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1. Introduction

1.1. Motivation

Nowadays, healthcare institutions collect a large amount of data about their patientslike medical-treatment protocols and surgical reports. This patient data is highly con-fidential and strict data-protection requirements apply [20]. Consequently, sharingand aggregation of patient data with research institutions are very complicated dueto regulatory reasons. Fully homomorphic encryption (FHE) combined with proxy re-encryption (PRE) can enable researchers to combine their patient-data records with-out sharing them in plaintext. FHE schemes are special encryption schemes that en-able performing operations on encrypted data without intermediate decryption [22].Proxy re-encryption (PRE) enables the transformation of ciphertexts encrypted underone key into ciphertexts of the same plaintexts but encrypted under a different keywithout intermediate decryption [6]. In combination, FHE and PRE enable computa-tions on distributed data sets that are encrypted under different encryption keys [30].Therefore, it allows analyzing distributed patient-data sets and gaining more signif-icant insights. For example, with larger data sets, more accurate information aboutcorrelations between genomemutations and properties of tumors can be identified.That can enable researchers to develop more specific treatment methods againstthe tumors [37, 27].Developing efficient FHE applications with PRE is challenging and requires crypto-graphic expertise. Compilers can help developers by automating tasks like parame-terization and the efficient use of re-encryptions. A few compilers that aim to improvethe development process of FHE programs have been proposed in the past. For FHEexist a variety of compilers that aims to improve the developer experience. However,compiler support for PRE is currently not present.

1.2. Objectives

This work aims to study methods of utilizing proxy re-encryption to enable cloud-based privacy-preserving computations using FHE such that inputs can be encryptedunder different encryption keys. Therefore, the main objective of this thesis is to de-sign and implement an extension of the HElium FHE compiler to support PRE. Dueto the fact that single proxy re-encryptions can be expected to add a fair amount ofcomputational overhead to FHE-based programs, the main focus of this extension is
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1. Introduction

to enable the efficient use of PRE. Furthermore, the resulting compiler has to be eval-uated to analyze the impact of PRE. This includes the effect of PRE on the executionruntime of FHE programs and the identification of opportunities for further optimiza-tion. Based on the evaluation results, this thesis will address further optimizationsand point out future work.

1.3. Structure

This section provides a brief overview of the structure of this work. First, Chap-ter 2 presents required preliminary information about fully homomorphic encryption(FHE) and proxy-re-encryption (PRE). Thereafter, related work is discussed in Chap-ter 3. Chapter 4 elaborates the computation scenario for computations with FHE andPRE and derives requirements. Within the scope of the scenario, Chapter 5 presentsdesign concepts of a PRE integration into the HElium compiler. Subsequently, theconcepts are implemented in Chapter 6. The resulting implementation is then eval-uated in Chapter 7. This evaluation provides valuable findings for the following elab-oration of further optimization opportunities in Chapter 8. The findings and resultsof this work are concluded in Chapter 9.

2



2. Preliminaries
This chapter provides the required preliminaries for this work. This includes an intro-duction to fully homomorphic encryption (FHE), proxy re-encryption (PRE), and theHElium compiler.

2.1. Fully Homomorphic Encryption

Encryption schemes consist of three main components: a key-generation function
KeyGen(·), an encryption function E(·), and a decryption function D(·) [33]. The (prob-abilistic) key generation function KeyGen(·) takes as input a security parameter λ andyields an encryption key, denoted by kenc, as well as a decryption key, denoted by
kdec, as shown in Equation (2.1). The (probabilistic) encryption function E(·) takes asinput the encryption key pk and the message, denoted by m ∈ M, that is to be en-crypted, and yields a ciphertext c ∈ C as depicted in Equation (2.2). M and C denotethe plaintext space and ciphertext space, respectively. In contrast, the decryptionfunction D(·) yields the plaintext messagem ∈ M. It takes as input the decryption key
sk and the ciphertext c ∈ C, like shown in Equation (2.3).

(kdec, kenc)← KeyGen(λ) (2.1)
c← E(m, kenc) (2.2)
m← D(c, kdec) (2.3)

In asymmetric encryption schemes, the encryption key kenc is public. Therefore, it istypically referred to as public key pk. Whereas the decryption key is secret and there-fore referred to as secret key sk [33]. In symmetric schemes, the same secret key skis used for encryption and decryption. For simplicity, encryption and decryption canbe denoted by c = E(m) and m = D(c), respectively.Homomorphic Encryption (HE) is a special type of encryption scheme that allowscomputations on ciphertexts [22]. That means that performing an operation ⊚ on aciphertext yields a ciphertext of the result of the corresponding homomorphic oper-ation ◦ applied to the plaintexts, as shown in Equation (2.4) [1].
a ◦ b = D(E(a)⊚ E(b)) (2.4)

HE schemes can have different homomorphic properties and therefore support dif-ferent operations on encrypted data. Four different types of HE schemes exist [1].
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2. Preliminaries

Homomorphic encryption schemes that have only one homomorphic property arereferred to as partially homomorphic encryption (PHE) schemes. They support, e.g.,either multiplicative or additive homomorphic operations. Somewhat homomorphicencryption (SHE) schemes support two types of operations, typically addition andmultiplication. However, SHE schemes only allow a limited number of operations anda particular type of circuits. Leveled fully homomorphic encryption (LFHE) schemesalso provide two homomorphic operations. These schemes can evaluate arbitrarycircuits with bounded depth depending on certain parameters of the scheme. Fullyhomomorphic encryption (FHE) schemes can perform an arbitrary number of twodifferent homomorphic operations, e.g., additions and multiplications.
The RSA scheme introduced by Rivest, Shamir, and Adleman in [31] is an examplefor multiplicative PHE schemes. In RSA, the multiplication of two ciphertexts yields aciphertext of the multiplication of the corresponding plaintexts, as depicted in Equa-tion (2.5).

a · b = D(E(a) · E(b)) (2.5)
In contrast, the PHE cryptosystem introduced by Pallier in [28] is additively homomor-phic. As shown in Equation (2.6), amultiplication of two ciphertexts yields a ciphertextof the sum.

a + b = D(E(a) · E(b)) (2.6)
In 2009, Gentry proposed the first FHE scheme [22]. In the following years, a varietyof schemes were presented. Similar to Gentry’s approach, modern FHE schemesfollow a similar pattern: In these schemes, the public key is an element that cancelsout to zero when combined with the corresponding secret key [35].
To ensure security, a small error is added to the message that is referred to asnoise. If the noise is small enough, the initial message can be reconstructed correctly.Homomorphic operations cause noise growth. If the noise exceeds some limit, themessage can not be reconstructed, i.e., the ciphertext cannot be decrypted correctly.Therefore, this construction only supports a limited number of operations. To over-come this problem, a function, called Bootstrapping, is introduced by Gentry [22].This computationally complex operation reduces the noise of a ciphertext. In theBootstrapping operation, the decryption function of the encryption scheme is trans-lated into a circuit. The bootstrapping circuit is homomorphically evaluated given theencrypted secret key of the encryption system and the ciphertext. This yields freshencryption of the plaintext. In this context, fresh means that the resulting cipher-text contains less noise than the input ciphertext of the Bootstrapping algorithm.Therefore, further operations can be applied to the fresh ciphertext. Consequently,such a scheme can evaluate an arbitrary number of computation gates. Thus, suchconstruction is an FHE scheme built from a SHE scheme and a corresponding Boot-strapping operation.
However, Gentry’s initial FHE scheme is not suitable for practical applications dueto high computational complexity [23]. More recent FHE schemes are much moreefficient. In [9], Brakerski, Gentry, and Vaikuntanathan presented a more recent SHEscheme based on the ring learning with errors (RLWE) problem. This and followingschemes like BFV [21] and CKKS [12] improved the growth of noise during homo-morphic operations. This allows performing larger circuits without Bootstrapping.Furthermore, they introduced batching, the packing of multiple plaintexts into oneciphertext [34]. Batching allows computations in a SIMD fashion, i.e., an operation isapplied to multiple elements simultaneously. Therefore, this technique can improvethe efficiency of a program.

