container’s
component type. X can be of any type t ∈ T defined in PPME.

32

Type

Primitive Container<X>

Real String Boolean Vector<X> Matrix<X>

Integer

Figure 4.1.: The hierarchy of base types TBase as defined in de.ppme.
↪→ expressions.

Domain-specific Types Besides other domain-specific elements and language fea-
tures, de.ppme.core contains domain-specific extensions to the base type system. On
the one hand, there are specific types required by the particle-mesh domain, e. g., types
for representing particles, particle lists, and different kinds of properties. Furthermore,
type refinements for specific purposes are introduced, e. g., Displacement as a kind
of real-valued matrix describing a relocation of particles. Similarly, a ParticleList is a
particular vector with particle components. For this purpose, PPME provides a set of
domain-specific types D.

D = {Particle, ParicleList, F ield, Property,Displacement}

On the other hand, the underlying PPM framework allows for various configurations
of the simulation environment. For instance, it enables the developer to decide on a
specific boundary condition, e. g., a fixed or periodic boundary of the simulation space.
PPME takes these kinds of types into account and models them respectively. The set
TPPM of domain-specific type extensions to TBase then contains the domain-specific
types of D joined with additional “configuration” types like Topology and Boundary.

TPPM = D ∪ {Topology,Boundary}

In Figure 4.2 the extensions to TBase are illustrated. The types of TBase defined in
de.ppme.expressions are denoted in gray. The hierarchy indicates the specialized
subtyping forDisplacement ≤Matrix〈Real〉 and ParticleList ≤ V ector〈Particle〉. On
the right, the domain-specific types for particles and their properties are shown.

PPME Types Altogether, the set T of all types in PPME is the union of base types and
domain-specific types.

T = TBase ∪ TPPM

The construction of T also shows the flexibility of language implementations in MPS.
The fundamental type hierarchy can be extended by by new languages, adding new
domain-specific concepts. Furthermore, this enables a continuous development and
refinement of the given implementation towards new use cases.

33

Type

Container<X> PPMType

Matrix<Real> Vector<Particle>

Displacement ParticleLis t

Field Property Particle

Figure 4.2.: The domain-specific extensions TPPM of de.ppme.core to the
base hierarchy.

4.1.2. Type Inference

PPME’s language model is statically typed. This means that all type annotations are
known at compile time. As a consequence, all variable declarations in a PPME client
need to have their type explicitly designated by the developer.

In order to be able to speak about type-inference in PPME, we need to have a notion of
the abstract syntax of our language. The syntax of PPME’s language can be summarized
as a collection of syntactic sets, each corresponding to a different kind of program phrase.
Overall, these syntactic sets can be grouped into two logical parts. Basic syntactic sets
are very simple and form the groundwork for PPME programs. These can be taken as
given, and, in the typing system, elements from the basic set are trivially mapped to
corresponding types. Leveraging this foundation, derived syntactic sets make up the
more complex expressions of PPME clients. They allow the developer to build more
complex expressions, e. g., unary and binary expressions, or domain-specific directives
such as differential operators.

In the following, both sets are introduced and the related typing rules are explained.

Basic Syntactic Sets The basic syntactic sets in PPME are comprised mainly of
literals, notations for representing fixed values, and variables. We focus on the literals
for primitive types with the notation agreements as shown in Table 4.1.

booleans b b ∈ B = {true, false}
strings s e. g., s = ”PPME”
integers n,m n,m ∈ N
reals r e. g., r = 3.14 or r = 6.62E−34

Table 4.1.: Literals for the primitive types in PPME and their notational agree-
ments.

The boolean truth values are ranged over by (the metavariable) b. We use s to range
over strings, i. e., character sequences enclosed by quotes. n,m denote integers, and r
usually refers to a real number. In particular, real numbers can be written in floating-point
notation, e. g., r = 3.14, or in scientific notation, e. g., r = 6.62E−34 [IEE08].

34

The literals have type information associated in a natural way, as can be seen in
the following equations. Obviously, truth values have type Boolean, integers have type
Integer, and so on.

Γ ` b : Boolean if b is BooleanLiteral (4.1)
Γ ` n : Integer if n is IntegerLiteral (4.2)
Γ ` r : Real if r is DecimalLiteral or ScientificNumber (4.3)
Γ ` s : String if s is StringLiteral (4.4)

Additionally, variables are a basic syntactic set. We typically denote variables by v or
by using some identifier such as xn.

variables v v ∈ V ar = {a, b, . . . , x, x′, x1, x2, . . . }

Table 4.2.: Variables and their notation.

The type of a variable depends on the typing environment Γ. If the environment
contains an entry for a variable v, i. e., there is 〈v, τ〉 ∈ Γ, then the type of v is equal to
τ . A lookup of v in Γ is denoted by Γ(v). This leads to the first typing rule we specify.
Equation (4.5) states that if v is in the environment and has type τ , then an occurrence
of v is typed with τ as well.

Γ(v) = τ

Γ ` v : τ
(4.5)

Variables are added to the typing environment at the point where they are declared.
Given a typing environment Γ, the declaration of a variable yields a new typing en-
vironment Γ′ which contains an entry for the newly declared variable. Since MPS is
based on a structural editor, identifiers for variables can be ambiguous (although that is
not recommended as it will likely lead to conflicts in the generated code) as the devel-
oper can simply select the intended variable reference. The type system, however, is
able to resolve ambiguous variable names. For variable declaration, with and without
initialization, rule (4.6) applies.

Γ ` τ x : Γ ∪ {x = τ}
Γ ` e : τ ′ τ ′ ≤ τ

Γ ` τ x = e : Γ ∪ {x = τ}
(4.6)

Derived Syntactic Sets Besides the simple sets we have seen beforehand, more
complex syntactic sets can be derived. The abstract syntax of derived syntactic sets is
given by the possible forms of expressions e in PPME.

Unary Operations 	(e)
PPME supports three unary operations, the unary minus −e, the logical not !e, and
the square root

√
e. Obviously, this definition allows for “pointless” expressions

such as taking the square root of a string. The remainder of this section will present
rules for well-formedness and type conclusion to prevent these erroneous phrases.

	 ∈ {−, !,√}

Binary Operations e1 ⊗ e2
Binary operations come in various shapes. First, PPME allows for typical arithmetic
expressions like addition, subtraction, multiplication, division, and exponentiation.

BinOparith = {+,−, ∗, /, ˆ}

35

Secondly, we have two operators for logical and and or.

BinOplog = {&&, ||}

Thirdly, the common operators for (in-) equality and less/greater than (or equal to)
comparison of two expression are available.

BinOpcomp = {==, ! =, <,>,<=, >=}

The union of these three categories yields the set of binary operations in PPME.
As for unary operations, well-formedness of binary expressions will be considered,
and typing rules will be applied to decide on the resulting type.

⊗ ∈ BinOparith ∪BinOplog ∪BinOpcomp

Domain-specific Operations
A strength of PPME are its domain-specific operations. They extend the set of
basic operations and integrate seamlessly into the language. To cite an exam-
ple, they allow for concise notations of mathematical concepts, preserving the
expressiveness of the mathematical notation.
In PPME, fields and properties are defined on particle lists. Therefore, the language
offers means to access these fields and properties given a particle list. This
syntactic concept is called a particle list access (PLA). Given a particle list ps, a
field f and a property x both defined on ps, then

ps→ f, ps→ x

denote the access of field f and property x, respectively. Intuitively, the result of a
PLA is the whole field or property over the particle list.
In an analogous manner, the value of a field or property on a specific particle can
be accessed via a particle access operation (PA). Likewise, the access operation
is denoted by an arrow. Given a particle member p of the particle list ps, the fields
and properties of ps can be accessed for p:

p→ f, p→ x

Additionally, PPME allows the developer to access the implicit properties of a
particle, e. g., its position:

p→ pos

Intuitively, the result of a PA operation is the value of the field or property on particle
p.
Finally, there are domain-specific notations for differential operators. Simulation
developers can use these operators in partial differential equations (PDEs), staying
close to the mathematical notation. To cite an example, the Laplacian operator∇2e
is used in the Gray-Scott reaction-diffusion scenario presented in section 3.3.2.

Access Operations v[i], m[i][j]
As PPME provides the developer with various container types (e. g., vectors and
matrices) it also offers means to access elements of these array-like structures.
Access operations are denoted by square brackets containing the index to access.
Similarly, elements of non-scalar particle fields and properties can be accessed
using the same notation. Be ps a particle list with a non-scalar field f , and p ∈ ps
a particle from ps, then p→ f [i] denotes the access of the ith element of f .

36

Type Rules Given the syntactic sets presented above, in the following, the correspond-
ing type rules will be examined. Based on the intuitive typing of the basic syntactic sets,
the type of a derived expression e can be inferred by the kind of e and its subexpressions.

We begin with a simple rule for parenthesized expressions. Expressions in PPME can
be parenthesized to specify (or clarify) the order of operations which does not change
the type of the expression. The type-inference for a parenthesized expression is the
trivial rule (4.7).

Γ ` e : τ

Γ ` (e) : τ
(4.7)

As elaborated above, PPME provides two kinds of unary expressions, namely unary
arithmetic expressions and unary logic operations. The unary arithmetic operations are
only defined for expression of a numeric type, i. e., τ ∈ {Integer,Real}. Whereas the
unary minus operator does not change the type of the expression (4.8), the resulting
type of the square root operation is always a Real (4.9).

Γ ` e : τ τ ∈ {Integer,Real}
Γ ` −e : τ

(4.8)

Γ ` e : τ τ ∈ {Integer,Real}
Γ ` √e : Real

(4.9)

On the other hand, unary logic operations are only defined for expressions of type
Boolean. The result of negating a boolean expression is again a truth value (4.10).

Γ ` e : Boolean

Γ `!e : Boolean
(4.10)

The following explanations address binary operations in PPME. A binary expression
is characterized by the operation and its two subexpressions.
We begin with the assignment expression which denotes the assignment of an ex-

pression e to a variable x. The premise for this expression is that the type τ ′ of the
assigned expression e is compatible with the variable type τ , i. e., τ ′ ≤ τ , τ ′ is a subtype
of τ . The resulting type of the assignment is then the variable type τ (4.11).

Γ ` x : τ Γ ` e : τ ′ τ ′ ≤ τ
Γ ` x = e : τ

(4.11)

Going over the binary operations available in PPME, recall the three groups of operations:
arithmetic, logical, and relational operations. We begin with the type rule for logical
operations (4.12) as it is the most simple one. Both subexpressions e1 and e2 have to
be of type Boolean, and the result of a logical operation is again a logical value.

Γ ` e1 : Boolean Γ ` e2 : Boolean

Γ ` e1 ⊗ e2 : Boolean
where ⊗ ∈ BinOplog (4.12)

Similarly, the result of a relational operation is a logical value as well. However, the left
and right side of a relation can have arbitrary types as long as they are comparable. In
order to infer the resulting type of relational operations, it has to be known which types
are comparable. With a look at the types defined in PPME, full comparability is only
given between the numeric types Integer and Real. We denote comparable types by
τ1 ⊥ τ2, meaning that instances of the types τ1 and τ2 are comparable.

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` e1 ⊗ e2 : Boolean
where ⊗ ∈ BinOpcomp, τ1 ⊥ τ2 (4.13)

37

For binary arithmetic operations the general type rule (4.14) can be given. It states that
the type of the operation ⊗ is dependent on the types of the subexpression e1 and e2 and
the operation itself, i. e., it is overloaded for different operand types. We use τ⊗(τ1, τ2)
to denote the type resolution for the given operation and subexpression types.

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` e1 ⊗ e2 : τ
where ⊗ ∈ BinOparith, τ = τ⊗(τ1, τ2) (4.14)

This type resolution for a specific operator ⊗ can be notated in a table. Tables 4.3
to 4.6 show the inference tables for the arithmetic operations in PPME. In the tables,
abbreviated forms for the types are used. Additionally, we use ↑ (τ1, τ2) to denote the
least common supertype of τ1 and τ2. Note that the type-inference for the element
types of vectors, fields, and properties is deferred to another type check τ⊗. This design
decision reflects the mathematical nature of the operation, e. g., when multiplying a
scalar value with a vector. Moreover, note that not all combinations of operand types yield
a resulting type. The consequences of such undefined operation types are discussed in
Section 4.1.3.

As elaborated above, PPME provides access operations for the container types. The
operations always depend on the component type of the accessed structure and require
an expression of type Integer as positional index. Therefore, the type rules for the
container types look similar to each other. Equations (4.15) and (4.16) show the rules
for access operations on the base container types vector and matrix. Accessing a
one-dimensional vector requires one index expression n, whereas accessing a two-
dimensional matrix requires two index expressions n and m. To further improve the
handling of vectors and matrices, bound checks for index expressions can be added to
PPME.

Γ ` v : V ector〈τ〉 Γ ` n : Integer;n ≥ 0

Γ ` v[n] : τ
(4.15)

Γ ` v : Matrix〈τ〉 Γ ` n,m : Integer;n,m ≥ 0

Γ ` m[n][m] : τ
(4.16)

Similarly, particle-access operations are resolved. Recall that particle access is denoted
by the arrow operator→, and thus p→f means the access of f on p. For scalar fields
and properties, the return type is equal to the type of the field or properties. In case that
the field or property is non-scalar, the return type is a vector derived from the original
structure. Equations (4.17) and (4.18) show the rules for accessing a field or property
E〈τ, n〉 with type τ and dimension n defined on the particle p.

Γ ` p : Particle Γ ` f : E〈τ, 1〉
Γ ` p→ f : τ

(4.17)

Γ ` p : Particle Γ ` f : E〈τ, n〉, n ≥ 2

Γ ` p→ f : V ector〈τ〉
(4.18)

(where p ∈ ps : ParticleList, E is a field or property defined on ps)

In consequence, access to elements of non-scalar fields and properties (where dimen-
sion n ≥ 2) is simply an access to a vector. The following rule illustrates this inference.

Γ ` p→ f : E〈τ, n〉 n ≥ 2 Γ ` i : Integer

Γ ` (p→ f)[i] : τ

38

τ+(τ1, τ2)
τ−(τ1, τ2) I R V 〈X〉 F 〈X,n〉 P 〈X,n〉

I I R V 〈↑ (I,X)〉 F 〈↑ (I,X), n〉 P 〈↑ (I,X), n〉
R R R V 〈↑ (R,X)〉 F 〈↑ (R,X), n〉 P 〈↑ (R,X), n〉

V 〈Y 〉 V 〈↑ (Y, I)〉 V 〈↑ (Y,R)〉 V 〈↑ (Y,X)〉 — —
F 〈Y,m〉 F 〈↑ (Y, I),m〉 F 〈↑ (Y,R),m〉 — F 〈↑ (Y,X), n〉† —
P 〈Y,m〉 P 〈↑ (Y, I),m〉 P 〈↑ (Y,R),m〉 — — P 〈↑ (Y,X), n〉†

† if n = m
I = Integer, R = Real, V 〈X〉 = V ector〈X〉, F 〈X,n〉 = Field〈X,n〉, P 〈X,n〉 = Property〈X,n〉.

Table 4.3.: Type inference table for the binary multiplication operators + and −.

τ∗(τ1, τ2) I R V 〈X〉 F 〈X,n〉 P 〈X,n〉
I I R V 〈↑ (I,X)〉 F 〈↑ (I,X), n〉 P 〈↑ (I,X), n〉
R R R V 〈↑ (R,X)〉 F 〈↑ (R,X), n〉 P 〈↑ (R,X), n〉

V 〈Y 〉 V 〈↑ (Y, I)〉 V 〈↑ (Y,R)〉 — — —
F 〈Y,m〉 F 〈↑ (Y, I),m〉 F 〈↑ (Y,R),m〉 — — —
P 〈Y,m〉 P 〈↑ (Y, I),m〉 P 〈↑ (Y,R),m〉 — — —

I = Integer, R = Real, V 〈X〉 = V ector〈X〉, F 〈X,n〉 = Field〈X,n〉, P 〈X,n〉 = Property〈X,n〉.

Table 4.4.: Type inference table for the binary multiplication operator ∗.

τ/(τ1, τ2) I R V 〈X〉 F 〈X,n〉 P 〈X,n〉
I R R V 〈τ/(I,X)〉 F 〈τ/(I,X), n〉 P 〈τ/(I,X), n〉
R R R V 〈τ/(R,X)〉 F 〈τ/(R,X), n〉 P 〈τ/(R,X), n〉

V 〈Y 〉 V 〈τ/(Y,R)〉 V 〈τ/(Y,R)〉 — — —
F 〈Y,m〉 F 〈τ/(Y,R),m〉 F 〈τ/(Y,R),m〉 — — —
P 〈Y,m〉 P 〈τ/(Y,R),m〉 P 〈τ/(Y,R),m〉 — — —

I = Integer, R = Real, V 〈X〉 = V ector〈X〉, F 〈X,n〉 = Field〈X,n〉, P 〈X,n〉 = Property〈X,n〉.

Table 4.5.: Type inference table for the binary division operator /.

τab(τ1, τ2) I R V 〈X〉 F 〈X,n〉 P 〈X,n〉
I I R — — —
R R R — — —

V 〈Y 〉 V 〈τab(Y, I)〉 V 〈τab(Y,R)〉 — — —
F 〈Y,m〉 F 〈τab(Y,R),m〉 F 〈τab(Y,R),m〉 — — —
P 〈Y,m〉 P 〈τab(Y,R),m〉 P 〈τab(Y,R),m〉 — — —

I = Integer, R = Real, V 〈X〉 = V ector〈X〉, F 〈X,n〉 = Field〈X,n〉, P 〈X,n〉 = Property〈X,n〉.

Table 4.6.: Type inference table for the exponentiation operation ab.

39

In mathematics, a differential operator can be seen as an abstract operation that takes
a function and returns another function. In PPME, we focus on discretized differential
operators, so that they have a meaning on a discretized grid. Furthermore, the occur-
rences of differential operators in PPME are restricted to take fields with numerical type
as operand. Under this assumption, the following type rule (4.19) is used to model the
behavior of differential operators such as the Laplacian. The general output type for
differential operators is real.

Γ ` D : DiffOp Γ ` e : Field〈τ, n〉
Γ ` D(e) : Field〈Real, n〉

(4.19)

Equations (4.5) to (4.19) specify the type rules for valid and well-formed expressions.
Given these rules and their implementation in PPME, MPS is able to infer and check
types in a simulation program. Section 4.1.3 elaborates what happens to non-well-
formed, erroneous expressions and how they are communicated to the developer. Finally,
Section 4.1.4 provides more information on how the previously defined type rules are
implemented in PPME using they type system language aspect of MPS.

4.1.3. Typing Errors

As aforementioned, all expressions matching one the rules presented above is well-
formed and can be typed by the system. However, it might occur that a user enters
a faulty expression for which a type cannot be inferred, yielding a typing error. In this
case, PPME has to communicate the error to the developer and provide meaningful
information on where the error is located. In the following, the process of identifying
typing errors and reporting them to the developer is discussed.
A common approach for catching typing errors is to introduce an error type as the

result of non-well-formed expressions [Plo81; Plo04]. For this purpose PPME uses the
RuntimeErrorType provided by MPS which can hold further information on the cause
and location of the error. The error occurs at the editor’s runtime, but marks a static
error in the simulation code. It contains a references to the node which caused the error,
and an additional error message which is presented to the developer to guide him or her
to resolve the issue.
In the editor, typing errors are indicated by red error marks, similar the ones known

from classical syntax checks. Hovering the mouse cursor over the erroneous node
will show the error message in a pop-up window, helping the developer correcting the
expression. In case MPS is not able to infer the type of an expression, e. g., because the
type of one or more subexpressions is never concrete and thus cannot be determined, it
indicates a type warning using the common orange warning marker. Note, however, that
in most cases this indicates a problem with the type system implementation rather then
with the code.

There are different causes for typing errors. The first occurs when types are incompat-
ible to each other, e. g., when checking the subtyping rule in an assignment expression
(cf. Rule (4.11)) or the comparability of two types for a relational expression (cf. Rule
(4.13)). Generally speaking, it all falls back on operators not being defined for specific
operand types. To cite an example, the exponentiation of a scalar with a vector is not
a meaningful mathematical operation and yields to typing error in the exponentiation
expression. Finally, errors might be propagated to invalidate the parenting expression.
Remember the resolution table 4.3 for addition and subtraction. Given two vectors,
v1 : V ector〈Real〉 and v2 : V ector〈Boolean〉, the addition of the two vectors v1 + v2

40

depends on the resolution of τ+(Real,Boolean) which is not defined. This error is
propagated back up to the vector addition and reported to the user.
These observations lead to the following error rules for unary and binary operations.

We have generalized the type resolution for unary operations 	 in order to use a similar
notation. A typing error is indicated by E. For unary operations 	 the typing depends on
the operation and its operand. τ	 yields an error E in the cases that are not defined in
the typing rules, e. g., when using a unary arithmetic operation on truth values.

Γ ` e : τ

Γ ` 	(e) : E
if τ	(τ) = E (4.20)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` e1 ⊗ e2 : E
if τ⊗(τ1, τ2) = E (4.21)

With these remarks on typing errors we conclude the formal part on type rules in PPME.
Section 4.1.4 addresses their implementation using the language aspects provided by
MPS. For some of the presented type rules, the corresponding implementation is
exemplary discussed.

4.1.4. Implementation in PPME

As pointed out before, any language element can function as a type in MPS. We have
already seen in Section 4.1.1 how types itself are implemented in PPME, building a
hierarchy of types. Nowwe put emphasis on the implementation details for type-inference
rules and the sub-/supertype mechanisms. As the MPS documentation states, a type
system is a part of the language definition which assigns types to the nodes within
the model [MPS15c]. The integrated type system language allows to check certain
constraints or conditions tied to nodes and their types. In particular, the type rules
elaborated above are implemented using the type system language and its concepts of
inference rules (typeof_ rules) and overloaded binary operators (overload_ rules).

We take the type-inference rule (4.14) for binary arithmetic operations as an example
and present the corresponding implementation Listing 4.1. The second line states that
the rule is generally applicable to all binary expressions. Lines 6 to 10 declare the
dependencies on the types of left and right operand. The operation type directive
(l. 12) matches the type resolution τ⊗(τleft, τright), where ⊗ is given by the operation
be, and τleft, τright correspond to leftType, rightType, respectively. In case the
operation type cannot be determined, an error message is generated in accordance
with section 4.1.3 (l. 16). Otherwise, the type of the binary expression be is equal to
(:==:) the operation type opType.

The file overload_BinaryArithmeticOperation in the implementation package
de.ppme.expressions models the type resolution for base types Tbase and base
operations, i. e., the arithmetic operations of addition, subtraction, multiplication, and
division. The resolution table is completed by overloading rules for domain-specific
types, defined in the de.ppme.core package.

The first rule (ll. 3–11) shown in Listing 4.2 is applicable to addition, subtraction, and
multiplication (line 3). It delegates the type-inference to a utility method (line 10) which
basically determines the least common ancestor for the two given types in the type
hierarchy.
The second rule (ll. 13–21) states that dividing two primitive types yields a result of

type Real, as denoted in Table 4.5.
The third rule (ll. 23–39) describes the type resolution for vector-scalar multiplication

and division, i. e., one operand has to be of vector type (l. 24) and the other operand has

41

1 rule typeof_BinaryExpression {
2 applicable for concept = BinaryExpression as be
3 overrides false
4
5 do {
6 addDependency(be.left);
7 addDependency(be.right);
8
9 when concrete (typeof(be.left) as leftType) {

10 when concrete (typeof(be.right) as rightType) {
11 node<> opType = operation type(be, leftType, rightType);
12 if (opType.isNotNull && !opType.isInstanceOf(RuntimeErrorType)) {
13 typeof(be) :==: opType;
14 } else {
15 error "Operator ’" + be + "’ cannot be applied to ’" + leftType + "’, ’" +

↪→ rightType + "’" -> be;
16 }
17 }
18 }
19 }
20 }

Listing 4.1: Type inference rule for binary operations.

to be of a plain number type INumber (l. 27). In lines 32 and 33 the involved types are
extracted from the operation expression for further processing. Line 34 delegates the
type resolution to the application of the operation to the vector’s elements to determine
the component type of the resulting vector. Again, in case the operation type cannot be
inferred by the system, the user is alerted by an error message. Otherwise, the resulting
vector type is constructed and returned (l. 38).

The last rule shown (ll. 41–57) defines the type for vector-vector addition and subtrac-
tion. As with the rule before, the inference of the component type is delegated (l. 51)
and in case of success the resulting vector type is constructed and returned.
The remaining rules for domain-specific types look very similar and follow the reso-

lutions defined in Tables 4.3 to 4.6. Being able to translate the formalized type rules
directly into the type system language of MPS allows for a good understanding of the
implementation and provide a flexible scope for type system extensions and refinements.