4



2.1. Fully Homomorphic Encryption

2.1.1. Encryption Schemes and Implementations

Table 2.1.: Overview of FHE Libraries with Supported Schemes and Availability ofBootstrapping & Batching
Implementation
Library Scheme Type of operations Supports

Bootstrap.
Supports
Batching PRE

HEAAN CKKS approx. arithmetic yes yes no
HELib CKKS approx. arithmetic no yes noBGV arithmetic yes yes no
SEAL CKKS approx. arithmetic no yes noBFV arithmetic no yes no
Palisade BFV arithmetic no yes yesBGV arithmetic no yes yesCKKS arithmetic no yes yesTFHE Boolean yes no no
TFHE TFHE Boolean yes no no
Concrete TFHE Boolean & arithmetic yes yes no

Since Gentry’s seminal work [22], various encryption schemes were proposed [9,12, 14]. These schemes can be divided into two groups. The first group is schemesderived from the BGV [9] scheme. They are optimized for fast arithmetic calculations.Recent schemes support techniques like Batching and provide highly efficient integeror fixed-point operations [8, 12]. Since they allow batching of ciphertexts, computa-tions can have a high throughput which can be beneficial, for example, in machine-learning scenarios. However, the existing bootstrapping algorithms of these schemeshave high computational complexity. Fortunately, these schemes can be used in aleveled mode, i.e., with encryption parameters that allow the necessary amount ofcomputations without intermediate bootstrapping. The amount of levels dependson the complexity and the structure of the problem.The second group is derived from the GSW scheme [24] and is optimized for boo-lean operations and fast bootstrapping. Due to the existence of efficient algorithms,bootstrapping can be applied after each operation. Therefore, the encryption pa-rameters are independent of the depth and structure of the circuit. This allows com-putations of circuits of arbitrary depth. However, these schemes do not supportbatching, since it is incompatible with the fast bootstrapping approach [14]. As GSW-based schemes like TFHE are optimized for Boolean operations, i.e., they provide op-erations in GF(2), higher-level integer operations must be constructed from Booleanoperations.Table 2.1 provides an overview of FHE libraries and their supported encryptionschemes.
2.1.2. Computation Scenario

HE and especially FHE has a wide range of applications. One promising use case is theapplication of machine learningmodels. Let there be two participants: Party A holds a

5



2. Preliminaries

data set and Party B has a data model that provides further analysis of As data. How-ever, the data set of Party Amay be confidential and the data model of Party B a tradesecret. HE enables such computations. It allows to prevent the revealing of data of
Party A and does not require direct access to the model of Party B. Figure 2.1 depictssuch a computation of a function f (·) in an abstract form. It shows three parties: Party

Party S Party R

Applies  homomorphically

Party C

Figure 2.1.: Abstract FHE Scenario

S, Party R, and Party C. Party A represents the provider of data, i.e., the message m.It holds a public key pkR to encrypt its message m. Party B is the receiving party. Itholds the secret key skR, gets the computation results, and decrypts the ciphertextto retrieve the result of f (m). Party C is placed between the others. It receives the en-crypted message from Party S. Then, it performs the homomorphic computation of
f (m) without intermediate decryption and sends the resulting ciphertext to Party R. Inpractical applications, Party S and Party R can be represented by one participant. Forexample, this is the case for the previously presented application. In this use case,
Party A acts as the sender of the message and receiver of the results too. Similarly,
Party C represents the computation party.

2.1.3. The BFV Scheme

A promising FHE scheme is the Fan-Vercauteren variant [21] of Brakerski’s scale-invariant scheme [9]. It is referred to as Brakerski-Fan-Vercauteren (BFV) scheme.BFV performs operations over polynomial rings and is based on the assumed hard-ness of the Ring Learning With Errors (RLWE) problem. Its security relies on addinga small error component (noise) during encryption. Taking the notation of [25], text-book BFV can be formalized as follows.
In the following section, operations modulo b are denoted by [a]b. Vectors arehighlighted by bold text if not stated otherwise. Furthermore, rounding down, up,and to the nearest integer is denoted by ⌊a⌋,⌈a⌉, and ⌊a⌉, respectively. Samplingsome a from a distribution D is denoted by a← D.
Let R = Z[X]/⟨f (X )⟩ be a ring such that f (X ) ∈ Z[X] is a monic irreducible polynomialof degree n, typically a cyclotomic polynomial. Arithmetic computations in R are per-formed modulo f (X ). The plaintext space is denoted by the quotient ring Rt = R/tR. Itis referred to the integer t ≥ 2 as the plaintextmodulus. Plaintexts in Rt are polynomi-als in R with coefficients in Zt . Similarly, the ciphertext space is denoted by Rq = R/qRwith the ciphertext modulus q ≫ t. Additionally, a decomposition base w ∈ Z isdefined to represent polynomials in Rq by l + 1 polynomials in base w and require

l = ⌊logwq⌋. Furthermore, let χe be a Gaussian distribution with expected value μ = 0and χk be a uniform distribution over {–1, 0, 1}n. The BFV scheme consists of fiveprocedures.

6



2.2. Proxy Re-Encryption

Key generation – G(κ,w): Sample a low-norm secret s U← χk and set sk = (1, s) ∈ R2.
Randomly choose a U← Rq and e

G← χe, compute b = [–(as + e)]
q
∈ Rq, and set pk =(pk[0],pk[1]) = (b, a). Additionally, G(·) outputs a public evaluation key evk, referredto as relinearization gadget. It is a set of l + 1 pairs of polynomials and is computed

for 0 ≤ i ≤ l as follows. First, sample ai U← Rq and noise ei G← χe. Then, set evk[i] =([wis2 – (ai · sk + ei)]q , ai). The output of G(κ,w) is the tuple (sk,pk, evk).
Encryption – Epk(m): Sample u U← R2 and e1, e2 G← χe. The encryption of m ∈ Rt is apair c = (c[0], c[1]) of elements in Rq. It is computed as

c = ([Δm + pk[0]u + e1]
q
, [pk[1]u + e2]

q
)

such that Δ = ⌊q
t
⌋.

Decryption – Dsk(c): To decrypt c and obtain m, compute
m = [⌊

t

q
[c[0] + c[1]sk]

q

⌉]
t

.

Homomorphic addition – EvalAdd(c1, c2): Given two ciphertexts c1, c2, the encryptedsum c1 ⊕ c2 of the underlying plaintexts is computed as
cadd = ([c1[0] + c2[0]]q , [c1[1] + c2[1]]q).

Homomorphic multiplication – EvalMultevk(c1, c2): Given two ciphertexts c1, c2, theencrypted product c1 ⊙ c2 of the underlying plaintexts is computed in two steps:tensoring and relinearization. For tensoring, compute
cmult0 = [⌊

t

q
c1[0] · c2[0]

⌉]
q

,
cmult1 = [⌊

t

q
(c1[0] · c2[1] + c1[1] · c2[0])

⌉]
q

,
cmult2 = [⌊

t

q
c1[1] · c2[1]

⌉]
q

.
For relinearization, first decompose cmult2 in base w such that cmult2 = ∑l

i=0 c(i)mult2wi.Then, compute the result
cmult = (cmult[0], cmult[1]) as follows for j ∈ {0, 1}.

cmult[j] = [
cmultj +

l∑
i=0 evk[i][j]c

(i)
mult2

]
q

2.2. Proxy Re-Encryption

Re-encryption transforms a ciphertext c1 = Epk1 (m) encrypted under a key pk1 intoa ciphertext c2 = Epk2 (m) of the same plaintext, encrypted under a different key pk2.Proxy re-encryption (PRE) allows an untrusted party to perform this transformation

7



2. Preliminaries

HElium DSL

Program Frontend IR Backend 

Selection

TFHE

Backend

Circuit

CKKS

Backend

Circuit

Figure 2.2.: Compiler Pipeline of HElium

without affecting confidentiality [6]. A standard construction to obtain a PRE schemefrom an FHE scheme is described in [22].Following the notation of [30], a PRE scheme is defined as a tuple
PRE = (PG, KG,ReGK , E,D,RE) of six procedures. Parameter generation PG(·) com-putes a set of public parameters related to the security parameter λ. The key gener-ation algorithm KG(·) outputs a key pair (pk, sk). Re-encryption-key generation ReKG(·)takes a secret key ski and a public key pkj ̸=i and computes a re-encryption key rki→j.The re-encryption algorithm RE(·) transforms a ciphertext ci of m encrypted under
pki into a ciphertext cj of m such that cj encrypts m under pkj ̸=i. E(·) and D(·) denoteencryption and decryption algorithms, respectively.

2.3. HElium Compiler

The HElium compiler is a compiler prototype for FHE. It compiles programs that arewritten in an external DSL into computation graphs that are compatible to FHE im-plementations. Its main contribution is an automatic encryption scheme selection.Figure 2.2 depicts the internal compiler stages of HElium. First the program is parsedby the frontend and an abstract syntax tree (AST) is built. Thereafter, the AST is con-verted to an intermediate representation (IR). A backend-selection stage analyzes theIR and selects a suitable backend for further compilation. Helium comprises two dif-ferent backends: a backend targeting Boolean circuits and an arithmetic backend.The following subsections provide further information about the stages of the HE-lium compiler.
2.3.1. HElium Domain-Specific Language

The HElium compiler provides its own domain-specific language (DSL). The type sys-tem of HElium consists of three base types: signed integer, unsigned integer, andfloating-point numbers. These base types are configurable, i.e., their size could beadjusted to the developer’s needs. By using these type parameters other types couldbe constructed. For example, a Boolean type could be represented through an un-signed integer of length 1, i.e., int<1>. The type system further differentiates betweenencrypted and plaintext data. Each variable is defined as encrypted per default if it isnot annotated with the qualifier plain. This behavior ensures security by default.HElium provides different types of operations: arithmetic operations, vector-specificoperations, Boolean operations, and comparison operations. These operations areexpressed by symbols. For a complete list of operations see Appendix A.1. All oper-ations are operating on vectors, i.e., they perform element-wise operations. Scalaroperands are treated as single-element vectors. In addition to operations, HElium
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2.3. HElium Compiler

provides built-in functions. For instance, the method size() returns the size of a vec-tor.Due to the properties of HE, control-flow decisions on encrypted conditions cannotbe made directly without access to the corresponding decryption key. HElium em-ulates if-then-else constructs and for-loops trough MUX operations. Furthermore, itsupports for-loops that operate like a for-each-loop in other programming languages.It represents the iteration over the elements of a vector.
2.3.2. Intermediate Representation

HElium implements a term-based intermediate representation (IR). A term repre-sents a node in the computation graph, i.e., an operation on a ciphertext or a plain-text. Depending on the type of operation, each term has a certain number of oper-ands. There are unary terms that are taking one operand as input and binary termsrequire two operands. Input terms and output terms are special terms with noneor one operand, respectively. Constant values are represented by a constant termwithout an operand. Each operand is a term as well. Together the terms form acomputation graph.Figure 2.3 shows the IR of a program which implements Equation (2.7). The nodes0 to 5 are terms. The terms 0 and 1 represent the arguments a0 and x. Both areoperands of the multiplication term 3. Term 2 represents a constant of value 5.0.The constant term and the multiplication result are added by term 4. The result ofthe addition is provided to term 5 which represents the output y of the computation.
y = a1 · x + 5.0 (2.7)

0: INPUT x

3: MUL

 operand

1: INPUT a1

 operand

2: CONST a0 = 5.0

4: ADD

 operand operand

5: OUTPUT y

 operand

Figure 2.3.: IR Graph Representation
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2. Preliminaries

An IR term refers to an operation on encrypted or unencrypted data. A completelist of operations including descriptions can be found in Appendix A.1.
2.3.3. Type System

Each term of HElium has a type assigned to. HElium supports two adjustable basetypes: n-bit integer and fixed-point numbers. On top of these, it provides an ar-ray data type to represent array structures of the base types. Custom types can beconstructed by adjusting the base types. For example, a boolean type can be repre-sented by a one-bit integer. This type system is used in the abstract syntax tree (AST)of HElium and in the IR.For INPUTS and CONST terms, the type is set during transformation from the AST. Thetype of other terms is inferred from the operation the term represents and from itsoperands.
2.3.4. Backends

The HElium compiler is designed to be scheme-independent. It provides backendsfor different encryption schemes like CKKS, and TFHE. Its design allows extensionwithbackends for further encryption schemes. The TFHE backend of HElium focuses oncompiling functions to efficient boolean circuits. Therefore, it utilizes common toolsfrom the subject of hardware design. The arithmetic backend utilizes the low-levelcompiler EVA for the CKKS scheme. Hence, the backend transforms the IR into theIR of EVA and serializes the resulting optimized circuit. HElium decides automaticallywhich backend is most suitable for a provided program and compiles the programwith the selected backend.
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3. Related Work

This chapter addresses related work. This comprises libraries that implement fullyhomomorphic encryption (FHE) schemes as well as compilers that are optimized forsecure computation based on FHE.

3.1. Libraries for Fully Homomorphic Encryption

There exist a variety of open-source libraries that implement one or multiple FHEschemes. One of the first libraries is HElib.1 It was initially developted at IBM by Gen-try, Shoup, and Halevi. Now it is developed by an open-source community. HElibprovides implementations of the BGV and the CKKS scheme. Furthermore, it imple-ments Bootstrapping for BGV. The SEAL library is developed at Microsoft Research.2It implements the BFV and CKKS scheme. Furthermore, it provides support for var-ious platforms like Android, iOS, and embedded systems. The Lattigo library imple-ments the CKKS and the BFV scheme and is written in Go.3 Similar to Palisade, Lattigoprovides threshold variants of the implemented schemes. The TFHE library imple-ments a variant of the GSW scheme.4 TFHE is optimized for binary operations andfast bootstrapping. The concrete library developed by Zama implements a further im-proved version.5 Concrete supports programmable bootstrapping. This techniqueallows the application of unary functions during bootstrapping via lookup tables. It isa promising technology to enable efficient computation of non-linear functions likesquare roots or activation functions like ReLU. The ability to compute non-linear func-tions is a big advantage formachine learning use cases. However, the concrete librarydoes not provide PRE support.
There are further libraries that do not directly implement an FHE scheme. TheIntel HEXL library uses 512-bit Advanced Vector Extension (AVX) of Intel processorsto provide efficient implementations of integer arithmetic.

1https://github.com/homenc/HElib2https://github.com/microsoft/seal/3https://github.com/ldsec/lattigo4https://tfhe.github.io/tfhe/5https://github.com/zama-ai/concrete/
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3.2. Compilers for Fully Homomorphic Encryption

In addition to libraries, a variety of compilers for FHE exist. However, none of the pub-lic available compilers for FHE has support for PRE builtin. This section gives a briefoverview of the available compiler for FHE. See [35] for a more detailed comparisonof FHE compiler. Alchemy is a compiler built on top of Haskel [16].6 It supports aset of operations to define arithmetic functions. Alchemy uses its own implementa-tion of the BFV scheme. The integrated compiler automatically inserts maintenanceoperations into the program and selects suitable encryption parameters. However,Alchemy is limited to basic arithmetic operations.There exist a variety of source-to-source compilers that transforms C++ code intoFHE programs. For example, Cingulata compiles C++ programs to fully homomorphicencryption (FHE) programs. 7 The resulting programs operate on Boolean circuitsand support the TFHE library and a BFV implementation as backends [10]. Similar toHElium, Cingulata uses tools from hardware synthesis to optimize generated booleancircuits. Another tool that compiles C++ code into an FHEprogram is Encrypt-Everything-Everywhere (E3).8 E3s input language supports both arithmetic and boolean circuitsin BFV, BGV, and TFHE [13]. Furthermore, it provides basic support for SIMD op-erations of BFV and BGV. However, the expressibility of E3 is limited since it doesnot support rotation operations. Furthermore, maintenance operations are insertednaively, and encryption parameters must be chosen manually. Marble is an inte-grated DSL for FHE based on C++ [36].9 Marble’s central entrypoint is the proxy type
M which represents a ciphertext message. Marble tracks all operations performedwith objects ofM via operator overloading and constructs a computation graph fromthem. It supports the construction of arithmetic and boolean circuits using the BFVscheme. HE Transpiler is a library that converts C++ code into FHE programs. It ismaintained by Google.10 The HE Transpiler uses Google’s XLS library to compile C++code into boolean circuits. For the execution of the boolean circuits, it provides run-times based on TFHE or Palisade.There are specialized compilers for FHE with a strong focus on machine learningapplications and tensor operations. EVA is a low-level compiler for vector-arithmeticoperations [19, 18]. It is a C++ library with a python interface.11 EVA is mainly de-signed for arithmetic functions and vector operations. It targets the CKKS implemen-tation of SEAL. The main contributions of EVA are efficient insertion of maintenanceoperations to the computation graph and automatic parameter selection. The Com-piler and Runtime for Homomorphic Evaluation of Tensor Programs (CHET) project isbuilt on top of EVA and focuses on optimizations for matrix operations. It comes witha high-level language for machine-learning operations. NGraph-HE is an extensionof Intel’s nGraph machine-learning compiler [7]. It is focused on the inference of ma-chine learningmodels over encrypted data.12 NGraph-HE translates Tensorflow com-putations into FHE circuits for BFV or CKKS. It applies optimizations on the computa-tion graph and supports SIMD-packing, i.e., the efficient packing of multi-dimensionaltensors into batched ciphertexts. Furthermore, nGraph-HE supports non-polynomialfunctions by implementing interactive protocols which compute these functions withthe client.
6https://github.com/cpeikert/ALCHEMY7https://github.com/CEA-LIST/Cingulata8https://github.com/momalab/e39https://github.com/MarbleHE/Marble10https://github.com/google/fully-homomorphic-encryption11https://github.com/microsoft/EVA12https://github.com/IntelAI/he-transformer
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4. Scenario, Use Cases and
Requirements

This chapter gives an introduction to the scenario of privacy-preserving computationvia homomorphic encryption combined with proxy re-encryption (PRE). Based on thescenario, Section 4.3 derives requirements for compilers with support for PRE.