As mentioned before, another important part of the MPS type system are super-
and subtype relations. When the type system engine solves inequations over types, it
requires information about whether a type is a subtype of another type [MPS15c]. This
is information is given by subtyping rules. One advantage of using MPS is that the type
system engine is able to resolve supertypes automatically. When checking whether some
type A is a supertype of another type B, it applies subtyping rules to B and computes
its immediate supertypes, then applies subtyping rules to those supertypes and so on. If
type A is among the computed supertypes of type B, the check is successful [MPS15c].

1 subtyping rule subtype_integer_real {
2 weak = false
3 applicable for concept = IntegerType as integerType
4
5 supertypes {
6 return <RealType()>;
7 }
8 }

Listing 4.3: Subtyping rule for the immediate supertypes of Integer.

42

1 overloaded operations rules overload_BinaryArithmeticOperation
2
3 operation concepts: PlusExpression | MinusExpression | MulExpression
4 left operand type: <PrimitiveType()> is exact: false use strong subtyping true
5 right operand type: <PrimitiveType()> is exact: false use strong subtyping true
6 is applicable:
7 <no isApplicable>
8 operation type:
9 (operation, leftOperandType, rightOperandType)->node<>

10 Queries.getBinaryOperationType(leftOperandType, rightOperandType);
11 }
12 ---
13 operation concepts: DivExpression
14 left operand type: <PrimitiveType()> is exact: false use strong subtyping true
15 right operand type: <PrimitiveType()> is exact: false use strong subtyping true
16 is applicable:
17 <no isApplicable>
18 operation type:
19 (operation, leftOperandType, rightOperandType)->node<>
20 Queries.getBinaryOperationType(Queries.getBinaryOperationType(leftOperandType, rightOperandType), <RealType()>);
21 }
22 ---
23 operation concepts: MulExpression | DivExpression
24 one operand type: <AbstractVectorType()> is exact: false use strong subtyping false
25 is applicable:
26 (leftOperandType, rightOperandType, operation)->boolean
27 leftOperandType.isInstanceOf(VectorType) && rightOperandType.isInstanceOf(INumber) || rightOperandType.

↪→ isInstanceOf(VectorType) && leftOperandType.isInstanceOf(INumber);
28 }
29 operation type:
30 (operation, leftOperandType, rightOperandType)->node<>
31 node<VectorType> vectorType = leftOperandType.isInstanceOf(VectorType) ? leftOperandType as VectorType :

↪→ rightOperandType as VectorType;
32 node<INumber> numberType = leftOperandType.isInstanceOf(VectorType) ? rightOperandType as INumber :

↪→ leftOperandType as INumber;
33
34 node<Type> dtype = operation type(operation, vectorType.componentType, numberType) as Type;
35 if (dtype.isNull) {
36 return <RuntimeErrorType(errorText: "Operation cannot be applied to operands (could not determine vector

↪→ component type) - vector type: " + vectorType.componentType + ", number type: " + numberType)>;
37 }
38 return <VectorType(componentType: # dtype)>;
39 }
40 ---
41 operation concepts: PlusExpression | MinusExpression
42 left operand type: <AbstractVectorType()> is exact: false use strong subtyping false
43 right operand type: <AbstractVectorType()> is exact: false use strong subtyping false
44 is applicable:
45 <no isApplicable>
46 operation type:
47 (operation, leftOperandType, rightOperandType)->node<>
48 node<VectorType> leftType = leftOperandType as VectorType;
49 node<VectorType> rightType = rightOperandType as VectorType;
50
51 node<Type> dtype = operation type(operation, leftType.componentType, rightType.componentType) as Type;
52
53 if (dtype.isNull) {
54 return <RuntimeErrorType(errorText: "Operation cannot be applied to operands (could not determine vector

↪→ component type) - left: " + leftType + ", right: " + rightType)>;
55 }
56 return <VectorType(componentType: # dtype)>;
57 }

Listing 4.2: Type resolution rules for overloaded binary expressions in de.ppme
↪→ .expressions.

43

Listing 4.3 shows a very simple example, the subtyping rule for Integer, denoting
that it has Real as immediate supertype. The subtyping is strong, i. e., not weak (l. 2),
stating that an integer can always be used instead of a real. This models the fact that an
integer is also a real number. Line 3 states that this rule can be applied to concepts of
type IntegerType. The supertypes block (ll. 5–7) is responsible for building the list
of immediate supertypes. In this case, the only direct supertype RealType is returned.

The rule shown in Listing 4.4 is an example for a more complex rule regarding the type
system engine. Instead of a subtyping rule, a replacement rule is used. Replacement
rules help to solve type-system inequations by removing the inequation in case the rule
is applicable and executing the rule’s body. Usually, the body of a replacement rule will
add new equations and inequations [MPS15c]. The specific rule shown models the
covariant subtyping relation of the vector type, i. e., if A ≤ B for two types A and B
then V ector〈A〉 ≤ V ector〈B〉 (see lines 9 and 15). Similar to the subtyping rule shown
Listing 4.3 a replacement rule is only applicable to specific elements. This restriction is
denoted by line 3, limiting the rule’s scope to type system equations for two vector types,
named left and right.

1 replacement rule vectorType_subtypeOf_VectorType
2
3 applicable for concept = VectorType as left <: concept = VectorType as right
4
5 custom condition: true
6
7 rule {
8 if (left.ndim.isNull) {
9 infer left.componentType :<=: right.componentType;

10 } else if (left.ndim.isNotNull && right.ndim.isNotNull) {
11 int ldim = left.ndim.isCompileTimeConstant() ? left.ndim.getCompileTimeConstant() as Integer : -1;
12 int rdim = right.ndim.isCompileTimeConstant() ? right.ndim.getCompileTimeConstant() as Integer : -1;
13
14 if (ldim == rdim) {
15 infer left.componentType :<=: right.componentType;
16 }
17 }
18 }

Listing 4.4: Replacement rule for capturing covariant subtyping on vector types.

Moreover, the rule is already geared to cover size specifications for vectors, an
improvement recently added to PPME. For reasons of compatibility, the size of the right
type is ignored if the size property of the left type is not defined. One could say the size
information is erased in this case. If the dimension specification ndim of both vectors is
not empty and can be evaluated statically, the vector sizes are compared (ll. 10–16).

4.2. Physical Unit Annotations

Adding a notion of measurement to a programming language benefits software develop-
ment in many ways. Especially in physical science this effect is noticeable. Verifying
dimensional integrity prevents erroneous expressions and equations which are hard
to detect otherwise. Such an additional level of analysis to detect inconsistencies im-
proves the quality of programs in a substantial way. Moreover, units of measurement
annotated to variables and expressions are good documentation for the program itself.
Often, units are either comments in the code or not endorsed at all, which in both cases
means that they are not used to verify the program with all information available. There-
fore, we present a language extension to PPME to support physical-unit annotations in
particle-mesh simulations.
The idea of incorporating physical units of measurement into computer programs

is not new but dates back more than five decades [Che60]. During this period of
time many approaches to this subject were taken. Early work by Karr and Loveman

44

presented a “units calculus”, a method to manage relationships and conversions of units,
to incorporate in programming languages [KL78]. House further develops the ideas of
Gehani of extending an existing language with new type constructs for units, addressing
the concern of static analysis [Hou83; Geh77]. Cmelik and Gehani and Umrigar extended
the idea of units of measure to general dimensional analysis. Dimensional analysis
covers logical classes of units, e. g., distance or mass, meaning that quantities with the
same dimension but different units differ only in a factor. Their work covers dimensional
analysis with C++ at both runtime and compile-time, making extensive use of template
metaprogramming [CG88; Umr94]. Simultaneously, physical-unit extensions to type
systems in functional languages were developed by various authors. Dimensional
analysis fits neatly into the concept of type inference in in these languages, establishing
a base for units and dimensions in functional languages [WO91; Ken94; Ken97; HM95].
More recently, Cook et al. presented an analysis technique checking correctness of
units in program without extending the base language, aiming for a minimal effort of
annotations for a developer [CFH06]. Austin proposed unit annotations for matrix and
finite element calculations [Aus06].
However, none of these approaches has stuck out to be a near-optimal solution.

Often, the integration of units into a programming language has flaws. For instance,
framework approaches in object-oriented languages often use abstractions with boxing
and unboxing of quantities and units, implying a runtime overhead for analysis. Voelter
cites some examples for drawbacks of other conventional implementations in the context
of C programs for embedded systems [Voe14]. One approach integrates unit information
in form of comments in the source code which are then processed by external tools to
verify integrity. Obviously, this approach suffers from bad syntactic integration. Moreover,
the external verification tool does not only need a parser for the unit annotations but also
for the C program itself. In contrast to that, macros can be used to incorporate units of
measure for types and values with regard to available units. However, still external tools
are required for compile-time unit checking. In conclusion, Voelter sees the solution in
real language extension of a base language with means to annotate types and values
with unit information.

The strength of PPME and MPS as underlying workbench technology lies in the
modularity and extensibility of languages. This implies that physical units annotations
and dimensional analysis can be implemented as an (optional) language extension for
the simulation language in PPME. The core language is independent of the extension,
meaning that a developer can chose whether to use units in a simulation or not, and
that existing programs can be annotated with unit information subsequently.

In the following, we present a model for unit annotations and the PhysUnits language
extension for PPME. In Section 4.2.1, the concepts of elementary and derived units,
and unit specifications are introduced. Further, we elucidate how the type inference
rules in Section 4.1 are adapted to cover unit annotations. Finally, Section 4.2.2 covers
the technical implementation of the proposed model in PPME.

4.2.1. Units in PPME

Units of measure are an optional feature in PPME which are logically annotated to
types and expression and processed by the type system. They are an additional layer
supplementing the existing type environment with extra information. In the following,
firstly unit declarations for elementary and derived units are presented. These allow
developers to freely define the units and relations among them. Secondly, we show how
unit annotations influence the type system. This includes adaption and overloading of
type rules as well as mechanics for unit inference.

45

Unit Declarations The incorporation of units follows loosely the suggestions by Karr
and Loveman in [KL78]. The developer is free to define the elementary units required for
the specific use case, and derived units for the sake of readability. These declarations
are independent of the language itself, but can be reused among different simulation
programs.

Unit declarations in PPME reside in a special file owned by a model. Each declaration
describes a unit with an identifier <u>, an optional specification <spec>, and an optional
suggestive name <desc>.

<u> := <spec> (<desc>)

A unit declaration without specification is called an elementary unit or base unit as it
cannot be decomposed. We denote the set of all elementary units by E . The following
listing shows two examples for the definition of base units for meter and second, respec-
tively. Often, the base units used in simulations correspond to SI units commonly used
in physical sciences, but other units are possible, e. g., currencies or abstract units of
measure.

m := <no spec> (meter)
s := <no spec> (second)

The specification field is used to define units which are derived from other units, so
called derived units. For instance, a unit to measure velocity, meters per second (mps),
is expressed in terms of the two elementary units defined above (mps = m

s = m · s−1).
mps := m · s−1 (meter per second)

Note that derived units in PPME can be composed from both elementary units and
other derived units by means of multiplication and exponentiation. To cite an example,
given another base unit kg for mass, we can derive Newton N, the unit for force, from
the base units kg, m, and s. Joule J, a derived unit for energy, can then be expressed in
terms of N and m.

kg := <no spec> (kilogram)
N := kg · m · s−1 (Newton)
J := N · m (Joule)

Unit Specifications The unit calculus in PPME works with the units declared by the
user. In order to treat physical unit annotations uniformly over elementary, derived, and
computed units we introduce the notion of unit specifications. A unit specification u ∈ U
has the form

u ::= d | u1 · u2 | un

where d is a declared unit, u1, u2, and u are unit specifications, and n ∈ Z. As mentioned
above, developers can specify their own base and derived units and are not limited to
some predefined set.

In order to perform computations and comparison on units, a uniform representation
of unit specifications is required. Therefore, we introduce the notion of a specification in
base form. A unit specification is in base form if it is a set of base units raised to some
integer exponent where each base unit bi ∈ E occurs at most once.

u := {bn1
1 , b

n2
2 , . . . , b

nk
k }

By construction, there exists a unique base form for each unit specification u. We say
that u is expanded, denoted by due, if all derived units in u are recursively replaced by
their specification, yielding the base form of u. Two unit specifications u1 and u2 are
equivalent, denoted by u1 ≡ u2, if du1e = du2e. We say that the units u1 and u2 match.

46

Unit Inference Rules Physical unit annotations are logically attached to types and
expressions. We utilize the type system engine for unit checking and unit inference,
similar to the base type system. Thus, the new type and unit inference rules use the
same notation as in Section 4.1. The unit calculus is only responsible for computation
and inference of units. The type inference is usually deferred to the original type system.

Given a type τ and a unit specification u, we denote the annotated type by
τ̂ = [τ ;u]

We say that τ is the primitive type of the annotated type τ̂ . An expression e with primitive
type τ and unit specification u is then denoted using e : [τ ;u].

The annotation of unit information to types or literal expressions is denoted by braces.
τ{u} : [τ ;u] e : τ 7→ e{u} : [τ ;u]

This allows for variable initializations such as integer{s} t = 10{s}, where the
original declaration of an integer variable is lifted to have unit information attached.
Additionally, we use an analogous notation to type inference for unit inference for

binary operations, denoted by u = U⊗(u1, u2), meaning that the resulting unit u is
computed from the operands’ units u1 and u2 and the operation ⊗.

Subtyping rules for annotated types are quite simple. We consider an annotated type
τ̂1 = [τ1;u1] to be a subtype of another annotated type τ̂2 = [τ2;u2], denoted by τ̂1 ≤ τ̂2,
if u1 ≡ u2 and τ1 ≤ τ2, i. e., if the units match and the primitive types fulfill the subtype
relation. Moreover, each annotated type is a subtype of its primitive type, [τ ;u] ≤ τ .

The type inference rules of section 4.1.2 have to be adapted to deal with unit specifi-
cations. In the following, the necessary extensions to the type system are presented.
We start with the declaration of variables with attached unit information. As mentioned
before, types can be annotated with unit information to form an annotated type. A
variable declaration with initialization requires to the annotated units u and u′ of the
variable type and the assigned expression to be equivalent. The type check, τ ′ ≤ τ , is
left to the type system as before. If the declaration is valid (or the variable is declared
without initialization), the pair 〈x, τ̂〉 is added to the typing environment.

Γ ` e : [τ ′;u′] τ ′ ≤ τ u′ ≡ u
Γ ` τ{u} x = e : Γ ∪ {x = [τ ;u]}

(4.22)

Similarly, the unit specifications have to match in case of a variable assignment. How-
ever, PPME allows to assign unit-annotated expressions to unitless variables, erasing the
unit specification (4.24). This keeps the physical unit annotation backwards compatible
and allows developers to add units to existing programs iteratively.

Γ ` x : [τ ;u] Γ ` e : [τ ′;u′] τ ′ ≤ τ u′ ≡ u
Γ ` x = e : [τ ;u]

(4.23)

Γ ` x : τ Γ ` e : [τ ′, u] τ ′ ≤ τ
Γ ` x = e : τ

(4.24)

Binary operations need the most attention. The unit calculus needs to integrate with
the type system of the base language and provide additional checks and inference rules
for units. For instance, addition and subtraction are only applicable to operands with
matching unit specifications, as depicted in (4.25). The resulting type is defined by the
type resolution for τ⊗(τ1, τ2), and if the units match simply the left operand’s unit is taken.

Γ ` e1 : [τ1, u1] Γ ` e2 : [τ2, u2] u1 ≡ u2
Γ ` e1 ⊗ e2 : [τ, u1]

(4.25)

where ⊗ ∈ {+,−}, τ = τ⊗(τ1, τ2),

47

The restriction of matching units is dropped for multiplication and division. If the operation
is valid for the operand types, i. e., τ⊗(τ1, τ2) 6= E, the resulting unit is calculated for the
specific operation. That implies u = u1 · u2 for multiplication and u = u1

u2
for division.

Γ ` e1 : [τ1, u1] Γ ` e2 : [τ2, u2]

Γ ` e1 ⊗ e2 : [τ, u]
(4.26)

where ⊗ ∈ {∗, /}, τ = τ⊗(τ1, τ2), u = U⊗(u1, u2)

Additionally, multiplication and division by scalars is allowed. Again, the resulting type is
defined through τ⊗(τ1, τ2). The unit specification does not change except for the second
case in (4.28) where the unit-attached operand is the divisor. In this case, the resulting
unit specification is the reciprocal of the unit u2.

Γ ` e1 : [τ1;u1] Γ ` e2 : τ2

Γ ` e1 ⊗ e2 : [τ, u1]
(4.27)

Γ ` e1 : τ1 Γ ` e2 : [τ2, u2]

Γ ` e1 ⊗ e2 : [τ, u]
(4.28)

where τ = τ⊗(τ1, τ2), u =

{
u2 if ⊗ = ∗
u2
−1 if ⊗ = /

Binary operations, where the operand types involve container types such as vectors,
need special treatment. The container will usually have the unit specification annotated at
the component type, the container type itself being unitless. The physical unit engine has
to propagate the units inside the container for inference of the resulting unit specification.
The determination of the resulting container type with annotated component type obeys
similar rules as presented above. The outer type is defined by the type rule deferred
to the type system, and the unit information is propagated into the container type.
Equations (4.29) and (4.30) show the inference rules for the vector type being the left
operand. Analogous to the rules above, the resulting unit is either taken from one
operand (4.29) or is calculated from the specifications and the operation (4.30).

Γ ` e1 : V ector〈τ1〉 Γ ` e2 : [τ2, u2]

Γ ` e1 ⊗ e2 : V ector〈[τ ;u2]〉
(4.29)

where τ⊗(V ector〈τ1〉, τ2) = V ector〈τ〉

Γ ` e1 : V ector〈[τ1;u1]〉 Γ ` e2 : [τ2, u2]

Γ ` e1 ⊗ e2 : V ector〈[τ ;u]〉
(4.30)

where τ⊗(V ector〈τ1〉, τ2) = V ector〈τ〉, U⊗(u1, u2) = u

Exponentiation for a unit-attached expression is only defined for integer exponents in
PPME. The exponent’s value has to be known at compile-time in order to compute the
resulting unit specification. The necessity of the exponent being constant at compile time
stems from design of unit specifications which do not allow for symbolic computations
which would render checks on units undecidable in many cases. However, the limitation
to integer exponents is explained by the current implementation, which only allows for
integer exponents on units. This issue is further discussed in Section 4.2.3.

Γ ` e : [τ, u] Γ ` n : Integer

Γ ` en : [τ, un]
(4.31)

48

Unit Errors Obviously, the addition of physical units bears an additional source of
errors. Analogous to the type system errors presented in Section 4.1.3, the unit calculus
produces error messages for the developer if it finds inconsistencies or cannot resolve
units. For instance, addition and subtraction are only allowed if both operands have unit
attachments and their units are equivalent. Thus, we can derive the following exemplary
error rules for the unit check:

Γ ` e1 : [τ1, u1] Γ ` e2 : τ2

Γ ` e1 + e2 : E

Γ ` e1 : τ1 Γ ` e2 : [τ2, u2]

Γ ` e1 + e2 : E
(4.32)

Besides these errors, which occur because the operation is not defined for some
operands, incompatible units can cause unit errors. Equation (4.23) and Equation (4.25)
will fail if the units of left and right operand do not match.

4.2.2. The PhysUnits Extension

The proposed language extension is implemented in de.ppme.physunits. It fol-
lows closely the model outlined in Section 4.2.1 and is based on the physical units
implementation mps-example-physunits1 for the MPS BaseLanguage. The existing
implementation was adopted to the PPME language for particle-mesh simulations and
the domain-specific concepts.

PhysicalUnitSpecification PhysicalUnitRef

decl : IPhysicalUnit

Exponent

value : int

component

0..n

exp 0..1

Figure 4.3.: Class diagram of the unit specification implementation in PPME.

A PhysicalUnit in PPME is a node with a name and a description implement-
ing the IPhysicalUnit interface. It may also hold a unit specification to define a
new derived unit (PhysicalUnitSpecification). Thus, PhysicalUnit relates to
the unit declaration as presented above. These unit declarations are referenced by
PhysicalUnitRefs, similar to constant references in programs. In Figure 4.3 the
structure of a unit specification implementation is shown. We have modeled the specifi-
cation node using a list of component references, abstracting the multiplication of (base
or derived) units. Each unit reference has an option exponent exp. Please note that
the choice of the exponent being an integer value was made for this proof of concept
implementation. The drawbacks and possible solutions are discussed in Section 4.2.3.
As the physical units are essentially an extension of the type system the main

logic of unit calculations and unit checking is located in type rules. To be specific,
overload_arithmeticOperations is the operator overloading specification that
holds the implementation of most of the presented rules. Listing 4.5 the implementation
for Equation (4.25). First, the annotated specifications are expanded to base form (ll.
12–13). If the types match (l. 14) the inference for the operation type is performed in
the original type system with the operation type(..) directive (l. 15). Finally, the
resulting annotated type is constructed from the operation type and the simplified unit
specification (ll. 16–20). In case the units do not match an error type is returned (l. 22).
1https://github.com/fisakov/mps-example-physunits

49

https://github.com/fisakov/mps-example-physunits

1 operation concepts: PlusExpression | MinusExpression
2 left operand type: <AbstractAnnotatedType()> is exact: false use strong subtyping true
3 right operand type: <AbstractAnnotatedType()> is exact: false use strong subtyping true
4 is applicable:
5 <no isApplicable>
6 operation type:
7 (operation, leftOperandType, rightOperandType)->node<>
8 node<AnnotatedType> leftType = leftOperandType : AnnotatedType;
9 node<AnnotatedType> rightType = rightOperandType : AnnotatedType;

10
11 nlist<PhysicalUnitRef> leftSpec = PhysicalUnitConversion.expand(leftType.spec.component);
12 nlist<PhysicalUnitRef> rightSpec = PhysicalUnitConversion.expand(rightType.spec.component);
13
14 if (PhysicalUnitConversion.matching(leftSpec, rightSpec)) {
15 node<> primtype = operation type(operation, leftType.primtype, rightType.primtype);
16 nlist<PhysicalUnitRef> newSpec = PhysicalUnitConversion.simplify(leftSpec, operation.model.

↪→ nodesIncludingImported(PhysicalUnitDeclarations));
17
18 return <AnnotatedType(
19 primtype: # primtype.copy : Type,
20 spec: PhysicalUnitSpecification(component: # newSpec))>;
21 } else {
22 return <RuntimeErrorType(errorText: "units mismatch: " + leftOperandType + " and " + rightOperandType)>;
23 }
24 }

Listing 4.5: Overloading rule for addition and subtraction of two operands with
attached unit information.

The example uses several calls to the utility class PhysicalUnitConversions
which contains reusable parts of unit calculations. The concept of unit expansion due to
the base form was already explained earlier. Specifications can contain derived units like
mps which are obstructive when comparing units. Therefore, the expand() operation
replaces all derived units, i. e., all units where the specification is not empty, by their
specification until the specification contains only elementary units, i. e., is in base form.

1 public static nlist<PhysicalUnitRef> expand(nlist<PhysicalUnitRef> spec) {
2 list<[node<IPhysicalUnit>, int]> expanded = new arraylist<[node<IPhysicalUnit>, int]>(copy: spec.select({~unitRef

↪→ => [unitRef.decl, unitRef.getExponent()]; }));
3
4 [node<IPhysicalUnit>, int] pair;
5 do {
6 pair = expanded.findFirst({~sp => sp[0] as PhysicalUnit.spec.component.isNotEmpty; });
7 if (pair != null) {
8 expanded.remove(pair);
9 int exponent = pair[1];

10 expanded.addAll(pair[0] as PhysicalUnit.spec.component.select({~unitRef => [unitRef.decl, exponent * unitRef.
↪→ getExponent()]; }));

11 }
12 } while (pair != null);
13
14 sequence<[node<IPhysicalUnit>, int]> expandedSorted = expanded.sortBy({~it => it[0].name; }, asc);
15 sequence<string> names = expandedSorted.select({~it => it[0].name; }).distinct;
16 list<[node<IPhysicalUnit>, int]> expandedFlatten = names.select({~name => expandedSorted.selectMany({~it =>
17 if (it[0].name :eq: name) { yield it; }
18 }).reduceLeft({~a,~b => [a[0], a[1] + b[1]]; }); }).toList;
19 expandedFlatten.removeWhere({~it => it[1] == 0; });
20
21 expandedFlatten.select({~it => it[1] != 1 ? <PhysicalUnitRef(
22 decl: # it[0],
23 exponent: Exponent(value: it[1]))> : <PhysicalUnitRef(
24 decl: # it[0],
25 exponent: null)>; }).toList;
26 }

Listing 4.6: Implementation of unit specification expansion (cf. Listing A.5,
expand())

Listing 4.6 shows the implementation of the expansion operation. First, the input specifi-
cation is translated into a list of pairs, where each pair consists of a unit declaration and
an integer exponent (l. 2). In lines 5–12 derived types are replaced by their specification
iteratively until only base units are left. In the subsequent lines (ll. 14–19) the contained
base units are combined so that each unit occurs at most once in the list. Recall that
the unit specification stands for the multiplication of its contained units. Finally, the
processed list of pairs is transformed back a specification, i. e., a list of unit references.

50

The simplify() operation in Listing 4.7 aims towards cancellation of units, e. g., in
mps · s = m. Like the expansion operation, simplify() works on a list of pairs, which
consist of a unit declaration and an integer exponent. Technically, the unit specifications
are first “demultiplexed” (ll. 10–30), that is the expansion of a unit specification in base
form so that all unit references have |exp| = 1. For instance, u = s2 will be expanded to
u′ = s · s. After this expansion, all units that cancel each other out are removed from the
list, and the remaining unit references are are multiplied, i. e., the exponents are added
up (ll. 35–44).

1 public static nlist<PhysicalUnitRef> simplify(nlist<PhysicalUnitRef> spec, nlist<PhysicalUnitDeclarations> decls) {

8 do {
9 done = true;

10 for (node<PhysicalUnit> cunit : sortedUnits) {
11 if (cunit.spec.component.isEmpty) { continue; }
12
13 sequence<[node<IPhysicalUnit>, int]> cspec = cunit.spec.component.selectMany({~ur => PhysicalUnitConversion.

↪→ demultiplex([ur.decl, ur.getExponent()]); });
14 sequence<[node<IPhysicalUnit>, int]> cspecrecip = cunit.spec.component.selectMany({~ur =>

↪→ PhysicalUnitConversion.demultiplex([ur.decl, -ur.getExponent()]); });
15
16 if (simplified.containsAll(cspec)) {
17 simplified.removeAll(cspec);
18 simplified.add([cunit, 1]);
19 } else if (simplified.containsAll(cspecrecip)) {
20 simplified.removeAll(cspecrecip);
21 simplified.add([cunit, -1]);
22 } else {
23 continue;
24 }
25
26 // start next iteration
27 done = false;
28 break;
29 }
30 } while (!done);

35 list<[node<IPhysicalUnit>, int]> simplifiedFlatten = names.select({~name => simplifiedSorted.selectMany({~it =>
36 if (it[0].name :eq: name) { yield it; }
37 }).reduceLeft({~a,~b => [a[0], a[1] + b[1]]; }); }).toList;
38 simplifiedFlatten.removeWhere({~it => it[1] == 0; });
39
40 simplifiedFlatten.select({~it => it[1] != 1 ? <PhysicalUnitRef(
41 decl: # it[0],
42 exponent: Exponent(value: it[1]))> : <PhysicalUnitRef(
43 decl: # it[0],
44 exponent: null)>; }).toList;
45 }

Listing 4.7: Implementation of the unit simplification simplify(). (cf. List-
ing A.5, simplify())

An important part of the unit calculus in PPME is to decide whether two unit specifica-
tions are equivalent. The matching() function (see Listing 4.8) takes two specifications
as input for which it assumes that they are in base form. The test simply transforms
the input specifications into a list of pairs of declarations and integer exponents (ll. 2–5)
and takes the disjunction of these two lists. If the disjunction is empty, i. e., there are no
elements that occur only in one list, the two types match (l. 7).

1 public static boolean matching(nlist<PhysicalUnitRef> specA, nlist<PhysicalUnitRef> specB) {
2 list<[node<IPhysicalUnit>, int]> unwrappedA = new arraylist<[node<IPhysicalUnit>, int]>(copy: specA.select(
3 {~unitRef => [unitRef.decl, unitRef.getExponent()]; }));
4 list<[node<IPhysicalUnit>, int]> unwrappedB = new arraylist<[node<IPhysicalUnit>, int]>(copy: specB.select(
5 {~unitRef => [unitRef.decl, unitRef.getExponent()]; }));
6
7 unwrappedA.disjunction(unwrappedB).isEmpty;
8 }

Listing 4.8: Implementation of unit matching in PhysicalUnitConversions
(cf. Listing A.5, matching()).

51

Integration in the Lennard-Jones Case Study We want to conclude this section with
the integration of unit annotations into the Lennard-Jones case study. Figure 4.4 shows
the actual unit declarations and annotations in the editor. With the annotations in place,
the type checker is able to detect inconsistencies and report unit errors to the developer.

Figure 4.4.: (Left) declaration of physical units for the Lennard-Jones case study.
(Right) unit annotations on particle properties in the Lennard-Jones
simulation program.

Given the specifications as above (plus delta_t being of type [real, s]), the following
expression is verified to match the type and unit requirements.

p→pos = p→pos + p→v * delta_t + 0.5 * p→a * delta_t2

Indeed, the assignment requires the right-hand side to be of type V ector〈[real,m]〉. The
sum consists of the three parts which all have to be of the result type V ector〈[real,m]〉
according to Equation (4.25). In fact, p→pos trivially has the right type. For the second
summand, we notice that the multiplication of velocity and time yields m · s−1 · s = m.

p→ v : V ector〈[real,mps = m · s−1]〉 delta_t : [real, s]

p→ v ∗ delta_t : V ector〈[real,m]〉

Finally, for the third summand the the multiplication of acceleration and time squared
yields m · s−2 · s2 = m as well.

0.5 : real p→ a : V ector〈[real,m · s−2]〉 delta_t2 : [real, s2]

0.5 ∗ p→ a ∗ delta_t2 : V ector〈[real,m]〉

4.2.3. Evaluation of the Physical Unit Extension

The PhysUnits extension is a proof of concept incorporation of units of measure into
PPME. Although the current status of the implementation is not feature complete, it
already offers benefits in the development and debugging of simulation programs to
improve quality and documentation. The annotation of physical units to data types as a
modular language extension enables first-class support for units directly integrated in
the type system. Moreover, it provides an additional abstraction without runtime cost
for unit checking, paving the way for more sophisticated dimensional analysis. The
unit information is only attached in the editor, where it is used for static analysis. Unit
annotations are discarded during code generation, thus having no influence on the
runtime of the simulation.
While supplying the developer with a powerful framework for simulation programs

in physical sciences, the full freedom of specification is retained by the user. Unit
declarations are not limited to some predefined set but can be freely chosen depending
on the use case. Custom derived units, tailored for a specific domain, allow for concise
notations and better readability.
We have shown that the implementation in the current state is powerful enough to

fully annotate the Lennard-Jones case study with unit information. The successful unit

52

check confirms the correctness of the implementation with regard to physical dimensions.
Moreover, the unit annotations serve as in-line documentation. The purpose of particle
properties such as velocity or acceleration is not only stated by a textual description but
actually integrated into the type checking mechanism.

Open Tasks However, de.ppme.physunits has some pending issues. First, unit
specifications are modeled using unit references with integer exponents. This choice for-
bids non-integer exponentiation with units as well as the square root operation. Instead,
the system should use rationals as exponents in unit specifications, as suggested in Fig-
ure 4.5. Using rationals is a sensible compromise between accuracy and expressiveness.

PhysicalUnitSpecification PhysicalUnitRef

decl : IPhysicalUnit

Exponent

num : int
denom : int

component

0..n

exp 0..1

Figure 4.5.: Suggestion for an improved model of physical-unit specifications
using unit references with rational exponent.

A second unimplemented feature are unit conversions and metric prefixes, that is, the
automatic conversion of quantities by factors. The need for this arises from different
measuring systems on the one hand, and the metric prefixes on the other hand. Differing
systems of measurement use diverse units for the same class of measure, e. g., foot
and meter both depicting a length. The unit engine should be able to detect compatibility
of units within some class and infer the correct conversion by a factor. Similarly, with a
list of available prefixes and corresponding factors conversions between cm and m can
be left to the system.

Finally, the unit engine might be generalized so that overloaded operation rules can be
simplified. Given an implicit conversion e : τ 7→ e : [τ,1] which adds a unitless annotation
to some expression, the unit engine can assume to always deal with annotated types.
Thus, case distinctions for operations where only one or both operands have unit
annotations can be dismissed in favor of a uniform unit resolution rule.

53

5. Numerical Optimizations
Applications in the fields of science and engineering often depend on floating-point
arithmetic in calculations to approximate real arithmetic. As numerical operations are
such an essential part of scientific computations they are a common target for opti-
mizations. In many cases, program transformations on loops are used to find a good
space-time-tradeoff and improve data locality. Examples for such transformations are
loop fusion, splitting, and unrolling [LW91; Lup+15].

In this work, we focus on numerical optimizations based on transformations of floating-
point expressions. These can be used to improve a program’s performance, its accuracy,
or both. Such optimizations often rely on an abstract semantic for the arithmetic expres-
sions. The abstract semantic governs program transformations and ensures semantic
equivalence of the resulting program. It allows to build up equivalent graphs and inspect
them with regard to the desired property, e. g., accuracy or performance. However,
a naïve implementation of a search over all equivalent expressions would result in a
combinatorial blowup, as pointed out by Ioualalen and Martel [IM12].

Section 5.1 introduces the notion of (abstract) program equivalence graphs as a founda-
tion for numerical transformations. It shortly explains the characteristics of floating-point
operations and describes the principles of equivalence graphs for efficient search algo-
rithms. In section 5.2, a tool for for automatic improvement of floating-point accuracy
is integrated into PPME in order to help the developer find problematic arithmetic ex-
pressions and improve their computation. It uses a database of applicable rules and
a heuristic to build a search space and find an improved computation scheme for a
given floating-point expression. Contribution [C3], the investigation and evaluation of
numerical optimizations, is addressed by integrating the external tool and elaborating its
impact on the implemented case studies.

5.1. Program Equivalence Graphs

The notion of an Abstract Program Equivalence Graph (APEG) denotes an intermedi-
ate representation to describe a large set of equivalent expression efficiently [IM12].
APEGs are inspired by the Equivalence Program Expression Graphs (EPEGs) inter-
mediate representation which is used to represent equivalent versions of imperative
programs [Tat+11]. EPEGs were originally defined to model the effects of different
optimization stages, i. e., program transformations, in a non-destructive way. Instead of
using the result of one transformation as input for the next phase, the possible trans-
formations are maintained as equality information on the intermediate representation
(IR).

55

Based on the idea of exploring equivalent rewrites, Ioualalen and Martel aim to provide
a tool for automatic improvement of accuracy of expressions at compile time. Therefore,
they propose an approach in two phases. The first phase is the construction of the
search space of equivalent expressions. In the second phase, the constructed space is
explored with regard to some metric to find a replacement for the original expression
with better (ideally, the best) accuracy.

The remainder of this sections is structured as follows. Firstly, we present the formal
definition of an APEG in section 5.1.1, introducing equivalent nodes classes and abstrac-
tion boxes in the IR. Secondly, the construction of APEGs from an initial expression is
elucidated in section 5.1.2. Finally, section 5.1.3 covers the exploration of the originating
graph.

5.1.1. Formal Definition

In general, the problem with equivalences for arithmetic expressions is the exponential
blowup, even for small expressions. For instance, a sum of ten terms yields almost 40
million evaluation schemes. Thus, APEGs are designed to represent an exponential
set of equivalent expressions in polynomial space. However, it should be noted that not
all equivalent expressions are covered due to a polynomial under-approximation in the
APEG construction.

An APEG is always based on some initial expression e and forms an abstract represen-
tation of an exponential number of equivalent expression in polynomial size. It contains
usual arithmetic operators (like +, ×, or−), constants, and variables with a range interval
provided by the user (e. g., [3.14; 3.15]). Throughout the paper only unary and binary
operators are considered. The syntax tree of the expression is extended by means to
describe equivalences of nodes in the tree. Therefore, two particular extensions were
made to classical syntax trees.

Classes of Equivalent Nodes Each node in the APEG can be attached with alterna-
tives that are equivalent with respect to certain equality relations B= {Bi, 1 ≤ i ≤ n}.
B-equality of two expressions e1 and e2 is defined via the transitive reflexive closure of
these binary relations ([IM12, Def. 1]). To achieve mathematical equivalence, B is often
defined as (a subset of) the rules on real arithmetic, i. e., associativity, commutativity, etc.
This implies that nodes in a fully expanded APEG are classes of expressions equivalence
with regard to B. To keep the space requirement small common parts in expression are
reused across an APEG.

Figure 5.1.: (Left) Syntactic tree of the expression e. (Middle) APEG built with
associativity. (Right) APEG built with product propagation and reuse
of sub-expressions [IM12, Figures 1–3].

Figure 5.1 illustrates the enrichment of the syntax tree of an expression
e = ([3.14; 3.15] + (2.62 + 8.62))× 2.0− 7.61

with rules of associativity and product propagation. In the second graph an equivalent
expression for the addition is found through associativity and is attached to original

56

node, forming an equivalence class (indicated by the dashed ellipse). In the third graph,
product propagation was used to find an equivalence for the multiplication node. Note
that the common part (2.62 + 8.62) occurs only once in the APEG.

Abstraction Boxes Abstraction boxes are abstractions of sub-trees where the same
operator is uniformly applied to a set of sub-expressions. The abstraction box is a
placeholder for all possible parsings that can be obtained for the sub-expressions and
the specific operator. Given the box +, (a, b, c) , the abstraction stands for every possible
way to sum the values for a, b, and c. This approach allows for space efficiency whilst
retaining expressiveness of an exponential number of equivalent expressions in the
APEG.

Figure 5.2.: Enrichment of an APEG with abstraction boxes [IM12, Figure 4].

The APEG in fig. 5.2 contains two abstraction boxes (rectangles with double outline).
In this case, the boxes represent all summation schemes for the box elements which
are yielded by the equivalent transformations, i. e., associativity and commutativity of
addition.

5.1.2. Construction

As stated above, APEGs are built upon an initial expression e. Construction transforma-
tions are used to expand the initial syntax tree by attaching new nodes to equivalence
classes with respect to B and grouping sub-expressions into abstraction boxes. These
transformations only add nodes or boxes but never discard elements from the graph.
Both transformations, homogenization and expansion, are designed to be executed after
one another.

Homogenization In order to cover as many expressions with abstraction boxes as
possible (i. e., produce the largest abstraction boxes) the notion of homogeneous expres-
sions is useful. An APEG is fully homogeneous if it consists only of variables or constants
and some symmetric binary operator ∗, e. g., e = a + (b + c) is fully homogeneous.
Partial homogeneity is a weaker formulation as it only requires the APEG to contain
a fully homogeneous sub-expression where the operands are variables, constants, or
sub-expressions. For instance, e′ = ((a × b) + (c + d)) × e is partially homogeneous
where e1 + (c+ d) is a fully homogeneous sub-expression of e′ for e1 = a× b.

The goal of homogenization transformations is to add new nodes to the APEG to
introduce homogeneous sub-expressions. The exact set of applicable transformations
depends on the operator to evaluate. Ioualalen and Martel exemplarily describe the
homogenization for multiplication and the unary minus operator.

57

Expansion Expansions functions aim to insert abstraction boxes with asmany operands
as possible. Therefore, expansion is performed on each node of an APEG recursively.
Ioualalen and Martel describe three types of expansion functions, horizontal expansion,
vertical expansion, and box expansion. Horizontal expansion splits a homogeneous
sub-tree and and introduces a new abstraction box for the leaves of the left or right part.
Thus, for each binary operator there are two abstraction boxes that can be built.

Figure 5.3.: (Top) Horizontal expansion of the left part of an addition. (Bottom)
Vertical expansion of the sub-expression containing l1 . . . lk [IM12,
Figure 7].

Vertical expansions splits a homogeneous part at a sub-expression. Similarly to
the horizontal expansion, an abstraction box can be built for the leaves of the split-off
sub-expression or the leaves of the enclosing expression. Figure 5.3 illustrates one
possible expansion for both horizontal and vertical expansion.

Finally, box expansion is used to merge nested abstraction boxes with the same oper-
ator. The box expansion step grows the abstraction boxes produced through horizontal
and vertical expansion.

5.1.3. Exploration

A fully expanded APEG represents an exponential amount of equivalent expressions.
Once this search space is constructed for a given expression e it can be explored to find
a better expression with respect to some optimization objective. The approach described
by Ioualalen and Martel aims to minimize the roundoff error of an expression and thus
improve the accuracy.

The minimization problem is defined over a custom arithmetic where error terms are
attached to the floating-point values [IM12; Mar09]. These error terms describe the range
in which the rounding error lies. Ioualalen and Martel advise to use an external library for
error computation with arbitrarily large precision. In particular, a value x in the arithmetic
is represented as x = (fx, ex) where fx is the floating-point number approximating x and
ex is the rounding error of this approximation. Furthermore, ◦(v) denotes the rounding
of the value v, and ε(v) denotes the roundoff error occurring when rounding v to ◦(v).
Thus, with ε(v) = v − ◦(v), the error evaluation of the basic operations is as follows:

x+ y = (◦(fx + fy), ex + ey + ε(fx + fy)) (5.1)

For multiplication, (fx + ex)× (fy + ey) is expanded for the error calculation:

x× y = (◦(fx × fy), fx × ey + fy × ex + ex × ey + ε(fx × fy)) (5.2)

58

Note that error terms are propagated among computations. Other operators, such as
division and square root, are developed using power series to compute the propagation
of the error [Mar06]. In general, the quality of the determined error terms influences the
search space exploration.
For single expressions the computation of errors is simple, and finding the one with

minimal error among a set of expressions is trivial. However, the concept of equiva-
lence classes can cause combinatorial explosion when evaluating operations ∗(p1, p2),
where p1 and p2 are equivalence classes. Therefore, Ioualalen and Martel restrict the
exploration to a limited depth search. The evaluation of an expression is conducted
considering only the best evaluation of it’s sub-expressions (local choice strategy). For
abstraction boxes a greedy algorithm is used to synthesize an accurate, yet not necessar-
ily optimal, expression. The algorithm greedily merges expressions ∗(pi, pj) with minimal
error into a new term pij , removing the expression. The final node left corresponds to
the root of the synthesized expression for the box.
Overall, this techniques allows to explore the search space spanned by an APEG in

polynomial time. Experimental results of Ioualalen and Martel haven shown improve-
ments in accuracy by an average of 50% [IM12].

5.2. Herbie — Automatically Improving Floating-Point
Accuracy

The major drawback of techniques for mitigating rounding errors in floating-point expres-
sions, as described in the numerical methods literature, is that they have to be applied
manually. Typically, these techniques require a deeper understanding of the details of
floating-point arithmetic as well as mathematical expertise.

Herbie is an attempt to enable automatic floating-point arithmetic improvements by dis-
covering the expression rewrites experts find and perform to increase accuracy [Pan+15].
It uses a heuristic search to estimate and localize rounding errors by using sample points.
To improve a given expression, it applies a database of rules, takes series expansions,
and combines improvements for different input regions.

Figure 5.4.: Herbie’s process for improving program accuracy [Pan+15, Fig-
ure 1].

Figure 5.4 illustrates Herbie’s process for improving a program’s accuracy [Pan+15].
After initialization, the tool localizes floating-point inaccuracies through sample point
computations. Once inaccuracies are found, Herbie attempts to avoid them by modifying
the program using rewrites. The error elimination is carried out by applying rewrite
rules describing basic arithmetic artifacts. Thereafter, Herbie performs a simplification
pass to cancel terms with the general goal to produce a smaller, equivalent program. In
case rounding errors are detected for inputs around zero or near infinity for which no
better program could be found using rewrite rules, Herbie performs series expansions to
approximate the result. This often helps to avoid over- and under-flows.

59

This core loop of actions is iteratively executed, where each iteration yields candidate
programs. Between iterations the set of candidates is pruned to keep only the programs
which achieve best accuracy at least at one sample point. As in most cases not a
single candidate program is most accurate for all input points, Herbie assembles a final
program in a regime-inference pass. Regimes correspond to input regions for which
different expressions are most accurate. In order to prevent over-fitting, regime inference
has to find a trade-off for the number of branches to apply. Hence, Herbie combines
several candidate programs to achieve an improvement of accuracy over all input points.

5.2.1. Integration into PPME

Herbie support is implemented as a plug-in solutionwithin MPS. This enables for hooking
up the external analysis in PPME projects for user selected expressions. Since Herbie’s
analyses are computational expensive, expressions are not inspected automatically
but must be flagged for evaluation by the user. PPME offers an intuitive way to mark
expressions utilizing the context menu when right-clicking on a code fragment. Once all
desired expressions are marked the user can trigger the analysis and transformation
process for the active editor. The result of the external execution is then annotated to
the code fragments.

Requirements We use a develop build version of Herbie1 for the integration. In order
for the plug-in to be able to execute Herbie, the Herbie’s requirements have to be fulfilled.
In particular, this means that Racket 6.4 or higher has to be installed and that Herbie’s
herbie/interfaces/inout.rkt interface has been compiled to a single executable.
Besides that, the plug-in implementation contains all other dependencies for execution.

Settings The Herbie plug-in offers a settings dialog which allows to configure the
plug-in’s behavior as shown in Figure 5.5. It can be found via File > Settings
↪→ > Other Settings > Herbie in the MPS settings. Most importantly, the user
has to select the Herbie executable used for the analyses. The path to the file can
comfortably be chosen using a native dialog for the user’s operating system. Note that
the plug-in integrates seamless with the develop environment.
The advanced settings section provides additional control over Herbie’s behavior.

For instance, the seed value influences the selection of random sample points Her-
bie evaluates candidate programs on. The format for the seed is that of Racket’s
vector->pseudo-random-generator!. Setting the seed explicitly can be used
to make Herbie’s results reproducible between different runs. The number of sample
points determines the number of randomly-selected points annotated expressions are
evaluated on. The default value of 256 give sufficient results for most programs, higher
values for more sample points will slow down Herbie.

The Herbie Executable In its current state, Herbie offers two ways to check expres-
sions for improvements. The first is to run a full-fledged analysis on a series of problem
descriptions. This will process all specified problems at once and will produce an HTML
output report. Besides general information on input/output error and improved regime
the results are visualized with an arrow notation (showing the improvement in accuracy
in bits) and graphs for the error distribution. The information is stored in an accessible
form as JSON data, the visualizations are produced in PNG format.
1https://github.com/uwplse/herbie, commit hash f6ebaea

60

https://github.com/uwplse/herbie
https://github.com/uwplse/herbie/commits/f6ebaea

Figure 5.5.: Configuration panel for the Herbie integration in PPME.

Figure 5.6.: Mockup of Herbie’s report integrated into PPME.

61

The second variant is to use Herbie’s command line interface which is called with a
single problem instance. Execution output is written directly to the standard output with
information limited to input/output error and the improved regime. Thus, the interface
is lightweight as it does not produce as detailed reports as the full-fledged analysis.
Furthermore, the interface has to be set up only once and can then be reused for multiple
problem instances, whereas the report generation requires to initialize Herbie anew
before each expression to check. Additionally, usage of the command line interface
prevents problems with file read and write permissions.
Listing 5.1 shows the output structure for some test case. The first line shows the

(pseudo-) random seed used to generate the sample points. Lines two and three show
the input and output error of the floating-point arithmetic compared to the exact result,
respectively. The improved regime for a given input expression will be contained in the
fourth line.

1 ; Seed: #(285197929 1174556670 2847290270 1149214662 2487844612 2858145456)
2 ; Input error: 4.15986215899212
3 ; Output error: 0.0703125
4 (λ (...) (...))

Listing 5.1: Example of Herbie’s command line output.

We decided to use the lightweight interface for the integration into PPME due to
simpler invocation and parsing of the result. In addition, the command line interface is
successfully used for the integration of Herbie into compilers. Both the GHC plug-in2
and the Rust Linter plug-in3 rely on the lightweight interface. This decision allows for a
simple implementation of the processing pipeline. On the other and, it shortcuts issues
with input file generation, parsing the output report and integrating the report fragments.
However, it should be noted that conceptually the full report with its visualization can be
integrated using a similar approach.
Both variants require the input to be in the form of a herbie-test in Racket. The

syntax for a Herbie test case is given as follows:
(herbie-test (<variables>) "<name>" <expression>)

Each test has an arbitrary name field (<name>). Commonly, a combination of filename
and line number of the expression to test is used. Since simulations written in PPME
are no traditional text files using the node id of the root expression to test is a sane
choice. As a benefit, this allows to map a given test case to a specific node in the PPME
program.

Besides the name tag, a Herbie test case is very similar to a pure lambda expression
in Racket

(lambda (<variables>) <expression>)

where all free variables in the expression <expression> are listed in the variables
block <variables>. The free variables of the lambda expressions are the variables
to test in the Herbie execution, i. e., these variables are tested with a series of sample
points.