4.1. Scenario

Digitalization of processes and evolving capabilities of data analysis results in novelproblems about privacy and confidentiality. Homomorphic encryption (HE) is con-sidered to be a promising approach to overcoming some challenges. This sectionprovides an overview of the abstract computation scenario.Computation using standard FHE has somemajor limitations. For example, for theresult to be encrypted under a common key, the inputs also need to be encryptedunder the same key. That makes it challenging for scenarios with more than onedata-providing participant. All participants have to agree on a key pair before encryp-tion. Therefore, this model is not well-suited for frequently changing participant sets.There exist approaches like multi-key FHE and threshold FHE that address computa-tions with multiple participants. However, multi-key FHE requires a pre-determinedset of encryption keys, i.e., a relatively constant set of participants [26]. ThresholdFHE allows distributing operations like the decryption of ciphertexts to a group ofparticipants [3]. Nonetheless, threshold FHE requires active communication of theparticipants.PRE can be a flexible solution for these problems. It allows the transformation ofciphertexts that are encrypted under one key to a ciphertext that is encrypted underanother key without intermediate decryption. To perform this transformation, a re-encryption key is needed. Such a key can be generated from the source secret keyand the target public key. For further information on PRE see Section 2.2.Figure 4.1 depicts an abstract scenario of a PRE program. It comprises three typesof participants: the senders {S1, S2, . . . , Si}, the receiving party R, and a computa-tion party in between. The sender parties have data that is encoded in messages
m1,m2, . . . ,mi. They want to compute a function f (m1,m2, . . . ,mi) by joining theirmessages. The result gets the receiving party R. All senders and the receiver haveown key pairs to encrypt and decrypt messages. The computation party in betweenenables the joint computation of the function and acts as a re-encryption proxy. It
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re-encrypts the ciphertexts using corresponding re-encryption keys and homomor-phically computes the function f (m1,m2, . . . ,mi). This construction allows use cases

Party 

Party R

Party C

Re-encrypts Inputs 















Applies 




 homomorphically  

Party 

...

Party 

Figure 4.1.: Abstract FHE Scenario with PRE

with frequently-changing participants since new participants only have to provide acorresponding re-encryption key. Furthermore, it enables asynchronicity betweenencryption and usage of the data. Since data can be encrypted under participant-specific keys, computations can use data that is encrypted at different times. Thereceiving party or the computation itself does not need to be determined at the timeof encryption. Therefore, PRE adds flexibility with regard to key management and theparticipant setup to FHE programs.Figure 4.2 shows an instance of the abstract scenario with two senders. The send-ing parties and Party R have key pairs (skS1 ,pkS1 ),(skS2 ,pkS2 ) and (skR,pkR), respectively.Similar to Figure 2.1, the parties S1 and S2 have messages m1 and m2. Similarly,
Party C acts as re-encryption proxy and computation party that computes a func-tion f (m1,m2) homomorphically over the two messages. Therefore, Party C holds twore-encryption keys allowing to re-encrypt ciphertexts of Party S1 and Party S2 for Party
R.

4.2. Key Management for Programs using
Proxy-Re-Encryption

This section addresses the keymanagement in computations with proxy re-ecryption(PRE). Before elaborating on concepts of key management for multiple encryptionkeys, the scenario of single encryption can be analyzed. In scenarios with a single key,i.e. without PRE, typically a single party generates a key pair (sk,pk) in cases where anasymmetric encryption scheme is used. Other parties can encrypt their data usingthe public key pk. Therefore, the key-generating party has to distribute its public keyto other participants.In contrast with PRE, participants can have their own key pair. Each participantgenerates its own key pair (ski,pki). Therefore, participants are immediately able toencrypt data using their encryption key pki. Furthermore, participants can generatemultiple key pairs over time. For example, separate keys can be used for differentchunks of data or to implement key-rotation mechanisms. As for other types of en-
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Figure 4.2.: Abstract FHE Scenario with PRE

cryption, it is important to mention that individual keys of a party must be storedproperly to allow later access.From the perspective of the participant, there are different ways to provide its datato an FHE computation.
• The participant can provide the raw data itself via a secure communicationchannel. However, this requires that the participant has still direct access tothe data. Furthermore, it gives control over its data completely to the receivingparty.
• The Participant can provide the secret key of the encrypted data directly to thereceiving participant. It does not require the participant to have access to itsdata. However, the control over its data is still passed to the receiving party.
• The Participant can provide the secret key of the encrypted data to a trustedthird-party that performs the computation. This moves the trust assumptionsfrom the receiving party to the computation party. Furthermore, it can be diffi-cult to agree on such a trusted third party.
• The participant can provide a re-encryption tag to a third party that allows per-forming re-encryption to the data from the participant’s key to the key of thereceiving party. The intermediate party does not have access to the data.

Figure 4.3 depicts a sequence diagram of computation using FHE and PRE. It is a gen-eralized variant of the procedure proposed by Polyakov [30]. The figure comprisestwo participants Alice and Bob, and a computation party with a storage. The storagecan be implemented in various ways. For example, distributed ledgers can be usedas storage [5]. Alice and Bob want to compute a function f (m) on a message m thatis provided by Bob. Bob encrypts its message m with its own encryption key pkBob.This can take place completely asynchronous with no time related to the computa-tion. When Alice wants to start a computation it sends Bob its public key pkAlice. If Bobagrees on the computation it generates the re-encryption key rkBob→Alice and sendsit to the computation party. This allows the computation party the transformationof the ciphertext and to start with the computation. The re-encryption key does not
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provide direct access to the data. After the computation finished, the function resultcan be decrypted by Alice. However, it must be assumed that the computation partydoes not colude with Alice. Otherwise, it could retrieve the message by re-encrypting
c and decrypting it with the private key of Alice.

Data-Providing
Participant

Bob

Encrypt 

Data


dispatch

Computation
Party

Compute 

Receiving 
Participant

Alice

Decrypt 


Storage

c'

Figure 4.3.: Example Sequence of a Computation with Proxy Re-Encryption

4.3. Requirements for Compilers for Proxy Re-Encryption

This section elaborates requirements on compilers for FHE to support PRE and thepreviously defined computation scenario. Since this work extends the HElium com-piler, these requirements are defined in the context of the available functionalities ofHElium.HElium has its own general-purpose DSL to describe FHE programs. According tothe scenario description, the DSL has to model the computation between multipleparticipants. Each participant can provide inputs to the computation. Participantscan provide their inputs under a common key or their own key. Therefore, the DSLmust be able to map inputs to participants and to the encryption key that is used toencrypt data.In addition to a multi-party-enabled frontend, the compiler needs a backend thatsupports PRE. This backend has to target an encryption scheme that supports PRE.Furthermore, it needs a scheme implementation that provides operations to gener-ate re-encryption keys and provides operations to re-encrypt ciphertexts. In addi-tion, the compiler needs to provide the targeted scheme with the information thatis necessary for the execution. First, it is necessary to define at which point of thecomputation a proxy re-encryption takes place. Therefore, the circuit representationmust be extendedwith a PRE operation. Second, the parameter selection of the back-end must be modified. Since PRE operations add additional noise to the ciphertexts,parameters need to be adjusted to ensure correct execution.
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Security and confidentiality are the main intentions to use FHE and PRE. Accordingto the scenario, the inputs of the computations are confidential. However, the com-putation function can be publicly known by all participants. The computation partyshould not learn anything about the inputs besides their data structure. However, thecompiler can assume that the computation party is performing the computation cor-rectly. For example, the computation party can be a cloud provider which charges theparticipants for the computation resources. Such a cloud provider can lose its repu-tation if it actively violates the computation protocol. Consequently, a cloud providerhas a strong intention to compute the function correctly. Furthermore, there aremechanisms to prove empirically that the computation party performs the intendedcomputation. For example, the participants can randomly prove the computationsby inserting test data without the knowledge of the computation party. However,the use of FHE prevents the leakage of input data or results to attackers who listenpassively. The compiler has a direct impact on the security of the used FHE scheme.The security of FHE encryption depends on various scheme parameters that are se-lected by the compiler automatically. The parametersmust be selected automaticallyaccording to the suggestions of the HE Standard [2].Depending on the use case, different requirements can apply to the performanceof the compiler and its results. On the one hand, performance can relate to differentmetrics like runtime or memory usage and can contradict each other. For example,applying more complex optimizations during compilation can reduce the runtime ofthe computation result while increasing the compilation time. On the other hand,the requirements of the actual use case on interactivity or responsiveness impactthe compiler requirements as well. Using FHE in a real-time application can havemuch higher requirements on the execution runtime than a benchmarking solution.
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5. Concept of Proxy Re-Encryption
Compiler Support