Generating Herbie Test Cases The user can annotate expressions in the editor
window of PPME to mark them for the next analysis via the intentions dialog (Alt + Enter).
The intention will always annotate the root of the expression the cursor is currently placed
on. A small icon indicates that an expression is marked for analysis.
2https://github.com/mikeizbicki/HerbiePlugin
3https://github.com/mcarton/rust-herbie-lint

62

https://github.com/mikeizbicki/HerbiePlugin
https://github.com/mcarton/rust-herbie-lint

Figure 5.7.: The editor intention to toggle the Herbie analysis on the selected
expression. The icon at the end of the line indicates that the expres-
sions is currently marked for analysis.

Expression nodes are translated into a configuration object (HerbieConfiguration)
by a translator utility class (ExpressionTranslator). In short, all expressions are
transformed into a prefix notation matching the Racket syntax, where operations such
as exponentiation and (square-) roots are translated into the corresponding functions
supported by Herbie.

HerbieConfiguration

id: s tring
expr: s tring
origExpr: node<Express ion>
mapping: map<string, node<Express ion>>

+HerbieConfiguration(id: s tring)
+getHerbieTestString(): s tring

Figure 5.8.: The HerbieConfiugartion class which contains the information
necessary to start the analysis.

At the same time, a variable table of string identifiers pointing to expression nodes
is created for the translated expressions. PPME treats every variable reference and
particle access as an input variable for the test case. All variable and property references
add a mapping from their variable name to themselves. For arrow expressions (access
on particles or particle lists) a (unique) identifier is created, and a mapping from this
identifier to the arrow expression is added to the table.

The configuration class (as shown in Figure 5.8) contains the translated expression
as string expr, a reference to the original expression node and its identifier (origExpr
and id), as well as the variable table mapping. For the expression highlighted in fig. 5.7
the following test case is generated:

(herbie-test (p_pos p_a delta_t p_v)
"2430378650379961582"
(+ (+ p_pos (* p_v delta_t)) (* (* 0.5 p_a) (expt delta_t 2))))

The variable reference delta_t is directly translated to a variable for optimization.
For the particle accesses (p→pos, p→a, and p→v) corresponding identifiers are created
and added to the list of optimization variables. Table 5.1 shows the mappings of PPME
expressions to Herbie notation, where a and b are arbitrary expressions, x is a variable
reference, p is a particle, ps is a particle list, and y is a vector.

The name of the test case is derived from the root expression’s identifier in the program
structure. As described above, the expression itself is translated into prefix notation.
Note that the exponentiation delta_t2 in PPME is translated into a Racket function
(expt delta_t 2).

63

PPME notation Herbie notation
−a (- a)√
a (sqrt a)

x x
p→ pos p_pos
ps→ v ps_v
y[0] y_0

PPME notation Herbie notation
a+ b, a− b (+ a b), (- a b)
a ∗ b, a/b (* a b), (/ a b)
ab (expt a b)
a == b (= a b)
a < b, a > b (< a b), (> a b)
a <= b, a >= b (<= a b), (>= a b)

Table 5.1.: (Left) Translation of unary operators and variable references. (Right)
Translation of binary operators.

Running Analyses Triggering a Herbie analysis will process all annotated expressions
in the active editor. The analysis action can be found in the right-click context menu of
the editor and is labeled “Run Herbie Analysis”. By clicking on the context menu entry
the user starts a series of actions and transformations. Figure 5.9 illustrates how the
involved parts operate with one another with an interaction diagram. The whole process
is steered by HerbieAction. Overall, it is responsible for fetching the nodes to test,
run the analysis on the node, and write the result back to the node.

Expr HerbieAction ExprTranslator HerbieRunner
fetch node to test

exp:node<Expression>

convertExpr(exp)

config:HerbieConfig

run(config)

res:HerbieRunResult

annotate result

Figure 5.9.: Sequence diagram for the execution of a Herbie analysis for a single
expression.

First, the node to test is fetched from the PPME model. From this node a configuration
object (HerbieConfiguration) is created by the ExpressionTranslator utility
class as described in section 5.2.1. The configuration object is used to feed the test case
to Herbie. Responsible for this step is the HerbieRunner which takes the configuration,
runs the Herbie executable with the test case as input, and waits for the process to
terminate. The result of the execution is summarized in a HerbieRunResult object
(see fig. 5.10). The generic design of the execution class (Runner) and the result
container (RunResult) allows to reuse the same setup for other tools by extending the
existing framework.
Given the result object the original expression node is annotated with additional

information, i. e., the input and output error, and the optimized computation regime
for the arithmetic expression. This approach allows to inspect the result of a check
performed by Herbie, and it keeps the original expression in place without modifying it. In
fig. 5.11 the inspection window for an annotated node is shown (Alt + 2). All information
given by Herbie is displayed and the user is able to see the effect of the transformation.
Instead of transforming the original node into target source code the annotated opti-

mization has to be generated. The generators of PPME are responsible for replacing

64

RunResult

-exitCode: int
-delay: long

HerbieRunResult

-inputError: float
-outputError: float
-result: s tring

Figure 5.10.: The HerbieRunResult class and its super class RunResult.
The result of an external Herbie execution is stored in the data
class.

Figure 5.11.: The inspection view on an annotated expression with the results
of a Herbie analysis.

the annotated node by the optimized regime before the text generation phase. Note that
analysis and code generation are separate processes, where the Herbie analysis is one
example for integrating external tools in the simulation development.

Parsing Herbie’s Output Parsing Herbie’s output (see listing 5.1) is necessary to
integrate the result back into PPME. For this purpose, a small utility library called
herbie-parser4 is used. The library consists of an ANTLR 4 grammar from which
lexer and parser for Herbie’s output are generated [Par13], as well as a simple interface
for calling the parser. Moreover, an (empty) visitor class is generated and can be
extended to process the parsed output. Listing 5.2 shows the ANTLR grammar which
describes the syntax of Herbie’s output. The grammar itself is very general and leaves
interpretation of the parsed expression to the application using it.
In PPME, the transformation from Herbie back to the internal format of expres-

sions is handled by HerbieOutputVisitor, an implementation of the visitor class
generated by ANTLR. The visitor basically performs the inverse transformation of
ExpressionTranslator, taking a Racket application and turning it into PPME nodes.
Table 5.2 lists a selection of transformation rules. Some of the arithmetic expression
natively supported in Herbie/Racket do not have a strictly corresponding equivalent in
PPME. For instance, square and cube are translated to generic exponentiation by
factor. Variable occurrences in the Racket output are transformed by using the lookup
table which was generated alongside the test case (refer to section 5.2.1).

4https://bitbucket.org/ppme/herbie-parser

65

https://bitbucket.org/ppme/herbie-parser

1 grammar Herbie;
2
3 expression : constant | if_statement | variable | application ;
4 application : "(" op=expression expression* ")" ;
5 if_statement : "(" "if" condition=expression thenBranch=expression elseBranch=

↪→ expression ")" ;
6 variable : IDENTIFIER ;
7 constant : BOOLEAN | NUMBER ;
8
9 IDENTIFIER : (INITIAL SUBSEQUENT*) | "+" | "-" ;

10 BOOLEAN : "t" | "f" ;
11 NUMBER : SIGN? (UINT | UFLOAT) (E SIGN? UINT)? ;
12
13 fragment INITIAL : LETTER | "_" | "*" | "/" | "<" | "=" | ">" ;
14 fragment SUBSEQUENT : INITIAL | DIGIT | "." | "+" | "-" ;
15 fragment LETTER : [a-zA-Z] ;
16 fragment UINT : "0" | [1-9]DIGIT* ;
17 fragment UFLOAT : DIGIT+ "." DIGIT* | "." DIGIT+ ;
18 fragment E : "e" | "E" ;
19 fragment SIGN : "-" | "+" ;
20 fragment DIGIT : [0-9] ;
21
22 WS : [\t\n\r]+ -> skip ;

Listing 5.2: ANTLR grammar specification for Herbie’s output format.

Herbie notation PPME notation
(+ a b), (- a b) a+ b, a− b
(* a b), (/ a b) a ∗ b, a/b
(square a), (cube a), (expt a b) a2, a3,ab
(sqrt a)

√
a

(= a b), (< a b), (> a b) a == b, a < b, a > b
(<= a b), (>= a b) a <= b, a >= b
x lookup(x)

Table 5.2.: Translation of Herbie output to PPME expressions, where a and b
are arbitrary expressions, and x is a variable.

Recall that Herbie outputs either a single expression optimized for accuracy, or a more
complex regime with conditional branching. The former is a simple replacement for the
right-hand side of the original assignment.
The latter requires to replace the original expression statement with the conditional

regime. Therefore, the conditional branching is translated into if-then-else-statements
in PPME, where each branch contains a single assignment statement for the original
expression. In case the expression to optimize is the initialization of a variable declaration,
the transformation has to ensure that declaration and initialization are split.

In listing 5.3 an exemplary analysis call and its corresponding translation to PPME is
shown. The computed optimizing regime replaces the following assignment statement
of the Lennard-Jones case study:

dF = (24.0 · ε · rpq) · (2.0 ·
σ12

r7spq
− σ6

r4spq
)

Herbie is able to improve the accuracy significantly, reducing the error of 34 bits to slightly
more than 15 bits. The regime intervals depend on the value of rspq , i. e., the squared
distance of particles p and q. For each of the three cases an appropriate optimization
is selected. Most notably, Herbie expands the exponention of sigma to a series of
multiplications in every case.

66

1 (herbie-test (epsilon sigma dF r_pq r_s_pq2)
2 "7068769801678688643"
3 (* (* (* 24.0 epsilon) r_pq) (- (* 2.0 (/ (expt sigma 12) (expt r_s_pq2 7))) (/ (expt sigma 6) (expt r_s_pq2 4)))

↪→))
4
5 ; Input error: 34.03036766696533
6 ; Output error: 15.641861746224407
7
8 (λ (epsilon sigma dF r_pq r_s_pq2)
9 (if (< r_s_pq2 -3.4035520833325653e-94)

10 (* (- (* epsilon 24.0)) (cube (/ (cbrt (* (* sigma (* sigma (* sigma (* sigma (* sigma sigma))))) r_pq)) (cbrt
↪→ (* r_s_pq2 (* r_s_pq2 (* r_s_pq2 r_s_pq2)))))))

11 (if (< r_s_pq2 1.461628127388658e-31)
12 (/ (* (* (* sigma (* sigma (* sigma (* sigma (* sigma sigma))))) r_pq) (* (- epsilon) 24.0)) (* (/ 1 r_s_pq2)

↪→ (* (/ 1 r_s_pq2) (* (/ 1 r_s_pq2) (/ 1 r_s_pq2)))))
13 (* (- (* epsilon 24.0)) (/ (* sigma (* sigma (* sigma (* sigma (* sigma sigma))))) (/ (* r_s_pq2 (* r_s_pq2

↪→ (* r_s_pq2 r_s_pq2))) r_pq))))))

1 Input Error: 34.03037
2 Output Error: 15.641862
3 Optimization:
4 if (r_s_pq2 < -3.4035520833325653E-94) then

5 dF = ((-(epsilon * 24.0)) * (((((sigma * (sigma * (sigma * (sigma * (sigma * sigma))))) * r_pq)1/3) / ((

↪→ r_s_pq2 * (r_s_pq2 * (r_s_pq2 * r_s_pq2)))1/3))3))
6 else
7 if (r_s_pq2 < 1.461628127388658E-31) then
8 dF = ((((sigma * (sigma * (sigma * (sigma * (sigma * sigma))))) * r_pq) * ((-epsilon) * 24.0)) / ((1 /

↪→ r_s_pq2) * ((1 / r_s_pq2) * ((1 / r_s_pq2) * (1 / r_s_pq2)))))
9 else

10 dF = ((-(epsilon * 24.0)) * ((sigma * (sigma * (sigma * (sigma * (sigma * sigma))))) / ((r_s_pq2 * (r_s_pq2 *
↪→ (r_s_pq2 * r_s_pq2))) / r_pq)))

11 end if
12 end if

Listing 5.3: (Top) Herbie call and output. (Bottom) Translated conditional regime
in PPME node annotation.

5.2.2. Discussion

The integration of Herbie into PPME, as presented in section 5.2.1, can be seen as
general instructions for connecting external tools. The framework, consisting of action,
translators, and an execution model, can easily be adapted to other use cases. Since
the implementation is kept in an independent plug-in solution it does not interfere with
the base language. Developers are free to use the extension in their simulations.

Future effort could be put intomore plug-in extensions for external tooling, hence, taking
advantage of existing analysis and optimization programs. As the plug-in integrates
directly with the editor, all domain-specific information about the particle-mesh simulation
is available to them. This may allow for more sophisticated optimizations not only on
single expressions but also across statements, especially over particle loop statements.

Static Analysis Herbie is incorporated as a tool for static analysis of expressions
in PPME. Currently, the program is executed upon explicit user request. Technically,
performing the analysis can be hooked up with the generator phase in MPS so that it is
always executed when generating target source code. We chose manual invocation due
to the runtime of the numerical analysis. For arbitrary complex expression Herbie takes
30 seconds up to several minutes for computing an optimized regime (for instance, the
analysis of the expression in Figure 5.6 took 43 seconds).

A possible solution to reduce the time PPME spends with analysis is to cache already
computed expressions. Optimizations do not need to be recomputed for unchanged
expressions. However, modifying an expression should invalidate the annotation, and
thus register the expression for the next analysis pass. A database could be used to
store a mapping from Herbie test cases to Herbie results with error information and
output regime. PPME should first do a lookup for a test case in the database before it
invokes the tool. The Herbie GHC plug-in5 is following this approach.
5https://github.com/mikeizbicki/HerbiePlugin

67

https://github.com/mikeizbicki/HerbiePlugin

Input Error Output Error

7.1231523 0.08203125

∂c→ U

∂t
= Du · ∇2c→ U − c→ U · c→ V 2 + F · (1.0− c→ U)

< dU_p = D_u∗dU_p − U_p∗ (V_p∗∗2) + F∗ (1 .0_mk−U_p)
−−−
> dU_p = (((constDu ∗ dU_p) − ((U_p ∗ V_p) ∗ V_p)) + ((1 . 0_mk − U_p) ∗ F))

Figure 5.12.: Herbie improvements for GS-01.

Input Error Output Error

2.174412 0.05078125

∂c→ V

∂t
= Dv · ∇2c→ V + c→ U · c→ V 2 − (F + krate) · c→ V

< dV_p = D_v∗dV_p + U_p∗ (V_p∗∗2) − (F+k_ra te) ∗V_p
−−−
> dV_p = (((V_p ∗ (U_p ∗ V_p)) + (V_p ∗ (−(kRate + F)))) + (constDv ∗ dV_p))

Figure 5.13.: Herbie improvements for GS-02.

Accuracy Improvements We investigate the improvements in accuracy for the two
case studies, the Lennard-Jones potential (LJ) and the Gray-Scott reaction-diffusion
system (GS). We annotated several expressions in each program to be analyzed and
optimized by Herbie, and generated the source code with and without taking the optimized
regimes into account.

In the Gray-Scott case study (cf. Section 3.3.2) only the two differential equations
(∂U∂t , GS-01 and ∂V

∂t , GS-02) in the right-hand side definition were tagged for Herbie’s
analysis. Figure 5.12 depicts the accuracy improvements for the two expressions. Each
block shows the input and output error, the original expression, and the difference in
the generated source code. Both expressions had a relatively small input error of seven
and two bits, respectively. Herbie was able to practically remove inaccuracies by simply
expanding and distributing the exponentiation in both cases.

We compared the numerical results for simulations with tend = 4000. The final values
for the fields U and V differed only slightly in the last four to seven decimal places,
which confirms that Herbie’s changes do have an influence on the computations. The
differences are not notable in the visualization of ParaView as shown in Figure 5.14.
However, increasing the runtime may yield a bigger impact of the accuracy improvements.

In the Lennard-Jones example (cf. Section 3.3.1) we annotated four assignment
expression. These were the initial assignment to E_prc (LJ-01), the update of particle
positions (LJ-02), and the assignments to dF and p→E in the particle interaction loop
(LJ-03 and LJ-04). Figures 5.16 to 5.19 present the results for these four expressions.
Overall, Herbie reported a significant improvement for two expressions, and for one
expression the bit error could not be reduced at all. In the following, we elaborate these
results.

Figure 5.16 shows that the improvement for LJ-01 is negligibly small. Herbie suggests
a complex equivalent expression without actually improving the accuracy. In contrast,
the additional square root and exponentiation operations will likely reduce performance.

68

Original Herbie

Figure 5.14.: [LJ] Visual comparison of the concentration of V at t = 2000
generated by ParaView. The small numerical differences are not
visible in the representation.

Hence, a developer would likely exclude this expression from the analysis pass and
discard the optimization. The resulting expression for LJ-02 is remarkable as the
output error is nearly eliminated by simply expanding the exponentiation of delta_t to
multiplication. In practice, this kind of optimization might be caught by modern compiler
techniques. The assignment to dF in LJ-03 has an reported error of 34 bits, which could
be reduced to 15.6 by Herbie. The case distinction branches for very small values of
rspq around zero. Without any further information on value ranges, Herbie removes the
term σ12/r7spq completely. Although such optimizations can be reasonable, the developer
is advised to verify the changes made by Herbie. Similar results occur for the final
optimization of LJ-04, where the term σ12/r6spq is ceased. The reported improvement
reduces the error from 27.2 to 3.6 bits.

Overall, the results suggest that Herbie was able to automatically improve expressions
with numeric instability in the Lennard-Jones case study. However, it has to be noted
that the numerical results after including Herbie’s modifications differ drastically from the
original simulation. The value range for the particle’s velocity decreases by an order
of magnitude, going from v1 ∈ [−600, 600] in the original simulation to v1 ∈ [−40, 40]
after the modifications. Figure 5.15 shows a side by side comparison of the discrepancy
manifested in the visualization output of ParaView. Besides the differences in the data
range, it can be seen that the particles are distributed differently. Similarly, the values
for the particle’s force decrease by two orders of magnitude. So, although Herbie offers
hypothetical accuracy improvements, the actual numerical results turn out to be worse
than the original implementation.

The emphasized differences can be accounted to Herbie’s optimization approach. To
Herbie, all input variables are free to range over the real numbers and the corresponding
optimization problem takes all those possible values into account. Although the values
imported from a control file are unknown at compile-time, they are constant at runtime.
Considering this reduces the degree of freedom of the optimization problem, yielding
more precise solutions. To cite an example, while Herbie found potential optimizations
for LJ-03 and LJ-04, no improvements could be made when replacing the constants ε
and σ with their respective values of the default control file. Thus, developers need to
be aware of external tool’s mechanisms for analysis and program transformations.

69

-2e-10

0

2e-10

"force"_2

-3.72e-10

3.66e-10

Original

-1e-12

0

1e-12

"force"_2

-1.25e-12

1.4e-12

Herbie

Figure 5.15.: [LJ] Visual comparison of the force values f2 at t = 0.2. The value
range differs by two orders of magnitude, as can be seen on the
scale of the data range.

The theoretical potential for improving numerical stability as identified by Herbie is
not reasonable when considering constants and actual variable ranges. From four
analyzed expressions only one (LJ-02) yielded an actual improvement without affecting
the resulting values (4.16 7→ 0.07). Nevertheless, Herbie’s analysis might help developers
detecting potential numerical improvements. In order to reduce the occurrence of false
optimizations, additional range annotations enable a better specification of the free
variables. For instance, the equation of LJ-03 can be annotated with restrictions for rspq ,
σ, and ε.

dF = (24.0 · ε · rpq) · (2.0 ·
σ12

r7spq
− σ6

r4spq
)

where rspq > 0, σ ∈ [10−2, 10−1], ε ∈ [10−14, 10−13]

Herbie’s documentation describes how this information can be passed to the tool [Her16].
For each variable the distribution it is drawn from can be specified. With the following
variable specification in the test case only positive samples are taken for rspq .

(r_s (positive default))

The range annotations work similarly by restricting the default distribution with an upper
and lower bound.

(epsilon (< 1.0E-14 default 1.0E-13))

Given the additional information, Herbie reports an initial error of five bits for the ex-
pression above, and is not able to improve it. This result can ensure developers of the
numerical stability of their programs.
In order to make this feature available in PPME, the analysis plug-in provides the

concept of range annotations. Any expression can be annotated with an interval (cf.
Figure 5.20) appearing as subscript hint ∈[...] in the editor. The interval specification can
be accessed through the inspector view of MPS. We followed the familiar mathematical
notation for intervals, assuming the full range of real values per default. This allows
to provide additional information on the free variables occurring in a Herbie test case.
Figure 5.20 shows the range specifications for ε and rspq . These user annotations are
automatically taken into account when generating the test case and running the external
analysis. As Herbie can produce better results the more precise its inputs are specified,
the additional information supports better results.

70

Input Error Output Error

2.581556 2.5771723

Input

Eprc = 4.0 · ε · (
σ

cutoff + skin
)
12
− (

σ

cutoff + skin
)
6

Output [c = cutoff, s = skin]

Eprc =

(
(4 · ε) ·

√(
σ

c+ s

)12

+ (4 · ε) ·
√

σ

c+ s
· (. . . (

σ

c+ s
·

σ

c+ s
))︸ ︷︷ ︸√

(σ
c+s

)6

)

·
(((√(σ

c+ s

)12)1/3)3
−
√

σ

c+ s
· (. . . (

σ

c+ s
·

σ

c+ s
))︸ ︷︷ ︸√

(σ
c+s

)6

)

< E_prc = 4.0_mk ∗ eps i l on ∗ (((sigma / (c u t o f f + sk in)) ∗∗12) − ((sigma / (c u t o f f + sk in)) ∗∗6))
−−−
> E_prc = ((((4 . 0 _mk ∗ eps i l on) ∗ (s q r t ((((sigma / (c u t o f f + sk in)) ∗∗12))))) + ((4 . 0_mk ∗ eps i l on

↪→) ∗ (s q r t (((sigma / (c u t o f f + sk in)) ∗ ((sigma / (c u t o f f + sk in)) ∗ ((sigma / (c u t o f f +
↪→ sk in)) ∗ ((sigma / (c u t o f f + sk in)) ∗ ((sigma / (c u t o f f + sk in)) ∗ (sigma / (c u t o f f +
↪→ sk in))))))))))) ∗ ((((((s q r t ((((sigma / (c u t o f f + sk in)) ∗∗12)))) ∗∗1 / 3)) ∗∗3)) − (s q r t (((
↪→ sigma / (c u t o f f + sk in)) ∗ ((sigma / (c u t o f f + sk in)) ∗ ((sigma / (c u t o f f + sk in)) ∗ ((
↪→ sigma / (c u t o f f + sk in)) ∗ ((sigma / (c u t o f f + sk in)) ∗ (sigma / (c u t o f f + sk in))))))))))
↪→)

Figure 5.16.: Herbie improvements for LJ-01.

Input Error Output Error

4.159862 0.0703125

Input

p→pos = p→pos+ p→v · deltat + 0.5 · p→a · delta2t

Output

p→pos = 1 · (deltat · p→a) · (deltat · 0.5) + p→v · deltat + p→pos

< x_p (:) = x_p (:) + v_p (:) ∗ de l t a_ t + 0.5_mk ∗ a_p (:) ∗ (de l t a _ t ∗∗2)
−−−
> x_p (:) = (1 ∗ (((de l t a_ t ∗ a_p (:)) ∗ (de l t a _ t ∗ 0.5_mk)) + ((v_p (:) ∗ de l t a_ t) + x_p (:))))

Figure 5.17.: Herbie improvements for LJ-02.

71

Input Error Output Error

34.03037 15.641862

Input

dF = (24.0 · ε · rpq) · (2.0 ·
σ12

r7spq
−

σ6

r4spq
)

Output

dF =

(−(ε · 24)) ·
((σ6︷ ︸︸ ︷

(σ · (. . . (σ · σ))) ·rpq
)1/3(

rspq ·(rspq ·(rspq ·rspq))
)1/3)

3

if rspq < −3.4035 · 10−94

(

σ6︷ ︸︸ ︷
(σ · (. . . (σ · σ))) ·rpq)·((−ε)·24)

1
rspq

·(1
rspq

·(1
rspq

· 1
rspq

))
if rspq < 1.4616 · 10−31

(−(ε · 24)) ·

σ6︷ ︸︸ ︷
(σ · (. . . (σ · σ)))(rspq ·(rspq ·(rspq ·rspq))

rpq

) otherwise

< dF (:) = (24 .0_mk ∗ eps i l on ∗ r_pq (:)) ∗ (2 .0_mk ∗ ((sigma∗∗12) / (r_s_pq2 ∗∗7)) − ((sigma ∗∗6) /
↪→ (r_s_pq2 ∗∗4)))

−−−
> i f ((r_s_pq2 < −3.4035520833325653E−94)) then
> dF (:) = ((−(eps i l on ∗ 24.0_mk)) ∗ (((((((sigma ∗ (sigma ∗ (sigma ∗ (sigma ∗ (sigma ∗ sigma))

↪→))) ∗ r_pq (:)) ∗∗1 / 3)) / (((r_s_pq2 ∗ (r_s_pq2 ∗ (r_s_pq2 ∗ r_s_pq2))) ∗∗1 / 3))) ∗∗3)))
> e lse
> i f ((r_s_pq2 < 1.461628127388658E−31)) then
> dF (:) = ((((sigma ∗ (sigma ∗ (sigma ∗ (sigma ∗ (sigma ∗ sigma))))) ∗ r_pq (:)) ∗ ((−eps i l on)

↪→ ∗ 24.0_mk)) / ((1 / r_s_pq2) ∗ ((1 / r_s_pq2) ∗ ((1 / r_s_pq2) ∗ (1 / r_s_pq2)))))
> e lse
> dF (:) = ((−(eps i l on ∗ 24.0_mk)) ∗ ((sigma ∗ (sigma ∗ (sigma ∗ (sigma ∗ (sigma ∗ sigma)))))

↪→ / ((r_s_pq2 ∗ (r_s_pq2 ∗ (r_s_pq2 ∗ r_s_pq2))) / r_pq (:))))
> end i f
> end i f

Figure 5.18.: Herbie improvements for LJ-03.

Input Error Output Error

27.181412 3.636401

Input

p→E = p→E + 4 · ε · (
σ12

r6spq
−

σ6

r3spq
)− Eprc

Output

p→E =

(p→E − Eprc) + (− 4

ε
· σ·(σ·(σ·(σ·(σ·σ))))

r3spq
) if rspq < −2.511 · 10−57

(p→E − Eprc) + (−ε · σ·(σ·(σ·(σ·(σ·σ))))1
r3spq

· 4) if rspq < 2.237 · 10+46

(p→E − Eprc) + (− 4
ε
· σ·(σ·(σ·(σ·(σ·σ))))

r3spq
) otherwise

< E_p = E_p + 4 ∗ eps i l on ∗ ((sigma∗∗12) / (r_s_pq2 ∗∗6) − (sigma ∗∗6) / (r_s_pq2 ∗∗3)) − E_prc
−−−
> i f ((r_s_pq2 < −2.5113679430174213d−57)) then
> E_p = ((E_p − E_prc) + (−((4 / eps i l on) ∗ ((sigma ∗ (sigma ∗ (sigma ∗ (sigma ∗ (sigma ∗ sigma

↪→))))) / ((r_s_pq2 ∗∗3))))))
> e lse
> i f ((r_s_pq2 < 2.2370121346542206d+46)) then
> E_p = ((E_p − E_prc) + ((((− eps i l on) ∗ (sigma ∗ (sigma ∗ (sigma ∗ (sigma ∗ (sigma ∗ sigma))

↪→)))) / (1 / ((r_s_pq2 ∗∗3)))) ∗ 4))
> e lse
> E_p = ((E_p − E_prc) + (−((4 / eps i l on) ∗ ((sigma ∗ (sigma ∗ (sigma ∗ (sigma ∗ (sigma ∗

↪→ sigma))))) / ((r_s_pq2 ∗∗3))))))
> end i f
> end i f

Figure 5.19.: Herbie improvements for LJ-04.

72

Figure 5.20.: Interval specification for variables ε and rspq in an Herbie-annotated
expression. While ε is restricted to a small range, the squared
distance of particles is only guaranteed to be positive.

Influence on Runtime Performance Since Herbie modifies expressions and, in some
cases, replaces a single assignment with a complex regime containing several conditional
branches, decreased runtime performancemight be a concern. Therefore, we investigate
the influence of thesemodifications on the simulation runtime for the two case studies, the
Gray-Scott reaction-diffusion system and the Lennard-Jones potential. We compared
the runtime of the original program for each use case with one containing Herbie’s
modifications. To get accurate results that are not affected by write operations on the
hard drive the simulations were modified so that no output is generated. The performance
benchmarks were run on a system with an Intel Core i3-4160 CPU and 16 GB memory.
The operating system was Ubuntu with a Linux kernel version of 4.2.0.

We could not find any significant runtime influence for the Gray-Scott use case. The
simulation was run over 4000 steps, determined by tstart = 0.0, tend = 2000.0, and
deltat = 0.5 (cf. Section B.1). We did a total of 100 measurements per program.
Figure 5.21 shows the variation of execution time in box plot notation.

Figure 5.21.: Runtime comparison for the Gray-Scott use case with tend = 2000.
The median runtime for both simulations is nearly identical, which
indicates that Herbie’s optimization have no impact on the pro-
gram’s runtime.

One can see that the measured times for the original simulation are less spread
than for the optimized version. However, the median in both variants is nearly identical.
Furthermore, we observed several outliers with a shorter execution time for the original
program, which are approximately at the level of the minimal runtime of the modified
simulation.

The measurements indicate that the rearrangement of expressions GS-01 and GS-02
does not have any notable influence on the simulation runtime, as could be expected.
The median runtime for both programs is nearly identical, and the difference in the spread
can be explained by inaccuracies during the benchmark. Still, the question whether a
Herbie regime has an influence on the runtime performance remains.

73

We also compared the runtime of the original PPM client for the Lennard-Jones case
study to a version optimized by Herbie. The simulation was executed for n = 5000
particles, start time tstart = 0.0, end time tend = 0.2, and time delta deltat = 1.0 · 10−6

(cf. Section B.2). Each variant was run 25 times. The results are summarized in box
plot notation in Figure 5.22.

Figure 5.22.: Runtime comparison for the Lennard-Jones case study. The exe-
cution of the program modified by Herbie was approximately 20 %
faster than the original implementation.

Surprisingly, the program modified by Herbie runs nearly 20 % faster than the original
implementation. However, this can be attributed to over-simplifications of expressions.
As pointed out in Section 5.2.2, the numerical results of the optimized program were less
accurate compared to the original PPM client. When taking variable ranges into account,
Herbie was not able to find improvements for LJ-03 and LJ-04. Hence, ceasing out the
over-complicated rewrite of LJ-01 and the unchanged expressions LJ-03 and LJ-04,
Herbie reported an improvement only for LJ-02 through a simple restructuring of the
expression’s terms. The runtime is not impacted by this modification.

The presented plug-in for PPME provides an interface to the main functionalities for
Herbie. The analysis of annotated expressions is triggered manually by the developer,
where each expression is inspected in every run. To improve the tool’s usability, already
computed results should be cached in order to avoid unnecessary recomputation. Fur-
thermore, the available interface can be extended to cover more of Herbie’s options,
e. g., control the transformations which are allowed to perform.

Overall, the integration of external tools for program analysis and numerical optimiza-
tions enables a productive use of existing tools. We have presented a general framework
for connecting a third party tool, i. e., the Herbie optimizer for floating-point expressions,
with PPME by creating an interface for the tool inside the IDE. A simulation can be
annotated for optimizations on expression-level by developers. Future extensions can
easily integrate new tools with PPME following the same approach.

The presented integration of Herbie aims towards improving the accuracy of floating-
point expressions. On the contrary, simulation developers might be interested in sacri-
ficing accuracy for a better performance of numerical operations. The combination of
domain-knowledge, user annotations (e. g., interval specifications for variable ranges),
and tool integration paves the way for other sophisticated analysis and optimization
plug-ins for PPME.

74

6. Evaluation And Outlook On
Future Work

In this final chapter we draw a conclusion on the objectives of this thesis and present
an outlook on future work. The general value of PPME to reduce the knowledge gap
and simplify development of particle-based simulations using the PPM middleware is
discussed. Therefore, the contributions of this thesis are evaluated and put in context
for researchers and developers. Additionally, the maturity and suitability of MPS for the
implementation of a particle-mesh IDE is questioned. Finally, we propose continuative
thoughts and ideas on the further improvement and development of PPME.

In Section 6.1 the contributions made in this thesis are reviewed. In particular, PPME’s
capability to reduce the knowledge gap and to improve the development process of
scientific simulations is discussed. Section 6.2 points out some concerns of MPS in
productive use. The importance of model transformations and generators within MPS is
addressed in Section 6.3. We argue that Fortran as an additional base language means
a significant improvement for adaptability. Finally, in Section 6.4 a roadmap for PPME is
presented.

6.1. Review of Contributions

Overall, PPME is an adaptable and extensible workbench for particle-mesh simulations.
It aims to simplify the development of scientific simulations through domain-specific
abstractions for particle- and particle-mesh based simulations. PPME uses a gener-
ative approach to produce PPM client code from a simulation. The initial prototype
implementation hinted at the possibilities given by a projectional editor and language
workbench technology. Besides syntax highlighting and code completion features the
MPS language workbench promises modularity and extensibility for custom languages.
This thesis builds upon this prototype. All three contributions [C1] to [C3] address some
part of PPME and further improve it. We aimed towards general solutions to demonstrate
the flexibility of the system. The first contribution of extending PPME to support an
additional case study builds the foundation for the extensions presented in the course of
the thesis. The implementation of physical-unit annotations demonstrates an optional
language extensions to improve type safety. With the integration of an external tool we
demonstrated how to reuse programs for analysis and optimization.

75

[C1] Improvements to PPME and Case Studies With contribution [C1], the improve-
ment and extension of PPME, we showed the implementation of two case studies, the
Gray-Scott reaction-diffusion system and the Lennard-Jones potential, which were both
transfered from the implementations inPPML. The different case studies underline
PPME’s capability to write simulations for both field- and item-based models. The two
example simulations cover the main parts of particle-based simulations, e. g., setting
up topology and particle list, declaring fields and properties over particles, and defining
particle interaction and evolution. PPME avoids many errors by design, e. g., every
referenced variable has to be defined, and the code generation process ensures that
PPML macros are supplied with the required information extracted from the simulation.

The modularity of PPME allowed to easily adapt concepts to the requirements of the
case studies. The different language aspects provided by MPS enabled for specific
changes and tweaks to the editor behavior. However, some major refactorings were
necessary to fully support both case studies. In addition, several macro concepts corre-
sponding to macros in PPML were introduced to utilize the internal code transformations
of MPS. Section 6.3 elaborates this aspect in more detail.

[C2] Types and Units The design and implementation of a formal type system fur-
ther hardens the error detection of PPME. It prevents a series of common errors at
development-time and provides developers with meaningful feedback, e. g., it high-
lights where an operation is unsupported for its operands or where the types in an
assignment expression do not match. We designed the type system with respect to
the domain-specific concepts of particle based simulations. MPS allows for a modular
implementation of typing rules as it does for language concepts itself. The standard
rules for numerical operations on integers or floating-point numbers could be easily
extended to cover vectors and particle fields.
One drawback of PPML was that compile errors are reported on the level of the

target language, which is Fortran in this case. Due to the applied macro expansions by
the PPML compiler, these error message are confusing for a developer working with
the PPML front-end. PPME ceases out this disadvantage and instead presents error
message on the level of the DSL to the user.

The second part of contribution [C2], the implementation of annotations for physical
units, illustrates how optional language extensions can be provided. Units of measure
can be annotated on types and expressions by the developer. The additional information
enriches the program model and are used to prevent semantic errors due to unit mis-
matches and conversion errors. The presented unit annotations are solely used within
the IDE and do not influence the code generation.

The physical-units extension allows developers to freely define primitive and derived
units and use them in their simulations. In particular, unit annotations help to catch
semantic errors at development time. As pointed out in Section 4.2.3, the language
extension can potentially be expanded to a full dimensional analysis. Furthermore,
automatic conversion of quantities with different factors can improve the program’s
usability.

[C3] Numerical Optimizations The third objective is to investigate numerical opti-
mizations for particle-based simulations. Contribution [C3] addresses this objective by
focusing on floating-point expressions. A key question is how to incorporate domain-
knowledge in analyses and how to use it to improve the generated simulation programs.
First, rogram equivalence graphs as a representation of semantically equivalent

rewrites of a given numerical expression were evaluated. The search space of equivalent

76

expression, emerging from the graph, can be explored to find an expression optimized
for some arbitrary property, e. g., improving accuracy. Although the notion of program
equivalence graphs is promising to find optimizations on expression-level, we decided
against an implementation in PPME as it would have been too comprehensive.

Instead, we considered the integration of existing tools. The second part of [C3]
presents a general framework for connecting with external tools, i. e., configuring and
executing an external program, and evaluating its output. Conceptually, PPME simu-
lations (or parts thereof) form the input for external analysis tools. We chose Herbie,
a tool for improving the accuracy of floating-point expressions, as an example. By
leveraging MPS’s mechanisms for plug-in integration, Herbie seamlessly integrates with
the environment. Parameters for the tool’s executable can be set via a native settings
dialog in PPME. We enable the annotation of expressions for optimization passes and
translate the results back into PPME. This framework for the adaption of external tools
can easily be utilized for the integration of other tools.

Finally, we provided an evaluation of the applied optimizations. For both case studies,
selected expressions were marked for Herbie analysis. We compared numerical results
and performance for the original PPM clients and simulations containing the rewrites
proposed by Herbie. Overall, the accuracy of computations in the implemented use
cases could not be notably improved, but for the Lennard-Jones potential Herbie over-
simplified expressions, yielding less accurate numeric results. We could not measure
any significant impact on the simulation runtime for the given case studies.
In order to avoid oversimplification of expression by Herbie, additional value-range

annotations were introduced. These annotations allow to further specify the interval of a
variable or expression, providing extra information on the domain through user input.
Taken into account the range specifications, Herbie was not able to improve the accuracy
of the annotated expressions.

6.2. Maturity of MPS

We decided for MPS as base for the implementation of PPME as it does not only
provide the typical features of a language workbench, but also allows for advanced
representations of language concepts. We utilize this to provide mathematical notations
close to the idiom of the domain PPME is designed for. Projects such as mbeddr
demonstrate the instantiation of MPS in praxis. The modularity of MPS languages allows
for the reuse of common concepts, e. g., multi-line plain text blocks in the projectional
editor.

The clean separation of concerns aids the development of specific language aspects.
The internal transformation system allows to inspect the full model, and thus enables
retrieval of domain-specific information implicitly encoded in the simulations. Projectional
editing renders the need for parsers obsolete and allows for complex language structures
and automatic transformations.

However, MPS has a steep learning curve, and he amount of different language
aspects, aspect specifications, and DSLs easily overcharges new developers. The use
of different DSLs throughout the IDE is inconsistent, i. e., similarly looking concepts
behave differently, and the documentation lacks detail in some critical sections. Although
MPS offers integration with version control systems, serious issues arose in collaborative
scenarios. We encountered merge conflicts that could not be resolved using the IDE’s
internal tools. A manual resolution of merge conflicts is nearly impossible due to the XML
format used to store program graphs, containing cryptic node ids and cross-references.

77

6.3. Base Languages and Generators

MPS promotes the use of internal generators and transformations instead of direct text
generation. Transformations allow for more control for rewrites and translations, usually
lowering the the language level from domain-specific to general purpose. The goal is to
eventually perform all transformations within MPS and only produce a final output for
the finished program. From a practical perspective, only one textgen component can be
specified for language concepts, but the use of multiple generators is possible.

The current implementation of the transformation and generation pipeline in PPME is
shown in Figure 6.1. In a single transformation step the original simulation module is
enriched with information which is implicitly available in the model. From this high-level,
domain-specific model the textual output against PPML is generated. At this point, the
system’s boundaries are passed and PPME cannot influence the further processing
steps. In particular, the domain-specific knowledge present in the original program is
lost for further processing unless previously extracted and exported.

PPME Module
+ Annotations

PPME Module T G PPM Client FortranP

Figure 6.1.: Current transformation and generation pipeline of PPME.

Putting emphasis on more internal transformations to prevent early text generation re-
quires the availability of base languages in MPS. Base languages are often counterparts
to general purpose programming languages such as Java. For PPME, a counterpart for
Fortran in MPS is required to properly bypass the generation of PPML code and cease
out the macro expansion. The logic contained in the macros of PPML is transfered to
internal generators.

Generators and transformations enable a smooth adaption to changes in the backend.
Source code in different target languages can be produced from a single high-level
language by providing transformations to another base language. Hence, for a new C++
implementation of PPM only a set of generators to a C++ base language has to be defined.
Notably, a developer would be free to choose the target of the generation. Figure 6.2
depicts the improved transformation pipeline with two possible target languages.

PPME Module
+ Annotations

PPME Module

Fortran
in MPS

C++

T

Fortran

C++
in MPS

T

T

G

G

Figure 6.2.: Improvement transformation pipeline with optional target language.

Since the creation of base languages can be cumbersome for complex languages,
such as Fortran or C++, an automated approach is desirable. For many common
programming languages grammars describing their syntax exist (cf. the collection of
grammars for ANTLR1). Utilizing these specifications to quickly create new base lan-
1https://github.com/antlr/grammars-v4

78

https://github.com/antlr/grammars-v4

guages might be a viable option if the target language is not available for MPS yet. The
ANTLR-MPS plug-in2 provides support to create new MPS languages using ANTLR
grammars as a guide. The plug-in could simplify the creation of base languages enor-
mously and thus enable for improvements in PPME’s transformation and generation
pipeline.

6.4. A Roadmap for PPME

In this final section, we propose a roadmap for PPME. We grouped the upcoming duties
in short-, mid-, and long-term goals. The short-term goals address immediate usability
improvements and maintenance tasks. Mid-term objectives aim at enhancements in
a broader context, i. e., looking at user feedback, new case studies, and invocation of
simulations from within the IDE. On long-term perspective, PPME should progress to a
stand-alone editor for particle-mesh simulations. Furthermore, the improved generation
pipeline would render the use of PPML obsolete.

Short-term Goals The next steps in the development of PPME should address usabil-
ity improvement such as code completion and automatic program transformations to
correct common errors. Tweaking the editor behavior even further should guarantee a
flawless development experience.
During the work on this thesis the team around Herbie published a final release

(version 1.0.0). In comparison to the development version in use the API for invoking
the tool have changed, and a new, standardized input format was adapted. The Herbie
plug-in should to be adjusted to these changes. Moreover, the tool execution should be
extracted to a background thread, keeping the editor in a productive state even when
analyzing numerous expressions. Further speed up can be gained by caching already
computed optimizations

Mid-term Goals Continuing from the smaller enhancements, the overall working expe-
rience of PPME should be improved. Most of all, the IDE has to be evaluated in practical
application. PPME language and editor mechanisms need to be improved based on
feedback by developers. New and unforeseen use cases potentially require extension
and adaption of the system.
Another important aspect in this context is the ability to compile and execute simula-

tions from the editor. Similar to the invocation of an external tool, the process of compiling
a PPM client to Fortran code and executing it could be integrated into PPME. Devel-
opers should be able to link to a local installation of PPM and trigger code generation,
compilation, and execution with a simple click on a button.

Long-term Goals The long-term goal for PPME is to offer researchers a stand-alone
IDE for particle-mesh simulations. MPS allows for packaging a languages and plug-
ins in stripped-down variant for this purpose. This toolbox should be enhanced by
tools and analysis mechanisms for different use cases. Putting emphasis on internal
transformations and base languages, the usage of PPML can be ceased out. Following
these steps, PPME can be prepared for future versions of PPM.

2https://plugins.jetbrains.com/plugin/7815

79

https://plugins.jetbrains.com/plugin/7815

Appendices

81

A. Listings
A.1. PPME Generator Scripts

1 mapping script replaceRandoms
2
3 script kind : pre-process input model
4 modifies model : true
5
6 (genContext, model, operationContext)->void {
7 int cnt = 0;
8 // list of variable declarations for random numbers
9 nlist<VariableDeclarationStatement> decls = new nlist<VariableDeclarationStatement>;

10
11 // find all expressions containing RNEs
12 nlist<Expression> exprs = model.nodes(RandomNumberExpression).select({~rne =>
13 node<Expression> rootExpr = rne;
14 while (rootExpr.parent.isInstanceOf(Expression)) {
15 rootExpr = rootExpr.parent : Expression;
16 }
17 return rootExpr;
18 }).distinct.toList;
19
20 foreach e in exprs {
21 // keep track of variables already referenced in expression ’e’
22 nlist<VariableDeclarationStatement> used = new nlist<VariableDeclarationStatement>;
23
24 foreach rne in e.descendants<concept = RandomNumberExpression> {
25 node<LocalVariableDeclaration> varDecl;
26 node<VariableDeclarationStatement> stmnt;
27
28 // check whether a variable can be reused - if not, create a new variable declaration
29 if (rne.type.isNull) {
30 stmnt = decls.where({~it => it.variableDeclaration.type.isInstanceOf(RealType); }).disjunction(used).first;
31 varDecl = <LocalVariableDeclaration(
32 name: "rnd_" + cnt,
33 type: RealType())>;
34 } else {
35 stmnt = decls.where({~it => it.variableDeclaration.type == rne.type; }).disjunction(used).first;
36 varDecl = <LocalVariableDeclaration(
37 name: "rnd_" + cnt,
38 type: # rne.type)>;
39 }
40
41 // no variable for reuse was found - create a new declaration statement and add it to the list
42 if (stmnt.isNull) {
43 stmnt = <VariableDeclarationStatement(variableDeclaration: # varDecl)>;
44 decls.add(stmnt);
45 rne.containing root.descendants<concept = Phase>.first.body.statement.addFirst(stmnt);
46 cnt += 1;
47 }
48 // add the referenced variable to the list of ’used’ variables
49 used.add(stmnt);
50
51 node<VariableReference> varRef = <VariableReference(variableDeclaration: # stmnt.variableDeclaration)>;
52 rne.replace with(varRef);
53 e.ancestor<concept = Statement>.add prev-sibling(<CallRandomNumber(var: # varRef)>);
54 }
55 }
56 }

Listing A.1: de.ppme.modules.generator.template.main.
↪→ replaceRandoms

83

1 mapping script transformForEachStatements
2
3 script kind : pre-process input model
4 modifies model : true
5
6 (genContext, model, operationContext)->void {
7 foreach particleLoop in model.nodes(ParticleLoopStatment) {
8 node<PartLoopsMacro> loop = new node<PartLoopsMacro>();
9

10 nlist<AssignmentExpression> assignments = particleLoop.body.descendants<concept = AssignmentExpression>.toList;
11 nlist<Expression> lhs = assignments.left.toList;
12 boolean writeX = lhs.findFirst({~it =>
13 if (it.isInstanceOf(ArrowExpression) && it : ArrowExpression.operation.isInstanceOf(PositionMemberAccess)) {
14 if (it : ArrowExpression.operand.isInstanceOf(VariableReference)) {
15 return it : ArrowExpression.operand : VariableReference.variableDeclaration == particleLoop.variable;
16 }
17 }
18 return false;
19 }).isNotNull;
20 loop.writePos = writeX;
21
22 loop.pset.set(particleLoop.iterable);
23 loop.variable.set(particleLoop.variable.copy);
24
25 nlist<ArrowExpression> arrows = particleLoop.body.descendants<concept = ArrowExpression>.distinct.toList;
26 nlist<ArrowExpression> particleMemberAccesses = arrows.where({~it => it.operation.isInstanceOf(

↪→ ParticleMemberAccess); }).toList;
27
28 particleMemberAccesses
29 .where({~it => it.operand.isInstanceOf(VariableReference); })
30 .where({~it => it.operand : VariableReference.variableDeclaration == particleLoop.variable; })
31 .forEach({~it => {
32 node<IVariableDeclaration> decl = it.operation : ParticleMemberAccess.decl;
33 node<VariableReference> ref = new node<VariableReference>();
34 ref.variableDeclaration.set(decl);
35
36 concept switch (decl.type) {
37 subconcept of FieldType :
38 if (decl.type : FieldType.ndim == 1) {
39 if (loop.sca_field.findFirst({~it => it.isInstanceOf(VariableReference) && it : VariableReference.

↪→ variableDeclaration == ref.variableDeclaration; }).isNull) {
40 loop.sca_field.add(ref);
41 }
42 } else {
43 if (loop.vec_field.findFirst({~it => it.isInstanceOf(VariableReference) && it : VariableReference.

↪→ variableDeclaration == ref.variableDeclaration; }).isNull) {
44 loop.vec_field.add(ref);
45 }
46 }
47 skip;
48 subconcept of PropertyType :
49 if (decl.type : PropertyType.ndim.isInstanceOf(IntegerLiteral) && decl.type : PropertyType.ndim :

↪→ IntegerLiteral.value == 1) {
50 if (loop.sca_props.findFirst({~it => it.isInstanceOf(VariableReference) && it : VariableReference.

↪→ variableDeclaration == ref.variableDeclaration; }).isNull) {
51 loop.sca_props.add(ref);
52 }
53 } else {
54 if (loop.vec_props.findFirst({~it => it.isInstanceOf(VariableReference) && it : VariableReference.