This chapter elaborates on concepts for integrating proxy re-encryption (PRE) intoHElium, an existing compiler for FHE. It describes necessary additions to HElium inorder to support computations with multiple encryption keys via PRE. Section 5.1discusses concepts to integrate mechanisms for PRE into HElium’s DSL. Based onthis, Section 5.2 derives requirements on the type system. Section 5.3 and 4.2 discusschallenges related to the PRE introduction and provide approaches for optimization.

5.1. Domain-Specific-Language Support for
Proxy-Re-Encryption

This section derives requirements of PRE on domain-specific languages (DSL). First,on DSLs with support of PRE apply similar data flow restrictions and implications onthe type systemas for general FHEDSLs. Themain difference is that PRE-enabled FHEschemes provide additional operations that allow switching the encryption key of ci-phertexts. Consequently, such DSLs can inherit operations and properties of DSLswithout PRE support. The additional functionalities of PRE-enabled FHE schemes al-low computation on inputs provided by different participants and encrypted underdifferent keys. These operations can be represented either directly or indirectly in theDSL. In DSLs with indirect integration, PRE operations are not part of the DSL. There-encryption is indirectly determined by the keys of the inputs and outputs. There-fore, developers do not need to determine the insertion location of PRE operationthemselves. This lowers the programming complexity for developers.
As presented in the previous section, encryption key pairs can be represented bylabels. The DSL of HElium models inputs and outputs of FHE programs via input andoutput statements, respectively. With regard to PRE, the input statements of HEliumcan be extended with key labels.

Listing 5.1: Input and Output Definition
1 input a : in t <5> @Key1 <= Party1 ;2 input b : in t <6> @Key2 <= Party2 ;3 input c : in t <1> <= Party3 ;4 output y = ( a + b ) * c ;
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5.2. Multi-Key Type System

Listing 5.1 shows an example program inHElium that contains an input and an outputdefinition. In line 1, the input a of type int<5> is defined. The source identifier showsthat this input is provided by Party1 and encrypted using the key pair Key1. Similarly,line 2 contains an input definition with name b of type int<6> provided by Party2 andencrypted under Key2. In line 3, the input c is defined without a key label. If the keylabel is omitted, the compiler automatically applies a default key label. Line 4 showsan output definition of y to which the result of (a + b) · c is assigned. It comes withouta key declaration. According to the use-cases defined in Chapter 4, the results of theFHE computations are encrypted under one key. Therefore, the compiler applies thedefault key labels on output definitions. The data type of outputs is determined bythe compiler, too.
The mapping of an input or output definition to its source or target party, respec-tively, has no technical function for the compiler. However, these mappings can beuseful at runtime. For example, they can be the basement for external authorizationby the execution runtime. Input-providing, as well as output-retrieving, parties canbe identified by the participant identifiers of the HElium program. Furthermore, itmay make the program code more readable and can help users and developers tounderstand data dependencies between different parties.

5.2. Multi-Key Type System

Strong type systems can provide helpful information for compilers and their optimiza-tions. In general-purpose programming languages, commonly used data types likeboolean values, signed and unsigned integers, real numbers, and string types exist.On a higher layer, there can be more complex structures like arrays, matrices, andobjects. Programs using FHE can add more layers of complexity to the type system.For example, in FHE programs, the type system must distinguish between encryptedand plaintext data. Additionally, the encoding of data can be different.This section discusses an approach to extend the type system of the FHE-compilerHElium to support multiple encryption keys via PRE. In such scenarios, inputs of pro-grams can be provided to the computation under different encryption keys. List-ing 5.2 shows a slightly modified version of the previously presented example pro-gram. Similar to Listing 5.1, it represents the computation of y = (a+b) ·c. Whereas, aand b are provided by Party1 and encrypted under Key1. Input c is provided by Party2under Key2. All inputs are of type int<8>, i.e., eight-bit integers.
Listing 5.2: Example Program with Three Inputs and Two Keys

1 input a : in t <8> @ Key1 <= Party1 ;2 input b : in t <8> @ Key1 <= Party1 ;3 input c : in t <8> @ Key2 <= Party2 ;4 output y = ( a + b ) * c ;
When compiling this example with HElium, the compiler transforms theDSL code intoa corresponding IR form. The nodes of the IR represent operations, inputs, outputsor constant values. Dependent nodes are connected by edges. In programs withmultiple encryption keys, the inputs can not be described only by types and names. Itneeds an additional "key" property to indicate under which key an input is encrypted.For the inputs a and b this property is Key1, for input c it is Key2, respectively. Oneapproach to integrating such properties to the IR is the introduction into the typesystem of HElium.
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Figure 5.3 depicts a computation graph representing the function y = (a + b) ∗ c.The graph consists of six nodes. Three nodes represent the inputs a, b,c, and d,encrypted under two different keys Key 1 and Key 2. The computation result y can bedecrypted with Key 3. The intermediate nodes 4, 5, 6 and 7 represent the operations
addition and multiplication. Different colors of the nodes stand for the key underwhich an input or an output is encrypted. Each input and output node has a type andlabel that identifies the corresponding encryption key. At this point, the key labels ofintermediate nodes are undetermined.
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Figure 5.1.: Example Computation Graphwith Inputs under Different Encryption Keys
Execution of the example program shown in Figure 5.3 starts at the input nodes.Since the encrypted value of the operands of node 4 is already present, the executionproceeds with node 4. The operands of node 4 are the inputs a and b. Since bothare encrypted under Key1, the addition can take place without further adjustmentsand the encrypted value of node 4 can be computed. Thereafter, the execution canproceed with node 6 that represents a "square" operation. At the same time, theencrypted values of all operands of node 5 are present. Both shares the same key

Key 2. Therefore, the multiplication operation yields a ciphertext that is encryptedunder Key 2. At this point, the encrypted values of all operands of node 7 are present.However, the values of its operands are encrypted under different keys. While thevalue of node 6 is encrypted under Key 1, the value of node 5 is encrypted under Key 2.As stated in Section 2.2, homomorphic operations on ciphertexts require operandsthat are encrypted under the same key. Operations on ciphertexts encrypted under
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5.3. Optimization of Proxy Re-Encryption Programs

different keys are not possible without further adjustments. PRE allows transforminga ciphertext encrypted under one key to a ciphertext that is encrypted under anotherkey. In the case of the example program, the values of node 4 and node 3 can bere-encrypted to a common key by performing a PRE operation. Consequently, theintroduction of PRE operations can enable the execution of node 5. Hence, PRE isone approach to enable computation with inputs that are encrypted under differentkeys.The example program has a small computation graph with only six nodes. Forlarger computation graphs it becomes challenging to determine where a PRE opera-tion must be inserted. Compilers can automate this process. For this, it is crucial todetermine the encryption keys of intermediate results of the computation. Similar tothe example shown in Figure 5.3, encryption keys can be represented by key labelsidentifiers or key labels. Each key label maps uniquely to a key. For the compiler, itis sufficient to use only key labels. Further information like the party who issued thekey is unnecessary. Therefore, a mapping from key identifiers to parties is not part ofthe compiler. One approach of integration of key labels into the IR is the direct stor-age within the type system of the IR. Figure 5.2 shows an abstract base type class. Itholds three main information: the encryption state encrypted and the correspondingkey label represented by keyPair.