↪→ variableDeclaration == ref.variableDeclaration; }).isNull) {
55 loop.vec_props.add(ref);
56 }
57 }
58 }
59 } });
60
61 loop.body.set(particleLoop.body);
62 loop.body.descendants<concept = VariableReference>.where({~it => it.variableDeclaration == particleLoop.

↪→ variable; }).forEach({~it =>
63 node<VariableReference> ref = it.replace with new(VariableReference);
64 ref.variableDeclaration.set(loop.variable);
65 });
66
67 particleLoop.replace with(loop);
68 }
69 }

Listing A.2: de.ppme.modules.generator.template.main.
↪→ transformForEachStatements

84

1 mapping script populateRHS
2
3 script kind : pre-process input model
4 modifies model : true
5
6 (genContext, model, operationContext)->void {
7 foreach ode in model.nodes(ODEStatement) {
8 node<RightHandSideMacro> result = new node<RightHandSideMacro>();
9

10 // find out which particle list the ODE is operating on - stop generation when the ambigious
11 nlist<Expression> accessedPLists = ode.descendants<concept = ArrowExpression>.operand
12 .where({~it => it.type.isInstanceOf(ParticleListType); }).toList;
13 if (accessedPLists.select({~it => it.type : ParticleListType.plist; }).distinct.size > 1) {
14 error "More than one particle list is accessed in the ODE! Stopping ...";
15 return;
16 }
17 node<Expression> plist = accessedPLists.first;
18 result.plist.set(plist.copy);
19
20 // generate a unique name for the right-hand side in the client
21 string rhs_name = ode.containing root : Module.getFormattedName();
22 rhs_name += "_rhs_" + model.nodes(ODEStatement).indexOf(ode);
23 result.name.set(rhs_name);
24
25 // populate list of differential operators
26 result.diffops.clear;
27 ode.descendants<concept = DifferentialOperator>.forEach({~it => {
28 if (result.diffops.where({~elem => it.equals(elem); }).isEmpty) {
29 result.diffops.add(it.copy);
30 }
31 } });
32
33 // create field declarations for the used differential operators
34 result.diffops.forEach({~it => {
35 node<LocalVariableDeclaration> decl = new node<LocalVariableDeclaration>();
36 decl.name.set("d" + it.operand.operation : ParticleListMemberAccess.decl.name);
37 decl.type.set(it.operand.getType().copy);
38 result.appliedOps.add(decl);
39 } });
40
41 info "DiffOps in RHS [" + rhs_name + "]: " + result.diffops.select({~it => it.getDetailedPresentation(); });
42
43 // populate the RHS particle loop
44 nlist<Statement> stmnts = ode.body.statement;
45 node<VariableDeclaration> loopvar = <LocalVariableDeclaration(
46 name: "p",
47 type: ParticleType())>;
48 // a particle loop over the previously defined particle list with the loop variable ’p’ and an empty statement

↪→ list
49 node<PartLoopsMacro> loop = <PartLoopsMacro(
50 body: StatementList(),
51 variable: # loopvar,
52 pset: # plist)>;
53
54 foreach s in stmnts {
55 if (s.isInstanceOf(RightHandSideStatement)) {
56 node<RightHandSideStatement> rhsStmnt = s : RightHandSideStatement;
57 info "Transforming right-hand side equation [" + rhsStmnt.getDetailedPresentation() + "]";
58 node<AssignmentExpression> expr = new node<AssignmentExpression>();
59
60 // the left-hand side of the equation is an access to the diff’op
61 // find all occurrences of differential operators on the right hand side that match both the operand and

↪→ operation of ’X’ in ’dX/dt’
62 node<IVariableDeclaration> diffField = rhsStmnt.argument.operation : ParticleListMemberAccess.decl;
63 nlist<DifferentialOperator> diffops =
64 result.diffops.distinct
65 .where({~it => it.operand.operand.isInstanceOf(VariableReference) && it.operand.operand :

↪→ VariableReference.variableDeclaration == plist : VariableReference.variableDeclaration; })
66 .where({~it => it.operand.operation.isInstanceOf(ParticleListMemberAccess) && it.operand.operation :

↪→ ParticleListMemberAccess.decl == diffField; }).toList;
67
68 if (diffops.size > 1) {
69 error "Found more than one potential differential operator! Stopping ...";
70 return;
71 } else if (diffops.isEmpty) {
72 error "No matching differential operator found! Stopping ...";
73 return;
74 } else {
75 info "Selected DiffOp: " + diffops.first + "<" + diffops.first.operand.getDetailedPresentation() + ">";
76 }
77
78 node<DifferentialOperator> diffop = diffops.first.copy;
79 diffop.operand.set(<ArrowExpression(
80 operand: VariableReference(variableDeclaration: # loop.variable),
81 operation: ParticleMemberAccess(decl: # rhsStmnt.argument.operation : ParticleListMemberAccess.decl))>);
82
83 node<Expression> left = diffop;
84 node<Expression> right = rhsStmnt.rhs;
85
86 // transform ParticleListMemberAccesses to ParticleMemberAccesses in the loop
87 right.descendants<concept = ArrowExpression>.where({~it => it.operation.isInstanceOf(

↪→ ParticleListMemberAccess); }).forEach({~it =>
88 node<> t;
89 if (it.operation : ParticleListMemberAccess.decl.isInstanceOf(VariableDeclaration)) {
90 t = it.operation : ParticleListMemberAccess.decl : VariableDeclaration.getType() ;
91 } else {
92 t = it.operation : ParticleListMemberAccess.decl.type : Type;
93 }
94

85

95 node<ArrowExpression> foo = it.replace with new(ArrowExpression);
96 foo.operand.set(<VariableReference(variableDeclaration: # loop.variable)>);
97 foo.operation.set(<ParticleMemberAccess(decl: # it.operation : ParticleListMemberAccess.decl)>);
98 });
99

100 expr.left.set(left);
101 expr.right.set(right);
102
103 // populate fields and properties in use
104 expr.right.descendants<concept = ParticleMemberAccess>.where({~it => !it.getOperand().parent.isInstanceOf(

↪→ DifferentialOperator); }).where({~it => it.getOperand().isInstanceOf(VariableReference) && it.
↪→ getOperand() : VariableReference.variableDeclaration == loop.variable; }).forEach({~it =>

105 node<IVariableDeclaration> decl = it.decl;
106 node<Type> t = (decl.isInstanceOf(VariableDeclaration)) ? decl : VariableDeclaration.getType() : decl.

↪→ type : Type;
107 info "found particle member access ... [" + it.getDetailedPresentation() + "::" + t.

↪→ getDetailedPresentation() + "]";
108 node<VariableReference> ref = new node<VariableReference>();
109 ref.variableDeclaration.set(decl);
110
111 concept switch (decl : VariableDeclaration.type) {
112 subconcept of FieldType :
113 if (decl.type : FieldType.ndim == 1) {
114 if (loop.sca_field.findFirst({~it => it.isInstanceOf(VariableReference) && it : VariableReference.

↪→ variableDeclaration == ref.variableDeclaration; }).isNull) {
115 loop.sca_field.add(ref);
116 }
117 } else {
118 if (loop.vec_field.findFirst({~it => it.isInstanceOf(VariableReference) && it : VariableReference.

↪→ variableDeclaration == ref.variableDeclaration; }).isNull) {
119 loop.vec_field.add(ref);
120 }
121 }
122 skip;
123 subconcept of PropertyType :
124 if (decl.type : PropertyType.ndim.isInstanceOf(IntegerLiteral) && decl.type : PropertyType.ndim :

↪→ IntegerLiteral.value == 1) {
125 if (loop.sca_props.findFirst({~it => it.isInstanceOf(VariableReference) && it : VariableReference.

↪→ variableDeclaration == ref.variableDeclaration; }).isNull) {
126 loop.sca_props.add(ref);
127 }
128 } else {
129 if (loop.vec_props.findFirst({~it => it.isInstanceOf(VariableReference) && it : VariableReference.

↪→ variableDeclaration == ref.variableDeclaration; }).isNull) {
130 loop.vec_props.add(ref);
131 }
132 }
133 }
134 });
135
136 loop.body.statement.add(<ExpressionStatement(expression: # expr)>);
137 } else {
138 s.descendants<concept = RightHandSideStatement>.forEach({~eq =>
139 info "Transforming right-hand side equation [" + eq.getDetailedPresentation() + "]";
140 node<AssignmentExpression> expr = new node<AssignmentExpression>();
141 node<IVariableDeclaration> diffField = eq.argument.operation : ParticleListMemberAccess.decl;
142 nlist<DifferentialOperator> diffops = result.diffops.distinct.distinct.distinct.distinct.where({~it => it

↪→ .operand.operand.isInstanceOf(VariableReference) && it.operand.operand : VariableReference.
↪→ variableDeclaration == plist : VariableReference.variableDeclaration; }).where({~it => it.
↪→ operand.operation.isInstanceOf(ParticleListMemberAccess) && it.operand.operation :
↪→ ParticleListMemberAccess.decl == diffField; }).toList;

143
144 if (diffops.size > 1) {
145 error "Found more than one potential differential operator! Stopping ...";
146 return;
147 } else if (diffops.isEmpty) {
148 error "No matching differential operator found! Stopping ...";
149 return;
150 } else {
151 info "Selected DiffOp: " + diffops.first + "<" + diffops.first.operand.getDetailedPresentation() + ">";
152 }
153
154 node<DifferentialOperator> diffop = diffops.first.copy;
155 diffop.operand.set(<ArrowExpression(
156 operand: VariableReference(variableDeclaration: # loop.variable),
157 operation: ParticleMemberAccess(decl: # eq.argument.operation : ParticleListMemberAccess.decl))>);
158
159 node<Expression> left = diffop;
160 node<Expression> right = eq.rhs;
161
162 // transform ParticleListMemberAccesses to ParticleMemberAccesses in the loop
163 right.descendants<concept = ArrowExpression>.where({~it => it.operation.isInstanceOf(

↪→ ParticleListMemberAccess); }).forEach({~it =>
164 node<> t = (it.operation : ParticleListMemberAccess.decl.isInstanceOf(VariableDeclaration)) ? it.

↪→ operation : ParticleListMemberAccess.decl : VariableDeclaration.getType() : it.operation :
↪→ ParticleListMemberAccess.decl.type : Type;

165 info "found particle list member access: " + it.getDetailedPresentation() + "::" + t.
↪→ getDetailedPresentation();

166
167 node<ArrowExpression> foo = it.replace with new(ArrowExpression);
168 foo.operand.set(<VariableReference(variableDeclaration: # loop.variable)>);
169 foo.operation.set(<ParticleMemberAccess(decl: # it.operation : ParticleListMemberAccess.decl)>);
170 info "replacing PLMA with PMA ... [" + it.getDetailedPresentation() + "::" + it.operation.type + " ==>

↪→ " + foo.getDetailedPresentation() + "::" + foo.type + "]";
171 });
172
173 expr.left.set(left);
174 expr.right.set(right);
175

86

176 // populate fields and properties in use
177 expr.right.descendants<concept = ParticleMemberAccess>.where({~it => !it.getOperand().parent.isInstanceOf

↪→ (DifferentialOperator); }).where({~it => it.getOperand().isInstanceOf(VariableReference) && it.
↪→ getOperand() : VariableReference.variableDeclaration == loop.variable; }).forEach({~it =>

178
179 node<IVariableDeclaration> decl = it.decl;
180 node<Type> t = (decl.isInstanceOf(VariableDeclaration)) ? decl : VariableDeclaration.getType() : decl.

↪→ type : Type;
181 info "found particle member access ... [" + it.getDetailedPresentation() + "::" + t.

↪→ getDetailedPresentation() + "]";
182
183 node<VariableReference> ref = new node<VariableReference>();
184 ref.variableDeclaration.set(decl);
185
186 concept switch (decl : VariableDeclaration.type) {
187 subconcept of FieldType :
188 if (decl.type : FieldType.ndim == 1) {
189 if (loop.sca_field.findFirst({~it => it.isInstanceOf(VariableReference) && it : VariableReference

↪→ .variableDeclaration == ref.variableDeclaration; }).isNull) {
190 loop.sca_field.add(ref);
191 }
192 } else {
193 if (loop.vec_field.findFirst({~it => it.isInstanceOf(VariableReference) && it : VariableReference

↪→ .variableDeclaration == ref.variableDeclaration; }).isNull) {
194 loop.vec_field.add(ref);
195 }
196 }
197 skip;
198 subconcept of PropertyType :
199 if (decl.type : PropertyType.ndim.isInstanceOf(IntegerLiteral) && decl.type : PropertyType.ndim :

↪→ IntegerLiteral.value == 1) {
200 if (loop.sca_props.findFirst({~it => it.isInstanceOf(VariableReference) && it : VariableReference

↪→ .variableDeclaration == ref.variableDeclaration; }).isNull) {
201 loop.sca_props.add(ref);
202 }
203 } else {
204 if (loop.vec_props.findFirst({~it => it.isInstanceOf(VariableReference) && it : VariableReference

↪→ .variableDeclaration == ref.variableDeclaration; }).isNull) {
205 loop.vec_props.add(ref);
206 }
207 }
208 }
209 });
210 eq.replace with(<ExpressionStatement(expression: # expr)>);
211 });
212 loop.body.statement.add(s.copy);
213 }
214 }
215 // the fields and properties accessed in the loop are the rhs_vars
216 result.vars.clear;
217 result.vars.addAll(loop.sca_field.select({~it => it.copy; }));
218 result.vars.addAll(loop.vec_field.select({~it => it.copy; }));
219 result.vars.addAll(loop.sca_props.select({~it => it.copy; }));
220 result.vars.addAll(loop.vec_props.select({~it => it.copy; }));
221
222 result.appliedOps.forEach({~it =>
223 info "adding applied operator field to particle loop ... ";
224 node<VariableReference> ref = new node<VariableReference>();
225 ref.variableDeclaration.set(it);
226 node<Type> t = (it.isInstanceOf(VariableDeclaration) ? it : VariableDeclaration.getType() : it.type as Type);
227 concept switch (t) {
228 subconcept of FieldType :
229 if (t : FieldType.ndim == 1) {
230 info "-- adding scalar field ... [" + t.getDetailedPresentation() + "]";
231 loop.sca_field.add(ref);
232 } else {
233 info "-- adding vector field ... [" + t.getDetailedPresentation() + "]";
234 loop.vec_field.add(ref);
235 }
236 }
237 });
238 result.loop.set(loop);
239 ode.containing root : Module._rhs.add(result);
240 }
241 }

Listing A.3: de.ppme.modules.generator.template.main.
↪→ populateRHS

87

1 mapping script HerbieOptimizations
2
3 script kind : pre-process input model
4 modifies model : true
5
6 (genContext, model, operationContext)->void {
7 foreach expr in model.nodes(AssignmentExpression).where({~it => it.@herbie != null; }) {
8 if (expr.@herbie.replacement.isNotNull) {
9 node<Statement> parentStmnt = expr.ancestor<concept = ExpressionStatement>;

10 if (parentStmnt.isNotNull) {
11 info "[Herbie Generator] replacing expression with optimized regime ...";
12 parentStmnt.replace with(expr.@herbie.replacement);
13 }
14 }
15 }
16
17 foreach rhss in model.nodes(RightHandSideStatement).where({~rhs => rhs.rhs.@herbie.isNotNull; }) {
18 node<Expression> rhsExpr = rhss.rhs;
19 if (rhsExpr.@herbie.replacement.isNotNull) {
20 info "[Herbie Generator] replacing right-hand side statement with optimized regime ...";
21 rhss.replace with(rhsExpr.@herbie.replacement.copy);
22 }
23 }
24 }

Listing A.4: de.ppme.analysis.generator.template.main.
↪→ HerbieOptimizations

88

A.2. Physical-Unit Conversion

1 /**
2 taken from: https://github.com/fisakov/mps-example-physunits
3 original license: Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
4 */
5
6 public class PhysicalUnitConversion {
7
8
9 public static nlist<PhysicalUnitRef> expand(nlist<PhysicalUnitRef> spec) {

10 list<[node<IPhysicalUnit>, int]> expanded = new arraylist<[node<IPhysicalUnit>, int]>(copy: spec.select({~unitRef
↪→ => [unitRef.decl, unitRef.getExponent()]; }));

11
12 [node<IPhysicalUnit>, int] pair;
13 do {
14 pair = expanded.findFirst({~sp => sp[0] as PhysicalUnit.spec.component.isNotEmpty; });
15 if (pair != null) {
16 expanded.remove(pair);
17 int exponent = pair[1];
18 expanded.addAll(pair[0] as PhysicalUnit.spec.component.select({~unitRef => [unitRef.decl, exponent * unitRef.

↪→ getExponent()]; }));
19 }
20 } while (pair != null);
21
22 sequence<[node<IPhysicalUnit>, int]> expandedSorted = expanded.sortBy({~it => it[0].name; }, asc);
23 sequence<string> names = expandedSorted.select({~it => it[0].name; }).distinct;
24 list<[node<IPhysicalUnit>, int]> expandedFlatten = names.select({~name => expandedSorted.selectMany({~it =>
25 if (it[0].name :eq: name) { yield it; }
26 }).reduceLeft({~a,~b => [a[0], a[1] + b[1]]; }); }).toList;
27 expandedFlatten.removeWhere({~it => it[1] == 0; });
28
29 expandedFlatten.select({~it => it[1] != 1 ? <PhysicalUnitRef(
30 decl: # it[0],
31 exponent: Exponent(value: it[1]))> : <PhysicalUnitRef(
32 decl: # it[0],
33 exponent: null)>; }).toList;
34 }
35
36
37 public static nlist<PhysicalUnitRef> simplify(nlist<PhysicalUnitRef> spec, nlist<PhysicalUnitDeclarations> decls) {
38 list<[node<IPhysicalUnit>, int]> simplified = new arraylist<[node<IPhysicalUnit>, int]>(copy: spec.selectMany({~

↪→ ur => PhysicalUnitConversion.demultiplex([ur.decl, ur.getExponent()]); }));
39
40 sequence<node<PhysicalUnit>> allUnits = decls.selectMany({~decl => decl.units; });
41 sequence<node<PhysicalUnit>> sortedUnits = allUnits.sortBy({~u => u.spec.component.select({~c => Math.abs(c.

↪→ getExponent()); }).reduceLeft({~a,~b => a + b; }); }, desc);
42
43 boolean done;
44 do {
45 done = true;
46 for (node<PhysicalUnit> cunit : sortedUnits) {
47 if (cunit.spec.component.isEmpty) { continue; }
48
49 sequence<[node<IPhysicalUnit>, int]> cspec = cunit.spec.component.selectMany({~ur => PhysicalUnitConversion.

↪→ demultiplex([ur.decl, ur.getExponent()]); });
50 sequence<[node<IPhysicalUnit>, int]> cspecrecip = cunit.spec.component.selectMany({~ur =>

↪→ PhysicalUnitConversion.demultiplex([ur.decl, -ur.getExponent()]); });
51
52 if (simplified.containsAll(cspec)) {
53 simplified.removeAll(cspec);
54 simplified.add([cunit, 1]);
55 } else if (simplified.containsAll(cspecrecip)) {
56 simplified.removeAll(cspecrecip);
57 simplified.add([cunit, -1]);
58 } else {
59 continue;
60 }
61
62 // start next iteration
63 done = false;
64 break;
65 }
66 } while (!done);
67
68 sequence<[node<IPhysicalUnit>, int]> simplifiedSorted = simplified.sortBy({~it => it[0].name; }, asc);
69 sequence<string> names = simplifiedSorted.select({~it => it[0].name; }).distinct;
70
71 list<[node<IPhysicalUnit>, int]> simplifiedFlatten = names.select({~name => simplifiedSorted.selectMany({~it =>
72 if (it[0].name :eq: name) { yield it; }
73 }).reduceLeft({~a,~b => [a[0], a[1] + b[1]]; }); }).toList;
74 simplifiedFlatten.removeWhere({~it => it[1] == 0; });
75
76 simplifiedFlatten.select({~it => it[1] != 1 ? <PhysicalUnitRef(
77 decl: # it[0],
78 exponent: Exponent(value: it[1]))> : <PhysicalUnitRef(
79 decl: # it[0],
80 exponent: null)>; }).toList;
81 }
82
83
84 public static boolean matching(nlist<PhysicalUnitRef> specA, nlist<PhysicalUnitRef> specB) {
85 list<[node<IPhysicalUnit>, int]> unwrappedA = new arraylist<[node<IPhysicalUnit>, int]>(copy: specA.select({~

↪→ unitRef => [unitRef.decl, unitRef.getExponent()]; }));
86 list<[node<IPhysicalUnit>, int]> unwrappedB = new arraylist<[node<IPhysicalUnit>, int]>(copy: specB.select({~

↪→ unitRef => [unitRef.decl, unitRef.getExponent()]; }));
87 unwrappedA.disjunction(unwrappedB).isEmpty;

89

88 }
89
90
91 public static boolean matching(nlist<PhysicalUnitRef> specA, nlist<PhysicalUnitRef> specB, map<node<

↪→ MetaPhysicalUnit>, node<PhysicalUnitRef>> unifier) {
92 list<[node<IPhysicalUnit>, int]> unwrappedA = new arraylist<[node<IPhysicalUnit>, int]>(copy: specA.select({~

↪→ unitRef => [unitRef.decl, unitRef.getExponent()]; }));
93 list<[node<IPhysicalUnit>, int]> unwrappedB = new arraylist<[node<IPhysicalUnit>, int]>(copy: specB.select({~

↪→ unitRef => [unitRef.decl, unitRef.getExponent()]; }));
94
95 unwrappedA.removeAll(unwrappedB);
96 unwrappedB.removeAll(unwrappedA);
97
98 boolean unified = true;
99

100 foreach a in unwrappedA, b in unwrappedB {
101 if (a[0].isInstanceOf(MetaPhysicalUnit) && b[0].isInstanceOf(PhysicalUnit)) {
102 unified = substituteMetaUnit(a, b, unifier);
103 } else if (a[0].isInstanceOf(PhysicalUnit) && b[0].isInstanceOf(MetaPhysicalUnit)) {
104 unified = substituteMetaUnit(b, a, unifier);
105 } else {
106 error "Matching supports only meta unit type and unit type, but was A=" + a + ", B=" + b;
107 unified = false;
108 }
109 }
110
111 return unified;
112 }
113
114
115 public static nlist<PhysicalUnitRef> recip(nlist<PhysicalUnitRef> spec) {
116 return spec.select({~it => it.getExponent() != -1 ? <PhysicalUnitRef(
117 decl: # it.decl,
118 exponent: Exponent(value: -it.getExponent()))> : <PhysicalUnitRef(
119 decl: # it.decl,
120 exponent: null)>; }).toList;
121 }
122
123
124 private static boolean substituteMetaUnit([node<IPhysicalUnit>, int] metaUnit, [node<IPhysicalUnit>, int]

↪→ physUnit, map<node<MetaPhysicalUnit>, node<PhysicalUnitRef>> unifier) {
125 int exp;
126
127 if (Math.abs(metaUnit[1]) <= Math.abs(physUnit[1]) && physUnit[1] % metaUnit[1] == 0) {
128 exp = physUnit[1] / metaUnit[1];
129 } else {
130 error "Exponent less than 1 by abs value is not supported, was given meta=" + metaUnit + ", unit=" + physUnit

↪→ ;
131 exp = 0;
132 }
133 if (unifier != null) {
134 if (exp != 1) {
135 unifier[metaUnit[0] : MetaPhysicalUnit] = <PhysicalUnitRef(
136 decl: # physUnit[0],
137 exponent: Exponent(value: exp))>;
138 } else {
139 unifier[metaUnit[0] : MetaPhysicalUnit] = <PhysicalUnitRef(
140 decl: # physUnit[0],
141 exponent: null)>;
142 }
143 }
144 return exp != 0;
145 }
146
147
148 private static sequence<[node<IPhysicalUnit>, int]> demultiplex([node<IPhysicalUnit>, int] input) {
149 int exp = input[1];
150 if (exp == 0) { throw new IllegalArgumentException("null exponent"); }
151 if (exp == 1) {
152 return new singleton<[node<IPhysicalUnit>, int]>(input);
153 } else {
154 list<[node<IPhysicalUnit>, int]> res = new arraylist<[node<IPhysicalUnit>, int]>;
155 int sign = exp < 0 ? -1 : 1;
156 for (int i = 0; i < Math.abs(exp); i++) {
157 res.add([input[0], sign]);
158 }
159 return res;
160 }
161 }
162 }

Listing A.5: de.ppme.physunits/PhysicalUnitConversions.java

90

B. Benchmarks
B.1. Gray-Scott Case Study

19 k_rate = 0.05100000000000
20 F_param = 0.01500000000000
21 Du_param = 2E-5
22 Dv_param = 1E-5

...
55 min_phys = 0.000000000000000E+000, 0.000000000000000E+000
56 max_phys = 1.00000000000000, 1.00000000000000
57 domain_decomposition = 7
58 processor_assignment = 1
59 ghost_size = 0.05000000000000
60 Npart = 10000

...
66 ODEscheme = 4

...
77 start_time = 0.0000000000000000
78 time_step = 0.50000000000000000
79 stop_time = 500.00000000000000

Listing B.1: benchmarks/gs/Ctrl — Control file used for benchmarking the
Gray-Scott case study.

91

1 #!/usr/bin/env python3
2
3 import sys
4 from sys import argv
5 import subprocess
6 import os.path
7 import time
8 import json
9

10 MPICommand = ’mpirun -np 4 {}’
11
12 executables = json.loads(argv[1])
13 nSamples = int(argv[2])
14
15 if not os.path.isfile("Ctrl"):
16 print("Error: no control file found!")
17 sys.exit(1)
18
19 ctrl = {}
20 with open("./Ctrl") as ctrlFile:
21 for line in ctrlFile:
22 key, value = line.partition("=")[::2]
23 ctrl[key.strip()] = value.strip()
24
25 root = os.getcwd()
26
27 for n in [500, 1000, 2000, 4000]:
28 for client, exe in executables.items():
29 os.chdir(root)
30
31 test_id = "{}_{}".format(client, n)
32
33 if not os.path.isdir(test_id):
34 os.mkdir(test_id)
35
36 ctrl["stop_time"] = n
37 with open("{}/Ctrl".format(test_id), ’w’) as f:
38 for k, v in ctrl.items():
39 f.write("{} = {}\n".format(k, v))
40
41 e = os.path.join(os.path.abspath(os.getcwd()), exe)
42 os.chdir(test_id)
43
44 results = []
45
46 for i in range(nSamples):
47 print("Running test id={}, i={}".format(test_id, i))
48 ts = time.time()
49 subprocess.call(MPICommand.format(e), shell=True, stdout=subprocess.DEVNULL)
50 te = time.time()
51 results.append(te - ts)
52
53 reportFile = os.path.join(os.path.abspath(os.getcwd()), "report")
54 with open(reportFile, ’w’) as f:
55 f.write(MPICommand.format(e) + "\n")
56 for r in results:
57 f.write("{}\n".format(r))

Listing B.2: benchmarks/gs/benchmark.py — Benchmark script for the
Gray-Scott case study.

92

1 client grayscott
2 integer, dimension(6) :: bcdef = ppm_param_bcdef_periodic
3 integer, dimension(2) :: seed
4 real(ppm_kind_double), dimension(:,:), pointer :: displace
5 real(ppm_kind_double) :: noise = 0.0_mk
6 integer :: istage = 1
7 integer :: interval
8
9 add_arg(k_rate,<#real(mk)#>,1.0_mk,0.0_mk,’k_rate’,’Reaction rate’)

10 add_arg(F,<#real(mk)#>,1.0_mk,0.0_mk,’F_param’,’Reaction parameter F’)
11 add_arg(D_u,<#real(mk)#>,1.0_mk,0.0_mk,’Du_param’,’Diffusion constant of U’)
12 add_arg(D_v,<#real(mk)#>,1.0_mk,0.0_mk,’Dv_param’,’Diffusion constant of V’)
13
14 ppm_init()
15
16 U = create_field(1, "U")
17 V = create_field(1, "V")
18
19 topo = create_topology(bcdef)
20
21 c = create_particles(topo)
22 allocate(displace(ppm_dim,c%Npart))
23 call random_number(displace)
24 displace = (displace - 0.5_mk) * c%h_avg * 0.15_mk
25 call c%move(displace, info)
26 call c%apply_bc(info)
27 !call c%set_cutoff(4._mk * c%h_avg, info)
28
29 global_mapping(c, topo)
30
31 discretize(U,c)
32 discretize(V,c)
33
34 ghost_mapping(c)
35
36 foreach p in particles(c) with positions(x) sca_fields(U,V)
37 U_p = 1.0_mk
38 V_p = 0.0_mk
39 if (((x_p(1) - 0.5_mk)**2 + (x_p(2) - 0.5_mk)**2) .lt. 0.01) then
40 call random_number(noise)
41 U_p = 0.5_mk + 0.01_mk*noise
42 call random_number(noise)
43 V_p = 0.25_mk + 0.01_mk*noise
44 end if
45 end foreach
46
47 n = create_neighlist(c,cutoff=<#4._mk * c%h_avg#>)
48
49 if (ppm_dim .eq. 2) then
50 Lap = define_op(2, [2,0, 0,2], [1.0_mk, 1.0_mk], "Laplacian")
51 else
52 Lap = define_op(3, [2,0,0, 0,2,0, 0,0,2], [1.0_mk, 1.0_mk, 1.0_mk], "Laplacian")
53 end if
54
55 L = discretize_op(Lap, c, ppm_param_op_dcpse,[order=>2,c=>1.0_mk])
56
57 o, nstages = create_ode([U,V], grayscott_rhs, [U=>c,V], rk4)
58 interval = 1
59 !print([U=>c, V=>c],1)
60 t = timeloop()
61 do istage=1,nstages
62 ghost_mapping(c)
63 ode_step(o, t, time_step, istage)
64 end do
65 !print([U=>c, V=>c],interval)
66 end timeloop
67
68 !print([U=>c, V=>c],1)
69 ppm_finalize()
70 end client
71
72 rhs grayscott_rhs(U=>parts,V)
73 get_fields(dU,dV)
74
75 dU = apply_op(L, U)
76 dV = apply_op(L, V)
77
78
79 foreach p in particles(parts) with sca_fields(U,V,dU,dV)
80 dU_p = D_u*dU_p - U_p*(V_p**2) + F*(1.0_mk-U_p)
81 dV_p = D_v*dV_p + U_p*(V_p**2) - (F+k_rate)*V_p
82 end foreach
83
84 end rhs

Listing B.3: benchmarks/gs/orig_4000/gs.ppm — Original PPM client
code for the Gray-Scott case study as used in the benchmark.

93

1 client grayscott__single_phase_
2 add_arg(constDu, <#real(mk)#>, default=1.0_mk, min=0.0_mk, ctrl_name=’constDu’, help_txt=’diffusion constant

↪→ of U’)
3 add_arg(F, <#real(mk)#>, default=1.0_mk, min=0.0_mk, ctrl_name=’F’, help_txt=’reaction parameter F’)
4 add_arg(kRate, <#real(mk)#>, default=1.0_mk, min=0.0_mk, ctrl_name=’kRate’, help_txt=’reaction rate’)
5 add_arg(constDv, <#real(mk)#>, default=1.0_mk, min=0.0_mk, ctrl_name=’constDv’, help_txt=’diffusion constant

↪→ of V’)
6
7 real(ppm_kind_double) :: rnd_2
8 real(ppm_kind_double) :: rnd_1
9 real(ppm_kind_double), dimension(:,:), pointer :: rnd_0

10 integer, dimension(6) :: bcdef = ppm_param_bcdef_periodic
11 real(ppm_kind_double), dimension(:,:), pointer :: displacement
12 integer :: istage
13
14 ppm_init()
15
16 Lap = define_op(2, [2, 0, 0, 2], [1.0_mk, 1.0_mk], "Laplacian")
17
18 ! begin phase all-in-one
19 topo = create_topology(bcdef)
20
21 ! -- creating particle set --------------------
22 c = create_particles(topo)
23
24 allocate(rnd_0(ppm_dim,c%Npart))
25 call random_number(rnd_0)
26 allocate(displacement(ppm_dim, c%Npart))
27 displacement = (rnd_0 - 0.5_mk) * c%h_avg * 0.15_mk
28 call c%move(displacement, info)
29
30 call c%apply_bc(info)
31 global_mapping(c, topo)
32
33 U = create_field(1, "U")
34 V = create_field(1, "V")
35 discretize(U, c)
36 discretize(V, c)
37
38 ghost_mapping(c)
39 ! -- end: creating particle set ----------------
40
41 foreach p in particles(c) with positions(x) sca_fields(U, V)
42 U_p = 1.0_mk
43 V_p = 0.0_mk
44 if (((x_p(1) - 0.5_mk)**2) + ((x_p(2) - 0.5_mk)**2) < 0.01_mk) then
45 call random_number(rnd_1)
46 U_p = 0.5_mk + 0.01_mk * rnd_1
47 call random_number(rnd_2)
48 V_p = 0.25_mk + 0.01_mk * rnd_2
49 end if
50 end foreach
51
52 n = create_neighlist(c, cutoff=<#4.0_mk * c%h_avg#>)
53
54
55
56 L = discretize_op(Lap, c, ppm_param_op_dcpse, [order=>2, c=>1.0_mk])
57 o_0, nstages_0 = create_ode([U, V], grayscott__single_phase__rhs_0, [U=>c, V], rk4)
58 !print([U=>c, V=>c], 1)
59 t = timeloop()
60 do istage=1, nstages_0
61 ghost_mapping(c)
62 ode_step(o_0, t, time_step, istage)
63 end do
64 !print([U=>c, V=>c], 1)
65 end timeloop
66 !print([U=>c, V=>c], 1)
67
68 ! end phase all-in-one
69
70 ppm_finalize()
71 end client
72
73 rhs grayscott__single_phase__rhs_0(U=>c, V)
74 get_fields(dU, dV)
75
76 dU = apply_op(L, U)
77 dV = apply_op(L, V)
78
79 foreach p in particles(c) with positions(x) sca_fields(U, V, dU, dV)
80 dU_p = (((constDu * dU_p) - ((U_p * V_p) * V_p)) + ((1.0_mk - U_p) * F))
81 dV_p = (((V_p * (U_p * V_p)) + (V_p * (-(kRate + F)))) + (constDv * dV_p))
82 end foreach
83
84 end rhs

Listing B.4: benchmarks/lj/herbie_4000/gs.ppm — Generated PPM
client code for the Gray-Scott case study as used in the bench-
mark.

94

B.2. Lennard-Jones Case Study

1 #-- CTRL --
2 # Generated from ’default’
3 #--
4
5 mass = 6.69E-18
6 epsilon = 1.65677856E-13
7 sigma = 3.605E-2
8 delta_t = 1.0E-6
9 min_phys = 0.0, 0.0, 0.0

10 max_phy = 1.0, 1.0, 1.0
11 domain_decomposition = 7
12 processor_assignment = 1
13 ghost_size = 0.1
14 Npart = 5000
15 start_time = 0.0
16 stop_time = 0.2

Listing B.5: benchmarks/lj/Ctrl — Control file used for benchmarking the
Lennard-Jones case study.

1 #!/usr/bin/env python3
2
3 import sys
4 from sys import argv
5 import subprocess
6 import os.path
7 import time
8 import json
9

10 MPICommand = ’mpirun -np 4 {}’
11
12 executables = json.loads(argv[1])
13 nSamples = int(argv[2])
14
15 if not os.path.isfile("Ctrl"):
16 print("Error: no control file found!")
17 sys.exit(1)
18
19 ctrl = {}
20 with open("./Ctrl") as ctrlFile:
21 for line in ctrlFile:
22 key, value = line.partition("=")[::2]
23 ctrl[key.strip()] = value.strip()
24
25 root = os.getcwd()
26
27 for n in [0.2]:
28 for client, exe in executables.items():
29 os.chdir(root)
30
31 test_id = "{}_{}".format(client, n)
32
33 if not os.path.isdir(test_id):
34 os.mkdir(test_id)
35
36 ctrl["stop_time"] = n
37 with open("{}/Ctrl".format(test_id), ’w’) as f:
38 for k, v in ctrl.items():
39 f.write("{} = {}\n".format(k, v))
40
41 e = os.path.join(os.path.abspath(os.getcwd()), exe)
42 os.chdir(test_id)
43 reportFile = os.path.join(os.path.abspath(os.getcwd()), "report")
44
45 with open(reportFile, ’a’) as f:
46 f.write(MPICommand.format(e) + "\n")
47
48 for i in range(nSamples):
49 print("Running test id={}, i={}".format(test_id, i))
50 ts = time.time()
51 subprocess.call(MPICommand.format(e), shell=True, stdout=subprocess.DEVNULL)
52 te = time.time()
53 with open(reportFile, ’a’) as f:
54 f.write("{}\n".format(te - ts))

Listing B.6: benchmarks/lj/benchmark.py — Benchmark script for the
Lennard-Jones case study.

95

1 client lennard_jones__single_phase_
2 add_arg(sigma, <#real(mk)#>, default=1.0_mk, min=0.0_mk, ctrl_name=’sigma’,

↪→ help_txt=’distance of potential well’)
3 add_arg(epsilon, <#real(mk)#>, default=1.0_mk, min=0.0_mk, ctrl_name=’epsilon’,

↪→ help_txt=’potential well depth’)
4 add_arg(mass, <#real(mk)#>, default=1.0_mk, min=0.0_mk, ctrl_name=’mass’,

↪→ help_txt=’mass of particles’)
5 add_arg(delta_t, <#real(mk)#>, ctrl_name=’delta_t’, help_txt=’time step’)
6
7 real(ppm_kind_double) :: cutoff
8 real(ppm_kind_double) :: skin
9 real(ppm_kind_double) :: E_prc

10 integer, dimension(6) :: bcdef = ppm_param_bcdef_periodic
11 real(ppm_kind_double) :: Ev_tot
12 real(ppm_kind_double) :: Ep_tot
13 real(ppm_kind_double) :: E_tot
14 real(ppm_kind_double) :: Ev_tot_old
15 real(ppm_kind_double) :: Ep_tot_old
16 real(ppm_kind_double), dimension(3) :: r_pq
17 real(ppm_kind_double), dimension(3) :: dF
18 real(ppm_kind_double) :: r_s_pq2
19 integer :: st
20
21 ppm_init()
22
23
24 ! begin phase all-in-one
25
26 cutoff = sigma * (2.5_mk / 1.1_mk)
27 skin = 0.1_mk * cutoff
28 E_prc = 4.0_mk * epsilon * (((sigma / (cutoff + skin))**12) - ((sigma / (cutoff +

↪→ skin))**6))
29
30 topo = create_topology(bcdef, ghost_size=<#cutoff + skin#>)
31
32 ! -- creating particle set --------------------
33 parts = create_particles(topo, ghost_size=<#cutoff + skin#>)
34
35
36 call parts%apply_bc(info)
37 global_mapping(parts, topo)
38
39 v = create_property(parts, 3, "velocity", zero=true)
40 a = create_property(parts, 3, "acceleration", zero=true)
41 F = create_property(parts, 3, "force", zero=true)
42 E = create_property(parts, 1, "energy", zero=true)
43
44 ghost_mapping(parts)
45 ! -- end: creating particle set ----------------
46
47 nlist = create_neighlist(parts, skin=<#skin#>, cutoff=<#cutoff#>, sym=<#.false

↪→ .#>)
48
49 call parts%apply_bc(info)
50
51
52
53 st = 0
54
55 !print([E=>parts, v=>parts, F=>parts], 100)
56 t = timeloop()
57 foreach p in particles(parts) with positions(x, writex=true) sca_props(E)

↪→ vec_props(F, a, v)
58 a_p(:) = F_p(:) / mass
59 x_p(:) = x_p(:) + v_p(:) * delta_t + 0.5_mk * a_p(:) * (delta_t**2)
60 F_p(:) = 0.0_mk
61 E_p = 0.0_mk
62 end foreach
63
64 call parts%apply_bc(info)
65 partial_mapping(parts)
66 ghost_mapping(parts)
67 comp_neighlist(parts)

96

68
69 foreach p in particles(parts) with positions(x) sca_props(E) vec_props(F)
70 foreach q in neighbors(p, nlist) with positions(x)
71 r_pq(:) = x_p(:) - x_q(:)
72 r_s_pq2 = (r_pq(1)**2) + (r_pq(2)**2) + (r_pq(3)**2)
73 dF(:) = (24.0_mk * epsilon * r_pq(:)) * (2.0_mk * ((sigma**12) / (r_s_pq2

↪→ **7)) - ((sigma**6) / (r_s_pq2**4)))
74 F_p(:) = F_p(:) + dF(:)
75 E_p = E_p + 4 * epsilon * ((sigma**12) / (r_s_pq2**6) - (sigma**6) / (

↪→ r_s_pq2**3)) - E_prc
76 end foreach
77 end foreach
78
79 foreach p in particles(parts) with positions(x) vec_props(F, a, v)
80 v_p(:) = v_p(:) + 0.5_mk * (a_p(:) + F_p(:) / mass) * delta_t
81 end foreach
82 t = t + delta_t
83
84 ghost_mapping(parts)
85
86 Ev_tot_old = Ev_tot
87 Ep_tot_old = Ep_tot
88 E_tot = 0.0_mk
89 Ev_tot = 0.0_mk
90 Ep_tot = 0.0_mk
91 foreach p in particles(parts) with positions(x) sca_props(E) vec_props(v)
92 Ev_tot = Ev_tot + 0.5_mk * mass * ((v_p(0)**2) + (v_p(1)**2) + (v_p(2)**2))
93 Ep_tot = Ep_tot + E_p
94 end foreach
95 Ep_tot = Ep_tot * 0.5_mk
96 E_tot = Ev_tot + Ep_tot
97
98 !write(*, ’(I7, 3E17.8)’), st, E_tot, Ev_tot, Ep_tot
99 !print([E=>parts, v=>parts, F=>parts], 100)

100
101 st = st + 1
102 end timeloop
103 !print([E=>parts, v=>parts, F=>parts], 100)
104 ! end phase all-in-one
105
106 ppm_finalize()
107 end client

Listing B.7: benchmarks/lj/orig/lj.ppm — Original PPM client code for
the Lennard-Jones case study as used in the benchmark.

97

1 client lennard_jones__single_phase_
2 add_arg(sigma, <#real(mk)#>, default=1.0_mk, min=0.0_mk, ctrl_name=’sigma’,

↪→ help_txt=’distance of potential well’)
3 add_arg(epsilon, <#real(mk)#>, default=1.0_mk, min=0.0_mk, ctrl_name=’epsilon’,

↪→ help_txt=’potential well depth’)
4 add_arg(mass, <#real(mk)#>, default=1.0_mk, min=0.0_mk, ctrl_name=’mass’,

↪→ help_txt=’mass of particles’)
5 add_arg(delta_t, <#real(mk)#>, ctrl_name=’delta_t’, help_txt=’time step’)
6
7 real(ppm_kind_double) :: cutoff
8 real(ppm_kind_double) :: skin
9 real(ppm_kind_double) :: E_prc

10 integer, dimension(6) :: bcdef = ppm_param_bcdef_periodic
11 real(ppm_kind_double) :: Ev_tot
12 real(ppm_kind_double) :: Ep_tot
13 real(ppm_kind_double) :: E_tot
14 real(ppm_kind_double) :: Ev_tot_old
15 real(ppm_kind_double) :: Ep_tot_old
16 real(ppm_kind_double), dimension(3) :: r_pq
17 real(ppm_kind_double), dimension(3) :: dF
18 real(ppm_kind_double) :: r_s_pq2
19 integer :: st
20
21 ppm_init()
22
23 ! begin phase all-in-one
24
25 cutoff = sigma * (2.5_mk / 1.1_mk)
26 skin = 0.1_mk * cutoff
27 E_prc = ((((4.0_mk * epsilon) * (sqrt((((sigma / (cutoff + skin))**12))))) +

↪→ ((4.0_mk * epsilon) * (sqrt(((sigma / (cutoff + skin)) * ((sigma / (cutoff
↪→ + skin)) * ((sigma / (cutoff + skin)) * ((sigma / (cutoff + skin)) * ((
↪→ sigma / (cutoff + skin)) * (sigma / (cutoff + skin))))))))))) * ((((((sqrt
↪→ ((((sigma / (cutoff + skin))**12))))**1 / 3))**3)) - (sqrt(((sigma / (
↪→ cutoff + skin)) * ((sigma / (cutoff + skin)) * ((sigma / (cutoff + skin))
↪→ * ((sigma / (cutoff + skin)) * ((sigma / (cutoff + skin)) * (sigma / (
↪→ cutoff + skin)))))))))))

28
29 topo = create_topology(bcdef, ghost_size=<#cutoff + skin#>)
30
31 ! -- creating particle set --------------------
32 parts = create_particles(topo, ghost_size=<#cutoff + skin#>)
33
34 call parts%apply_bc(info)
35 global_mapping(parts, topo)
36
37 v = create_property(parts, 3, "velocity", zero=true)
38 a = create_property(parts, 3, "acceleration", zero=true)
39 F = create_property(parts, 3, "force", zero=true)
40 E = create_property(parts, 1, "energy", zero=true)
41
42 ghost_mapping(parts)
43 ! -- end: creating particle set ----------------
44
45 nlist = create_neighlist(parts, skin=<#skin#>, cutoff=<#cutoff#>, sym=<#.false

↪→ .#>)
46
47 call parts%apply_bc(info)
48
49 st = 0
50
51 !print([E=>parts, v=>parts, F=>parts], 100)
52 t = timeloop()
53 foreach p in particles(parts) with positions(x, writex=true) sca_props(E)

↪→ vec_props(F, a, v)
54 a_p(:) = F_p(:) / mass
55 x_p(:) = (1 * (((delta_t * a_p(:)) * (delta_t * 0.5_mk)) + ((v_p(:) * delta_t

↪→) + x_p(:))))
56 F_p(:) = 0.0_mk
57 E_p = 0.0_mk
58 end foreach
59
60 call parts%apply_bc(info)

98

61 partial_mapping(parts)
62 ghost_mapping(parts)
63 comp_neighlist(parts)
64
65 foreach p in particles(parts) with positions(x) sca_props(E) vec_props(F)
66 foreach q in neighbors(p, nlist) with positions(x)
67 r_pq(:) = x_p(:) - x_q(:)
68 r_s_pq2 = (r_pq(1)**2) + (r_pq(2)**2) + (r_pq(3)**2)
69 if (((((sigma**12)) / (r_s_pq2 * (r_s_pq2 * (r_s_pq2 * (r_s_pq2 * (r_s_pq2

↪→ * (r_s_pq2 * r_s_pq2))))))) < 2.487388931824139d-282)) then
70 dF(:) = ((-(24.0_mk * epsilon)) * (r_pq(:) * (((sqrt(((sigma * (sigma * (

↪→ sigma * (sigma * (sigma * sigma))))) / (r_s_pq2 * (r_s_pq2 * (
↪→ r_s_pq2 * r_s_pq2))))))**2))))

71 else
72 dF(:) = (((24.0_mk * epsilon) * r_pq(:)) * ((2.0_mk * (((sigma**12)) / (

↪→ r_s_pq2 * (r_s_pq2 * (r_s_pq2 * (r_s_pq2 * (r_s_pq2 * (r_s_pq2 *
↪→ r_s_pq2)))))))) - 0))

73 end if
74 F_p(:) = F_p(:) + dF(:)
75 if ((r_s_pq2 < -2.5113679430174213d-57)) then
76 E_p = ((E_p - E_prc) + (-((4 / epsilon) * ((sigma * (sigma * (sigma * (

↪→ sigma * (sigma * sigma))))) / ((r_s_pq2**3))))))
77 else
78 if ((r_s_pq2 < 2.2370121346542206d+46)) then
79 E_p = ((E_p - E_prc) + ((((-epsilon) * (sigma * (sigma * (sigma * (

↪→ sigma * (sigma * sigma)))))) / (1 / ((r_s_pq2**3)))) * 4))
80 else
81 E_p = ((E_p - E_prc) + (-((4 / epsilon) * ((sigma * (sigma * (sigma * (

↪→ sigma * (sigma * sigma))))) / ((r_s_pq2**3))))))
82 end if
83 end if
84 end foreach
85 end foreach
86
87 foreach p in particles(parts) with positions(x) vec_props(F, a, v)
88 v_p(:) = v_p(:) + 0.5_mk * (a_p(:) + F_p(:) / mass) * delta_t
89 end foreach
90 t = t + delta_t
91
92 ghost_mapping(parts)
93
94 Ev_tot_old = Ev_tot
95 Ep_tot_old = Ep_tot
96 E_tot = 0.0_mk
97 Ev_tot = 0.0_mk
98 Ep_tot = 0.0_mk
99 foreach p in particles(parts) with positions(x) sca_props(E) vec_props(v)

100 Ev_tot = Ev_tot + 0.5_mk * mass * ((v_p(0)**2) + (v_p(1)**2) + (v_p(2)**2))
101 Ep_tot = Ep_tot + E_p
102 end foreach
103 Ep_tot = Ep_tot * 0.5_mk
104 E_tot = Ev_tot + Ep_tot
105
106 !write(*, ’(I7, 3E17.8)’), st, E_tot, Ev_tot, Ep_tot
107 !print([E=>parts, v=>parts, F=>parts], 100)
108
109 st = st + 1
110 end timeloop
111 !print([E=>parts, v=>parts, F=>parts], 100)
112 ! end phase all-in-one
113
114 ppm_finalize()
115 end client

Listing B.8: benchmarks/lj/herbie/lj.ppm — Generated PPM client
code for the Lennard-Jones case study as used in the benchmark.