IntegerType

+ encrypted: bool

+ keyPair: string

+ bitWidth: uint

Figure 5.2.: Example Integer Type
The additional type information can be used to solve the original challenge: thedetermination of key labels of intermediate nodes of the computation graph. Thekey-label information that is provided with the inputs can be propagated through thecomputation graph. This process can be assumed to be similar to the type deductionof the compiler. The following section focuses on concepts to determine key labelsefficiently.

5.3. Optimization of Proxy Re-Encryption Programs

The advantages of proxy re-encryption come with the cost of additional complexity.In the BFV scheme (see Section 2.1.3), the PRE operation has a similar computationalcomplexity as homomorphic multiplications [30]. Furthermore, PRE operations canintroduce additional noise to the ciphertext. Consequently, larger encryption param-eters could be necessary to ensure correct computation. The execution performancetypically decreases with larger scheme parameters. Therefore, it is important to per-form only as few PRE operations as necessary for the execution.
This problem can be reduced to the problem of inserting PRE operation at theright point in the computation graph. As mentioned previously, a PRE operation isnecessary where the key-pair label of the IR term differs from the key-pair labels of
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the operands.In terms of key labels, a computation graph can consist of nodes of two types: nodeswith an explicitly defined key-par label, for example, inputs and outputs, and inter-mediate nodes. The key-pair of the intermediate nodes is not defined.
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Key 1
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Key 1
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Key 2

5: MUL
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Key ?

4: ADD
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Key ?

6: OUTPUT y

int<17>
Key 3

Figure 5.3.: Example Computation Graph with Unknown Key Labels
Figure 5.3 shows a computation graph with six nodes. The key-pair identifiers ofthe three inputs 1, 2, and 3, as well as, of the output node 6 are defined. However,there is no explicit definition for nodes 4 and 5.To insert PRE operations properly, the compiler must determine sufficient key-pairlabels for node 4 and 5. From a theoretical perspective, these can use either Key1,

Key2 or Key3. Consequently, there are 32 = 9 possible variants of computation graphswith a different amount of necessary PRE operations and a different depth. Thesenine variants and their additional inserted PRE operations are presented in Table 5.1.The table lists variants of key selection for the two nodes including the number of in-serted PRE operations p, the depth d of the resulting circuit, and a list of necessaryre-encryption keys rk. It shows that the first and third variants require the lowestnumber of PRE operations and have the lowest depth. Therefore, it can be assumedthat these variants are most efficient and have the lowest execution runtime.An evaluation of all possible key-selection variants allows finding the most efficientone. However, their number grows polynomial in the number of keys and expo-nential in the number of nodes. Consequently, this method is unfeasible for largercomputation graphs with many keys.In practical scenarios, the set of allowed transformations between different keys islimited. Each key transformation from a key ki to kj requires a re-encryption key rki→j.In the presented scenario, the input-providing parties do not interact with each other.Therefore, only re-encryption keys for PRE operations from input keys to output keysare available. In the presented example, this means that the set of re-encryption keysis limited to {rk1→3, rk2→3}. Consequently, the list of key-selection variants depicted
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Table 5.1.: Comparison of Selection of Different Key Pairs
# Node 4 Node 5 PRE Ops between Nodes p d rk
1 Key1 Key1 (3→ 5), (5→ 6) 2 5 rk2→1, rk1→3
2 Key1 Key2 (4→ 5), (5→ 6) 2 6 rk1→2, rk2→3
3 Key1 Key3 (4→ 5), (3→ 5) 2 5 rk1→3, rk2→3
4 Key2 Key1 (1→ 4), (2→ 4), (4→ 5),(3→ 5), (5→ 6) 5 7 rk1→2, rk2→1, rk2→3
5 Key2 Key2 (1→ 4), (2→ 4), (5→ 6) 3 6 rk1→2, rk2→3
6 Key2 Key3 (1→ 4), (2→ 4),(4→ 5), (3→ 5) 4 6 rk1→2, rk2→3
7 Key3 Key1 (1→ 4), (2→ 4), (4→ 5),(3→ 5), (5→ 6) 5 7 rk1→3, rk3→1, rk2→1
8 Key3 Key2 (1→ 4), (2→ 4),(4→ 5), (5→ 6) 4 7 rk1→3, rk3→2, rk2→3
9 Key3 Key3 (1→ 4), (2→ 4), (3→ 5) 3 5 rk1→3, rk2→3

in Table 5.1 can be reduced to rows #3 and #9. This limits the number of possiblekey selections and limits the complexity.However, it shows that there is still room for optimization since variant #3 needsfewer PRE operations than variant #9.
Since the use cases of this work require a single output key, a simple yet effectiveapproach can be applied to determine key labels. First, the compiler iterates overall nodes of the computation graph in a breadth-first search (BFS) order beginningfrom the inputs. For each node, it checks if the operands of the node have the samekey label. In that case, the node uses the same key label as its operands. Otherwise,the default output-key label is selected. Figure 5.4 depicts an example computationgraph. On the left, the initial state is shown. The right graph shows the result of thekey-label propagation. The key labels are propagated through the graph until a nodehas operands with two different key labels. The edges between differently colorednodes require the insertion of re-encryption operations.
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E
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Figure 5.4.: Example Graph Before and After Key-Label Selection
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If the receiving participant is required to provide it’s pk then everyone else could also provide his pk and then only the optimal solution is used.



5. Concept of Proxy Re-Encryption Compiler Support

If this naive algorithm is applied to the example from Figure 5.3, it starts with theinput nodes. These are skipped by the procedure. In node 4, the key labels of theoperands are both Key1. Therefore, node 4 is labeled with Key1, too. The followingnode 5 has node 4 and the input node 3 as an operand. Hence, its operands arelabeled with Key1 and Key2, respectively. Consequently, the key label of node 5 is setto the default output key. The resulting variant is identical to #3 of Table 5.1.
Based on the key labels, the compiler can insert PRE operations between nodeswith different key labels. The insertion can be performed by iterating over all nodesof the graph. An additional PRE node must be inserted in the case that an operandof a node has a different key label than the node itself.The current work focuses on programs with a single output key. Future versions canextend the approach to multiple keys.
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6. Implementation of Proxy
Re-Encryption in HElium

This Chapter focuses on the practical integration of proxy re-encryption (PRE) into theHElium compiler by implementing the concepts defined in the previous chapter. InSection 6.2, the extension of HEliums intermediate representation (IR) is discussed.This is followed by an explanation of the implementation of the reduction of PRE op-erations in Section 6.3. Thereafter, Section 6.4 addresses processes of the backend.

6.1. Key-Label Arguments in HElium’s DSL

This section discusses additions that are made to the frontend of HElium to supportmultiple encryption keys. HElium uses the ANTLR4 parser generator for its frontend.Bases on a grammar description, ANTLR4 generates a lexer, parser, and a concrete-syntax-tree structure. To implement the concepts of Section 5.1, the syntax of typeidentifiers is extended with a key argument. Listings 6.1 and 6.2 depict excepts ofthe ANTLR4 grammar of HElium. In lines 48 to 50 of Listing 6.2, it shows that the
type_ident rule is extended with an optional key_arg. This key_arg represents the key-label property of the type. The key_arg consists of an IDENTIFIER and is prefixed by an’@’-sign. For the complete grammar of HElium, see A.2

Listing 6.1: Excerpt of the ANTLR4 Grammar of the Lexer of HElium
. . .7 TAT : ’@’ ;. . .74 IDENTIFIER : [ a−zA−Z ] [ a−zA−Z0−9]* ;. . .

Listing 6.2: Excerpt of the ANTLR4 Grammar of the Parser of HElium
. . .46 ident : IDENTIFIER ;47 type_ ident : TYPEINT CLT INTEGERLIT CGT type_args* key_arg ?48 | TYPEAUTO type_args* key_arg ?49 | TYPEFLOAT CLT INTEGERLIT CGT type_args* key_arg ? ;50 key_arg : TAT IDENTIFIER ;51 type_args : LSBRACE INTEGERLIT RSBRACE ;. . .
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6.2. Intermediate-Representation Extension for Proxy
Re-Encryption

This work extends the HElium compiler. HElium’s type system consists of tree basetypes: integer, fixed-point numbers, and arrays. Each type can either represent plain-text or ciphertext data. Furthermore, each type has type-specific properties. For ex-ample, the integer type has a width property to represent integers of different bitwidths. The compiler of this work adds support for PRE and multiple encryption keysto HElium.According to Section 5.2, it is sufficient to represent encryption keys by identifiers.These are referred to as key labels. The compiler and further processes only needto know under which key the inputs are encrypted. Such a label can be interpretedas a property of types of the type system. Figure 6.1 depicts a simplified version ofthe extended type system of HElium. The base class of the types now has a keyLabelproperty of type std::string that represents the corresponding key. Each type providesa getter and a setter method for the keyLabel property.The key label of input and output nodes is set during translation of the concrete-syntax tree (CST) to the abstract syntax tree (AST) in the frontend of HElium. List-

BaseType

+ secure: bool

+ keyLabel: string

Integer

+ width: int32

Real

+ scale

ArrayType

+ subType: BaseType

+ size: int32

Figure 6.1.: Type System of HElium

ing 6.3 shows parts of the type construction during translation of the CST to an AST.The identifier of the DSL program is parsed as string and directly used as key label. Ifno identifier is provided for input or output nodes, the label "default" is applied. Thekey labels of intermediate nodes are undetermined. They are determined at laterstages of the compilation chain.The IR itself is then built from the AST. Since the AST and the IR share the same typesystem, the key labels of the types are not modified during the translation process.Therefore, the type identifier of the DSL are propagated to the IR in the form of keylabels. In most computation graphs the key labels of intermediate nodes are unde-termined.
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Listing 6.3: Excerpt of BuildASTVisitor.cpp - AST Type Construction
1 ant l rcpp : : Any Bu i l dASTV i s i t o r : : v i s i t T ype _ i den t (2 hedsl : : hedslParser : : Type_identContext *context ) {3 std : : shared_ptr <ExprType> type ;4 / / . . .5 i f ( context −>key_arg ( ) ) {6 type −>setEncrypt ionKey ( context −>key_arg ( ) −>IDENTIFIER ( ) −>getText ( ) ) ;7 } else {8 type −>setEncrypt ionKey ( " de fau l t " ) ;9 }10 / / . . .11 }

One important addition to the IR is the PRE operation itself. It is implemented as aunary operation, i.e., an operation with one operand. Each PRE operation representsa re-encryption of a ciphertext from a source key to a target key. The key label ofthe operand defines the source key. The target key is defined by the key label ofthe type of operation. PRE operations are inserted by the compiler. Hence, a freshlyconstructed IR does not contain any PRE operation. Future versions of HElium cansupport the manual insertion of PRE operations via built-in methods added to theDSL.One important rule applies to the key labels of all operations of a computation graph:Each nodemust share the same key label as its operands, except for PRE operations.Consequently, a PRE operation must be introduced into each edge between nodeswith different key labels to ensure consistency.

6.3. Efficient Insertion of Proxy Re-Encryption Operations

As described in Section 5.3, the number of inserted PRE operations and their posi-tion affects the execution runtime. HElium inserts PRE operations in two steps. First,all key labels of intermediate nodes are determined by the compiler. Second, PREoperations are inserted based on the previously determined key labels. The numberof inserted PRE operations is mainly influenced by the first step.The main objective of the first step is the selection of suitable key labels for interme-diate nodes. Thereby, the goal is to reduce the number of edges between nodes withdifferent key labels. For programs with fewer input key-labels than inputs, there canbe an opportunity for reducing PRE operations.Algorithm 1 describes an approach to omit PRE operations. It iterates over graphnodes beginning with the inputs. Constant, input, output, and proxy re-encryptionnodes are skipped. For each node, it checks whether the operands share the samekey. If they do, the shared key label is applied to the node. Otherwise, the nodeneeds a different key label. The problem of selecting a suitable target key can havehigh complexity, as previously shown in Section 5.3. The scenarios of this work havetwo constraints that can reduce the complexity: There is only one output key and onlyPRE operations from input to output keys are allowed. Since only re-encryptions frominput keys to outputs keys are supported, the default output key is used as key label.Consequently, the selectKey() function is defined as
selectKey(node) =′ default′.

However, future versions of HElium can extend this mechanism and can supportmore than one output key.
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Algorithm 1: Key-Label Propagation Algorithm
Data: nodes
Result: nodes with key labels

1 foreach node of nodes do topological sorting
2 if node.type ∈ {PRE, INPUT ,OUTPUT ,CONST} then
3 continue;
4 else
5 k ← node.operands[0];
6 s← true;
7 for i = 1; i < size(node.operands); i + + do
8 s← s ∧ (k = node.operands[i]);
9 if s = true then
10 node.keyLabel← k;
11 else
12 node.keyLabel← selectKey(node);

Furthermore, the separation between key-label determination and insertion of PREoperations allows further optimizations in future versions. The key labels could beused for re-balancing optimizations or parallelizing. If the structure of the graphchanges, the key labels can be recalculated easily. This separation prevents insertingor removing PRE operations during ongoing optimizations.
Nonetheless, after all optimizations took place, PRE operations have to be insertedinto the graph. At this point, the key labels of all nodes of the computation graphare determined. The PRE operation itself can be inserted based on the operandsor usages of a node. Algorithm 2 shows one approach to insert PRE operations.It traverses the computation graph beginning from the leaf nodes, i.e. the outputnodes. For each node, it checks whether one of its successor nodes, i.e. its usages,has a different key label than the node itself. In the case that the key labels differ, itinserts a PRE-operation node between it and the successor. The algorithm uses mapdata structure to cache PRE nodes to prevent that the algorithm inserts an equivalentPRE operation more than one time.
Algorithm 2: Key-Label Propagation Algorithm
Data: nodes with key labels
Result: graph with PRE operations

1 foreach node of nodes do topological sorting
2 if node.type ∈ {PRE, INPUT ,OUTPUT ,CONST} then
3 continue;
4 else
5 p← {};
6 for i = 1; i < size(node.usages); i + + do
7 if node.usages[i].keyLabel! = node.keyLabel then
8 if !p.has(node.usages[i].keyLabel) then
9 p.add(makePRENode(mode,node.usages[i].keyLabel));

10 node.usages[i].replaceOperand(node,p.at(node.usages[i].keyLabel));
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6.4. Implementation of a Backend with Proxy-Re-Encryption Support

6.4. Implementation of a Backend with
Proxy-Re-Encryption Support

This section discusses the implementation of a compiler backend for the BFV FHEscheme. As described in Section 2.3, the main task of a backend of HElium is to pre-pare the execution of the computation graph. The compiler provides a program inthe form of an intermediate representation to the backend. In the case of HElium,the IR is a computation graph. Then, backendsmay apply runtime or scheme-specificoptimizations to the IR. In the last step, the backend typically determines suitableencryption parameters and serializes the program. HElium provides a common in-terface to serialize programs for various execution runtimes. It uses protocolbuffers,a message-structure-description protocol proposed by Google.1The HElium backend with PRE support utilizes the PALISADE Lattice CryptographyLibrary.2 PALISADE, is a library for lattice cryptography, especially for homomorphicencryption (HE), which implements a wide range of FHE schemes. It comprises animplementation of the BFV scheme with PRE support. The backend consists of twoloosely coupled parts. The first part is integrated in the compiler. It measures spe-cific metrics like the multiplicative depth and the number of inserted PRE operations.Thesemetrics are necessary to determine suitable encryption parameters. Then, thebackend uses the integrated circuit serialization to serialize the computation graph.None of the backends that are currently implemented in HElium does support PRE.The second part is a parameter generator with uses a parameter-generation func-tion of PALISADE. This function takes the measured graph metrics and derives se-cure scheme parameters according to the Homomorphic Encryption Standard Initia-tive [2].