99

List of Figures
2.1 Direct procedure implementation using a DSL. .. 4
2.2 Schematic view of projectional editing. ... 6
2.3 Overview of aspects of MPS language definitions.. 8
2.4 Data abstractions in PPM. .. 10
2.5 The PPM software stack. .. 11
2.6 The PPML framework. .. 12

3.1 PPME is an access layer for the PPM library.. 14
3.2 PPME is built using a modular layered architecture approach.............................. 14
3.3 Transformation and generation pipeline of PPME... 17
3.4 Transformation of random number expressions to variable references. 20
3.5 Replacement of annotated expressions in the AST. ... 24
3.6 [LJ] The module definition and referenced runtime constants. 25
3.7 [LJ] Initialization of topology, particles, and neighbor list. 26
3.8 [LJ] The simulation loop computing pairwise interactions of particles. 27
3.9 [LJ] Computation of total energy over all particles. .. 27
3.10 [LJ] Visualization of the Lennard-Jones potential... 28
3.11 [GS] Module definition and referenced runtime constants.................................... 28
3.12 [GS] Initialization of topology, particle list, and neighbor list................................. 29
3.13 [GS] Simulation loop with ODE... 30
3.14 [GS] Visualization of the Gray-Scott reaction-diffusion system............................. 30

4.1 The hierarchy of base types TBase .. 33
4.2 The domain-specific type extensions TPPM . .. 34
4.3 Class diagram of the unit specification implementation in PPME. 49
4.4 Physical units for the Lennard-Jones case study. ... 52
4.5 Improved mdoel of phyiscal-unit specifications with rational exponents. 53

5.1 Enrichment of an AST with rules of associativity and product propagation. 56
5.2 Enrichment of an APEG with abstraction boxes [IM12, Figure 4]. 57
5.3 Examples for horizontal and vertical expansion [IM12, Figure 7].......................... 58
5.4 Herbie’s process for improving program accuracy [Pan+15, Figure 1]. 59
5.5 Configuration panel for the Herbie integration in PPME. 61
5.6 Mockup of Herbie’s report integrated into PPME. ... 61
5.7 Editor intention to toggle Herbie analysis on an expression. 63

101

5.8 The HerbieConfiugartion class... 63
5.9 Sequence diagram for the execution of a Herbie analysis.................................... 64
5.10 The HerbieRunResult class and its super class RunResult. 65
5.11 Inspection view of an annotated expression. .. 65
5.12 Herbie improvements for GS-01. .. 68
5.13 Herbie improvements for GS-02. .. 68
5.14 [LJ] Visual comparison of the concentration of V 69
5.15 [LJ] Visual comparison of the force values f2. ... 70
5.16 Herbie improvements for LJ-01. ... 71
5.17 Herbie improvements for LJ-02. ... 71
5.18 Herbie improvements for LJ-03. ... 72
5.19 Herbie improvements for LJ-04. ... 72
5.20 Interval specifications for variables in Herbie-annotated expression. 73
5.21 Runtime comparison for the Gray-Scott case study. ... 73
5.22 Runtime comparison for the Lennard-Jones case study. 74

6.1 Current transformation and generation pipeline of PPME. 78
6.2 Improvement transformation pipeline with optional target language..................... 78

102

List of Listings
3.1 The mapping configuration of de.ppme.modules. ... 17
3.2 Textgen specification for PartLoopsMacro. ... 18
3.3 Excerpt from the mapping script replaceRandoms. ... 19
3.4 Excerpt from the mapping script transformForEachStatements. 20
3.5 Comparison of particle loop in PPME (left) and in PPML (right)........................... 21
3.6 Extraction of differential operators via populateRHS. ... 21
3.7 Assembly of differential operators... 22
3.8 Transformation of particle list accesses to direct particle accesses...................... 22
3.9 ODE specification in PPME and right-hand side specification in PPML. 23
3.10 Removal of annotated physical units from expressions and types........................ 23
3.11 The mapping script HerbieOptimizations. .. 24
3.12 Target source code generated from the particle creation statement. 29
3.13 Target source code generated from the simulation loop. 30

4.1 Type inference rule for binary operations.. 42
4.3 Subtyping rule for the immediate supertypes of Integer. 42
4.2 Type resolution rules for overloaded binary expressions 43
4.4 Replacement rule for capturing covariant subtyping on vector types.................... 44
4.5 Overloading rule for addition and subtraction of unit annotated operands............ 50
4.6 Implementation of unit specification expansion. ... 50
4.7 Implementation of the unit simplification. .. 51
4.8 Implementation of unit matching. .. 51

5.1 Example of Herbie’s command line output.. 62
5.2 ANTLR grammar specification for Herbie’s output format..................................... 66
5.3 Herbie analysis and its representation in PPME... 67

A.1 de.ppme.modules.generator/replaceRandoms... 83
A.2 de.ppme.modules.generator/transformForEachStatements 84
A.3 de.ppme.modules.generator/populateRHS ... 85
A.4 de.ppme.analysis.generator/HerbieOptimizations............................ 88
A.5 de.ppme.physunits/PhysicalUnitConversions.java............................ 89

B.1 benchmarks/gs/Ctrl ... 91
B.2 benchmarks/gs/benchmark.py.. 92

103

B.3 benchmarks/gs/orig_4000/gs.ppm ... 93
B.4 benchmarks/lj/herbie_4000/gs.ppm ... 94
B.5 benchmarks/lj/Ctrl ... 95
B.6 benchmarks/lj/benchmark.py.. 95
B.7 benchmarks/lj/orig/lj.ppm .. 97
B.8 benchmarks/lj/herbie/lj.ppm.. 99

104

List of Tables
4.1 Literals for the primitive types in PPME and their notational agreements............. 34
4.2 Variables and their notation. ... 35
4.3 Type inference table for the binary multiplication operators + and −. 39
4.4 Type inference table for the binary multiplication operator ∗. 39
4.5 Type inference table for the binary division operator /.. 39
4.6 Type inference table for the exponentiation operation ab. 39

5.1 Translation of unary and binary operators between PPME and Herbie. 64
5.2 Translation of Herbie output to PPME expressions... 66

105

List of Abbreviations
APEG Abstract Program Equivalence Graph

AST Abstract Syntax Tree

DSL Domain-specific Language

EMF Eclipse Modeling Framework

EPEG Equivalence Program Expression Graphs

GPL General Purpose Language

GS Gray-Scott

HPC High-Performance Computing

IDE Integrated Development Environment

IR Intermediate Representation

LJ Lennard-Jones

LOP Language-Oriented Programming

MPS Meta Programming System

ODE Ordinary Differential Equation

PA Particle Access

PDE Partial Differential Equation

PLA Particle-List Access

PPM Parallel Particle Mesh library

PPML PPM Language

XML Extensible Markup Language

107

Bibliography
[ADS10] O. Awile, Ö. Demirel, and I. F. Sbalzarini. “Toward an object-oriented core

of the PPM library”. In: Proceedings of ICNAAM: International Conference
of Numerical Analysis and Applied Mathematics. 2010, pp. 1313–1316.

[AS16] Y. Afshar and I. F. Sbalzarini. “A Parallel Distributed-Memory Particle Method
Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy
Images”. In: PLoS ONE 11(4), (2016).

[Aus06] M. A. Austin. “Matrix and finite element stack machines for structural en-
gineering computations with units”. In: Advances in Engineering Software
37(8), (2006), pp. 544–559.

[Awi+13] O. Awile et al. “A domain-specific programming language for particle sim-
ulations on distributed-memory parallel computers”. In: Proceedings of
Particles: 3rd International Conference on Particle-based Methods. Funda-
mentals and Applications. 2013, pp. 436–447.

[Aya15] U. Ayachit. The ParaView Guide: A Parallel Visualization Application. Kit-
ware, Inc., 2015.

[BAS13] F. Büyükkeçeci, O. Awile, and I. F. Sbalzarini. “A portable OpenCL imple-
mentation of generic particle-mesh and mesh-particle interpolation in 2D
and 3D”. In: Parallel Computing 39(2), (2013), pp. 94–111.

[Bet15] L. Bettini. “Implementing type systems for the IDE with Xsemantics”. In:
Journal of Logical and Algebraic Methods in Programming 1, (2015), pp. 1–
26.

[Bür+11] C. Bürger et al. “Reference attribute grammars for metamodel semantics”.
In: Software Language Engineering, (2011), pp. 22–41.

[CFH06] P. Cook, C. Fidge, and D. Hemer. “Well-Measuring Programs”. In: 17th
Australian Software Engineering Conference 2006 (ASWEC’06). 2006,
pp. 253–261.

[CG88] R. F. Cmelik and N. H. Gehani. “Dimensional Analysis with C++”. In: IEEE
Software 5(May), (1988), pp. 21–27.

[Che60] T. E. Cheatham. “Handling fractions and n-tuples in algebraic languages”.
In: Communications of the ACM 3(7), (1960), pp. 391–391.

109

[Clé+86] D. Clément et al. “A Simple Applicative Language: Mini-ML”. In:Proceedings
of the 1986 ACMConference on LISP and Functional Programming, (1986),
pp. 13–27.

[CPS12] J. Cardinale, G. Paul, and I. F. Sbalzarini. “Discrete Region Competition
for Unknown Numbers of Connected Regions”. In: IEEE Trans. Image
Processing 21(8), (2012), pp. 3531–3545.

[DD94] C. J. Date and H. Darwen. A guide to the SQL standard: a user’s guide to
the standard relational language SQL. Addison-Wesley, 1994.

[DHK84] V. Donzeau-Gouge, G. Huet, and G. Kahn. “Programming Environments
based on Structured Editors: The MENTOR Experience”. In: Interactive
Programming Environments. 1984, pp. 128–140.

[DK98] A. van Deursen and P. Klint. “Little languages: little maintenance?” In:
Journal of Software Maintenance 10(2), (1998), pp. 75–92.

[DKV00] A. van Deursen, P. Klint, and J. Visser. “Domain-specific languages: an
annotated bibliography”. In: ACM Sigplan Notices 35(June), (2000), pp. 26–
36.

[Dmi04] S. Dmitriev. “Language Oriented Programming: The Next Programming
Paradigm”. In: JetBrains onBoard (November), (2004).

[EB10] M. Eysholdt and H. Behrens. “Xtext: implement your language faster than
the quick and dirty way”. In: Proceedings of OOPSLA ’10: Conference
on Object-Oriented Programming Systems, Languages, and Applications.
2010, pp. 307–309.

[EH07] T. Ekman and G. Hedin. “The JastAdd Extensible Java Compiler”. In: ACM
SIGPLAN Notices 42(10), (2007).

[Erd+13] S. Erdweg et al. “The State of the Art in Language Workbenches”. In:
Software Language Engineering SE - 11. 2013, pp. 197–217.

[Fow05] M. Fowler. Language Workbenches: The Killer-App for Domain Specific
Languages? 2005. url: http://martinfowler.com/articles/
languageWorkbench.html (visited on 07/27/2016).

[Fow10] M. Fowler. Domain-specific Languages. Addison-Wesley Professional,
2010.

[FS01] D. Frenkel and B. Smit. Understanding molecular simulation : from algo-
rithms to applications. Elsevier, 2001.

[Geh77] N. H. Gehani. “Units of Measure as a Data Attribute”. In: Comput. Lang.
2(3), (1977), pp. 93–111.

[GLT99] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced Features of the
Message Passing Interface. MIT Press, 1999.

[Gre+15] S. Grewe et al. “Type Systems for the Masses: Deriving Soundness Proofs
and Efficient Checkers”. In: (2015), pp. 137–150.

[GS84] P. Gray and S. K. Scott. “Autocatalytic reactions in the isothermal, continuous
stirred tank reactor. Oscillations and instabilities in the system A + 2B -> 3B;
B -> C”. In: Chemical Engineering Science 39(6), (1984), pp. 1087–1097.

110

http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html

[Hei+11] F. Heidenreich et al. “Model-Based Language Engineering with EMFText”.
In: Generative and Transformational Techniques in Software Engineering
IV, International Summer School, GTTSE 2011. Revised Papers. 2011,
pp. 322–345.

[Her16] Herbie - Documentation. Herbie Input Format. 2016. url: http://
herbie.uwplse.org/doc/input.html (visited on 04/23/2016).

[HM95] I. J. Hayes and B. P. Mahony. “Using units of measurement in formal
specifications”. In: Formal Aspects of Computing 7(3), (1995), pp. 329–
347.

[Hoc70] R. W. Hockney. “The potential calculation and some applications”. In:
Methods in Computational Physics 9, (1970), pp. 135–211.

[Hou83] R. T. House. “A Proposal for an Extended Form of Type Checking of
Expressions”. In: The Computer Journal 26(4), (1983), pp. 366–374.

[Hsu+08] S. H. Hsu et al. “A domain-specific compiler theory based framework
for automated reaction network generation”. In: Computers and Chemical
Engineering 32(10), (2008), pp. 2455–2470.

[Hud96] P. Hudak. “Building Domain-specific Embedded Languages”. In: ACM
Comput. Surv. 28(December), (1996).

[IEE08] IEEE Standards Committee. 754-2008 IEEE standard for floating-point
arithmetic. 2008.

[IM12] A. Ioualalen and M. Martel. “A new abstract domain for the representation
of mathematically equivalent expressions”. In: Static Analysis, (2012).

[Kar+15] S. Karol et al. Towards a Next-Generation Parallel Particle-Mesh Language.
2015.

[Ken94] A. Kennedy. “Dimension Types”. In: Esop 788, (1994), pp. 348–362.

[Ken97] A. J. Kennedy. “Relational parametricity and units of measure”. In: Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages - POPL ’97 1(January), (1997), pp. 442–455.

[KK98] G. Karypis and V. Kumar. “A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs”. In: SIAM Journal on Scientific Computing
20(1), (1998), pp. 359–392.

[KL78] M. Karr and D. B. Loveman. “Incorporation of units into programming
languages”. In: Communications of the ACM 21(5), (1978), pp. 385–391.

[Kos+12] G. Kossakowski et al. “JavaScript as an Embedded DSL”. In:ECOOP 2012 –
Object-Oriented Programming: 26th European Conference, Beijing, China,
June 11-16, 2012. Proceedings. 2012, pp. 409–434.

[KV10] L. C. Kats and E. Visser. “The Spoofax Language Workbench”. In: ACM
SIGPLAN Notices 45(10), (2010).

[LMB92] J. R. Levine, T. Mason, and D. Brown. Lex & Yacc. O’Reilly, 1992.

[LR11a] D. H. Lorenz and B. Rosenan. “Cedalion: a language for language ori-
ented programming”. In: Proceedings of the 26th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and

111

http://herbie.uwplse.org/doc/input.html
http://herbie.uwplse.org/doc/input.html

Applications, OOPSLA 2011, part of SPLASH 2011. (Oct. 22, 2011). 2011,
pp. 733–752.

[LR11b] D. H. Lorenz and B. Rosenan. “Code Reuse with Language Oriented
Programming”. In: 12th International Conference on Software Reuse, ICSR
2011. 926. 2011, pp. 167–182.

[Lup+15] F. Luporini et al. “Cross-Loop Optimization of Arithmetic Intensity for Finite
Element Local Assembly”. In: ACM Transactions on Architecture and Code
Optimization 11(4), (2015).

[LW91] M. S. Lam and M. E. Wolf. “A Data Locality Optimizing Algorithm”. In: Pro-
ceedings of the ACMSIGPLAN ’91 Conference on Programming Language
Design and Implementation. 4. 1991.

[Mar06] M. Martel. “Semantics of roundoff error propagation in finite precision
calculations”. In: Higher-Order and Symbolic Computation 19(1), (2006),
pp. 7–30.

[Mar09] M. Martel. “Program Transformation for Numerical Precision”. In: Pro-
ceedings of the 2009 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation. March. 2009, pp. 101–110.

[MHS05] M. Mernik, J. Heering, and A. M. Sloane. “When and how to develop domain-
specific languages”. In: ACM Computing Surveys 37(4), (2005), pp. 316–
344.

[Mon92] J. J. Monaghan. “Smoothed Particle Hydrodynamics”. In: Annual Review
of Astronomy and Astrophysics 30, (1992), pp. 543–574.

[MPS14] MPS - 3.2 - Documentation. Cookbook - Type System. 2014. url: https:
//confluence.jetbrains.com/display/MPSD32/Cookbook+-
+Type+System (visited on 03/22/2016).

[MPS15a] MPS - 3.2 - Documentation. Cookbook - Generator. 2015. url: https:
//confluence.jetbrains.com/display/MPSD32/Generator+
cookbook (visited on 06/22/2016).

[MPS15b] MPS - 3.2 - Documentation. TextGen. 2015. url: https://confluence.
jetbrains.com/display/MPSD32/TextGen (visited on 07/14/2016).

[MPS15c] MPS - 3.2 - Documentation. Typesystem. 2015. url: https : / /
confluence.jetbrains.com/display/MPSD32/Typesystem.

[MPS15d] MPS - 3.2 - Documentation. User’s Guide. 2015. url: https : / /
confluence.jetbrains.com/display/MPSD32/MPS+User’ s+
Guide (visited on 04/24/2016).

[Nar93] B. A. Nardi. A small matter of programming: perspectives on end user
computing. MIT Press, 1993.

[NCM03] N. Nystrom, M. Clarkson, and a.C. Myers. “Polyglot: An extensible compiler
framework for Java”. In: Proceedings of the 12th International Conference
on Compiler Construction (April), (2003), pp. 138–152.

[Öqv12] J. Öqvist. “Implementation of Java 7 Features in an Extensible Compiler”.
Master’s Thesis. Lund University, 2012.

112

https://confluence.jetbrains.com/display/MPSD32/Cookbook+-+Type+System
https://confluence.jetbrains.com/display/MPSD32/Cookbook+-+Type+System
https://confluence.jetbrains.com/display/MPSD32/Cookbook+-+Type+System
https://confluence.jetbrains.com/display/MPSD32/Generator+cookbook
https://confluence.jetbrains.com/display/MPSD32/Generator+cookbook
https://confluence.jetbrains.com/display/MPSD32/Generator+cookbook
https://confluence.jetbrains.com/display/MPSD32/TextGen
https://confluence.jetbrains.com/display/MPSD32/TextGen
https://confluence.jetbrains.com/display/MPSD32/Typesystem
https://confluence.jetbrains.com/display/MPSD32/Typesystem
https://confluence.jetbrains.com/display/MPSD32/MPS+User's+Guide
https://confluence.jetbrains.com/display/MPSD32/MPS+User's+Guide
https://confluence.jetbrains.com/display/MPSD32/MPS+User's+Guide

[Pan+15] P. Panchekha et al. “Automatically Improving Accuracy for Floating Point
Expressions”. In: PLDI’15. 6. 2015, pp. 1–11.

[Par13] T. Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2013.

[Plo04] G. D. Plotkin. “The origins of structural operational semantics”. In: Journal
of Logic and Algebraic Programming 60-61(SUPPL.), (2004), pp. 3–15.

[Plo81] G. D. Plotkin. “A Structural Approach to Operational Semantics”. In: Techre-
port (DAIMI FN-19), (1981).

[Rat+12] D. Ratiu et al. “Implementing modular domain specific languages and
analyses”. In: Proceedings of the Workshop on Model-Driven Engineering,
Verification and Validation - MoDeVVa ’12. 2012, pp. 35–40.

[RO12] T. Rompf and M. Odersky. “Lightweight Modular Staging”. In: Communica-
tions of the ACM 55(6), (2012), p. 121.

[Ros10] B. Rosenan. “Designing language-oriented programming languages”. In:
Proceedings of OOPSLA ’10: Conference on Object-Oriented Program-
ming Systems, Languages, and Applications. 2010, pp. 207–208.

[Sam69] J. E. Sammet. Programming languages: history and fundamentals.
Prentice-Hall, 1969.

[Sba+06] I. F. Sbalzarini et al. “PPM - A highly efficient parallel particle-mesh library for
the simulation of continuum systems”. In: Journal of Computational Physics
215(2), (2006), pp. 566–588.

[Sba09] I. F. Sbalzarini. “Abstractions and Middleware for Petascale Computing and
Beyond”. In: International Journal of Distributed Systems and Technologies
1(2), (2009), pp. 40–56.

[SCC06] C. Simonyi, M. Christerson, and S. Clifford. “Intentional software”. In:
Proceedings of the 21th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
2006. (Oct. 22, 2006). 2006, pp. 451–464.

[SH11] E. Söderberg and G. Hedin. “Building semantic editors using JastAdd:
tool demonstration”. In: Proceedings of LDTA ’11: Language Descriptions,
Tools and Applications. (Mar. 26, 2011). 2011.

[Tat+11] R. Tate et al. “Equality Saturation: A New Approach To Optimization”. In:
Logical Methods in Computer Science 7(1), (2011), pp. 1–37.

[Umr94] Z. D. Umrigar. “Fully static dimensional analysis with C++”. In: ACM SIG-
PLAN Notices 29(9), (1994), pp. 135–139.

[Ver67] L. Verlet. “Computer "Experiments" on Classical Fluids. I. Thermodynamical
Properties of Lennard-Jones Molecules”. In: Phys. Rev. 159(1), (1967),
pp. 98–103.

[Voe+12] M. Voelter et al. “mbeddr: an extensible C-based programming language
and IDE for embedded systems”. In: Proceedings of the 3rd annual confer-
ence on Systems, programming, and applications: software for humanity -
SPLASH ’12. 2012.

113

[Voe+13] M. Voelter et al. “mbeddr: Instantiating a language workbench in the embed-
ded software domain”. In: Automated Software Engineering 20(3), (2013),
pp. 339–390.

[Voe11] M. Voelter. “Language and IDE Modularization and Composition with MPS”.
In: Generative and Transformational Techniques in Software Engineering
IV: International Summer School, GTTSE 2011, Braga, Portugal, July 3-9,
2011. Revised Papers. 2011, pp. 383–430.

[Voe14] M. Voelter. “Generic Tools, Specific Languages”. PhD thesis. TU Delft, Delft
University of Technology, 2014.

[War94] M. P. Ward. “Language Oriented Programming”. In: Software Concepts
and Tools 15(4), (1994), pp. 147–161.

[Wex81] R. L. Wexelblat. History of Programming Languages. 1981.

[WO91] M. Wand and P. O’Keefe. “Automatic Dimensional Inference”. In: Computa-
tional Logic - Essays in Honor of Alan Robinson, (1991), pp. 479–483.

114

Disk Content
The enclosed disk contains the source code implementations presented in this document
and the document source itself. The content is structured as follows:

File/Directory Content

2016_DA_Nett.pdf The PDF file of this document.

readme.txt A readme file with general information about the usage of
the contained files.

doc/ The LATEX sources of this document, including all figures.

doc/img/ The graphics and figures used throghout this document.

ppme/ The source code of PPME.

benchmark/ The benchmark setups and results.

115

	Title page
	Contents
	Introduction
	Motivation
	Contributions
	Organization

	Background
	Domain-specific Languages and Language Workbenches
	Embedded DSLs
	Language Workbenches

	Parallel Particle-Mesh Methods
	Parallel Particle Mesh Library (PPM)
	Parallel Particle-Mesh Language (PPML)

	The PPM Environment (PPME)
	Architecture
	Code Generation
	Main Transformations and Code Generation
	Physical Unit Transformations
	Transformations for external analysis

	Case Studies
	Lennard-Jones Potential
	Gray-Scott Reaction-Diffusion System

	Types and Units
	The PPME Type System
	Types in PPMEPPME
	Type Inference
	Typing Errors
	Implementation in PPMEPPME

	Physical Unit Annotations
	Units in PPMEPPME
	The PhysUnits Extension
	Evaluation of the Physical Unit Extension

	Numerical Optimizations
	Program Equivalence Graphs
	Formal Definition
	Construction
	Exploration

	Herbie — Automatically Improving Floating-Point Accuracy
	Integration into PPMEPPME
	Discussion

	Evaluation And Outlook On Future Work
	Review of Contributions
	Maturity of MPS
	Base Languages and Generators
	A Roadmap for PPME

	Appendices
	Listings
	PPME Generator Scripts
	Physical-Unit Conversion

	Benchmarks
	Gray-Scott Case Study
	Lennard-Jones Case Study

	List of Figures
	List of Listings
	List of Tables
	List of Abbreviations
	Bibliography
	Disk Content