1https://github.com/protocolbuffers/protobuf2https://gitlab.com/palisade/palisade-release
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7. Evaluation of the Proxy
Re-Encryption Implementation

This chapter investigates the effect of HElium’s PRE extension on the compile time,execution runtime, and efficiency, where efficiency is defined as introducing as mini-mumPRE operations as necessary. All experiments are conducted using the exampleuse case of health data aggregation. Therefore, Section 7.1 gives a detailed overviewof the use case and the computed function. Based on this example program, Sec-tion 7.2 presents the different conducted experiments including the correspondingevaluation results. The results and findings are summarized in Section 7.3

7.1. Use Case: Aggregation of Patient Data for Cancer
Research

Hospitals, universities, and private healthcare companies collect a large amount ofdata about their patients. This includes, for example, protocols from medical treat-ments, drug applications, and surgical reports. With the introduction of the electronicmedical file, more information will be digitalized [15]. This information about patientsis highly confidential and high data protection requirements apply [20]. Therefore,sharing and aggregation of patient data is very complicated due to regulatory rea-sons. FHE combined with PRE can enable researchers to combine their patient-datasets with other researchers without sharing the patient data as plaintext. It allowsperforming analyses on the shared data sets without disclosing individual patientrecords.For example, records of genome mutations can be compared with histology anal-ysis or surgical reports of tumor patients to obtain information about correlationsbetween specific genome mutations and the properties of the tumor [27, 37]. Thatenables researchers to develop more specific treatment methods for tumors. Onemeasure that is analyzed in the context of cancer research is the recurrence rate ofvariants of tumors. It represents the percentage of patients for whom particular can-cer reappears. This measure indicates the medical treatment of the cancer patient.The particular tumor type can often only be determined by surgery and the followinghistology analysis. A non-invasive determination of the tumor type and its propertiescan allow treatment of the tumor without surgery. Therefore, finding correlationsbetween genome mutations and tumor properties is an active field of research.Equation (7.1) depicts the calculation of the tumor-recurrence rate r ′ of patients.
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It is calculated as an average of the recurrence of a tumor in relation to the absolutenumber of patients with the same tumor variant.
r = Number of Tumor Patients with Recurrence

Number of Tumor Patients (7.1)
In order to find correlations between genomemutations and tumor recurrence, r canbe calculated with the presence of different mutations. The presence of mutationsfor the i-th patient Pi can be efficiently encoded by bits of a bit vector denoted by bi.Each element bj of bi represents the presence or absence of a mutation j. Similarly,the tumor recurrence of a patient i can be encoded as a single bit ai. The recurrencerate r in relation to the presence of mutations is defined as shown in Equation (7.2).Each element of the result vector r represents the recurrence rate in relation to the
j-th mutation. This measure can help to find correlations between the presence ofmutations and the recurrence of tumors.

r = ∑n

i=0 ai · bi∑n

i=0 bi (7.2)
Listing 7.1, shows the HElium code of an example implementation of the presenteduse case. Each patient data-set consists of two values ai and bi that are providedunder an own key Keyi.

Listing 7.1: HElium Program: Recurrence Rate of Tumors
1 input a0 : in t <1>@Key0 ;2 input b0 : in t <1>[1024]@Key0 ;3 input a1 : in t <1>@Key1 ;4 input b1 : in t <1>[1024]@Key1 ;5 input a2 : in t <1>@Key2 ;6 input b2 : in t <1>[1024]@Key2 ;7 input a3 : in t <1>@Key3 ;8 input b3 : in t <1>[1024]@Key3 ;910 output R = a0*b0+a1*b1+a2*b2+a3*b311 output n = b0+b1+b2+b3

In lines 1 to 8, the inputs are defined for four datasets of four different participants.The outputs and the function are declared in lines 10 and 11. The division of twounknown ciphertexts is an operation with high computational complexity. Therefore,the example program computes only the two sums with FHE. The division is per-formed afterward at the client as plaintext operations.

7.2. Evaluation of the HElium Compiler

In this section, the HElium compiler and its PRE integration are evaluated using thepreviously described use case. The following aspects are evaluated. First, the effect ofPRE on the execution runtime is analyzed. Second, the effectiveness of the compilerin terms of the introduction of PRE operations is studied. Third, the scalability of thecompiler is examined.All experiments are conducted on a (virtual) server with 8 Intel(R) Xeon(R) Platinum8124M CPU cores and 16 GB of RAM that is hosted on Amazon Web Services (AWS).Each experiment is performed 100 times, and the average, as well as the standarddeviation, are calculated. After each run, the results are decrypted and compared
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with the expected result of the corresponding plaintext function to verify correct-ness of the compiled program. The experiments are conducted for set sizes of upto 1000. This relates to typical data-set sizes of medical research [37]. Often, only afew hundred patient records are available at a research institution depending on thetype of tumor. For a complete list of all measurements, see Appendix B.

7.2.1. The Effect of Proxy Re-Encryption on Execution Runtimes

This section discusses the effect of PRE operations on execution time. To analyze theeffect, the execution time of the previously described use-case program (Listing 7.1)is measured with PRE and without PRE. The example program is compiled, executed,and its runtime, as well as the number of performed PRE operations, is measured fordifferent patient-data set sizes n. One time with PRE and a different encryption key kfor each input n, i.e., n/k = 1. A second time without PRE and all inputs and outputsencrypted under the same key pair. It can be expected that the use of PRE results ina higher execution time due to the added computational complexity.Figure 7.1 shows the execution times of the example program for different data-set sizes n ∈ {4, 10, 250, 500, 750, 1000}. For each data set, it depicts a bar for theexecution with PRE and one without. Furthermore, the execution time is divided intothe raw computation time and "IO" time, i.e., the time used to deserialize keys, inputs,and to serialize the results.
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Figure 7.1.: Execution Runtime: Recurrence Rate Use Case (n/k = 1)

Table 7.1 gives a detailed overview of results from the conducted measurements.It shows that the variant with PRE has a higher execution runtime. For 1000 data sets,the total execution time is approximately 114% higher than for the variant withoutPRE. However, it shows that the raw computation time is only 46% higher than with-out PRE. The time spent for IO operations grows to approximately 133%. The largestpart of the execution runtime is spent on input-output operations like loading keys or
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inputs. For the PRE version and a set size n = 1000, approximately 78% of the execu-tion time is caused by IO operations. Consequently, only 22% of the runtime is spenton the evaluation of the function. Furthermore, the experiments indicate that the
Table 7.1.: Execution Runtimes with and without PRE

IO (s) Execution (s) Runtime (s) IO Percentage (%)
PRE Sets n
w/ 4 0.214 0.031 0.246 87.271

10 0.381 0.078 0.459 83.050
250 7.053 1.935 8.988 78.470
500 14.007 3.865 17.872 78.375
750 20.963 5.875 26.838 78.108
1000 27.904 7.782 35.686 78.193

w/o 4 0.327 0.043 0.369 88.411
10 0.716 0.108 0.824 86.898
250 16.317 2.834 19.151 85.201
500 32.577 5.668 38.245 85.179
750 48.853 8.479 57.333 85.210
1000 65.008 11.388 76.396 85.094

runtime is growing linear in the number of data sets n. In addition, the percentage oftime spent on IO operations stays relatively constant for sets n ≥ 250. That could bea result of efficiency gains of the higher number of sequential data-load operations.To further analyze the effect of PRE on the runtime, the time spent on PRE oper-ation is measured. Table 7.2 depicts the measured runtimes of PRE operations, thenumber of performed PRE operations, and the percentage of the execution runtime,that is spent on PRE operations. It shows that the percentage of time spent on PRE isrelatively constant for n ≥ 250. Additionally, the table shows the calculated averageruntime of a single PRE operation. For n = 1000, a PRE operation takes on average1.803ms.
Table 7.2.: Percentage and Runtime of PRE Operation

Sets Execution (s) PRE Time (s) PRE Time (%) Time per PRE (ms)
4 0.043 0.012 26.998 1.44510 0.108 0.030 27.899 1.506250 2.834 0.899 31.723 1.798500 5.668 1.804 31.818 1.804750 8.479 2.604 30.712 1.7361000 11.388 3.606 31.664 1.803

To summarize, the constant behavior of single PRE operations adds an amount ofcomplexity to the computation that depends linearly on the data-set size n. Further-more, it showed that the example program can aggregate data sets of 1000 patientsin less than one and a half minutes. This is a suitable runtime compared to the typicalruntime of preparatory processes that take place before computation. For example,the process of genome sequencing for a single data set can take from a few hours upto a few days depending on the technique that is applied and the size of the genome[29]. With the linear behavior in mind, a much larger number of data sets could beaggregated within one or a few hours.
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7. Evaluation of the Proxy Re-Encryption Implementation

7.2.2. The Efficiency of the Introduction of Proxy Re-Encryption
Operations

This section discusses how effectively the compiler Insertions PRE operations. Thecompiler aims to insert only as few PRE operations as necessary. A naive approachof inserting PRE operations re-encrypts all inputs before calculation and transformsthem to a common key. The number of used PRE operation pnaive is determined bythe number of inputs i of the program, i.e., pnaive = i. From a theoretical perspective,the minimal number of PRE operations pmin is determined by the keys of the inputsand outputs of the program, as shown in Equation (7.3). KI and KO denote the set ofinput or output keys, respectively. In the best case, only one PRE operation is neededfor all keys that are members of KI but not of KO, i.e., the difference of KI and KO.
pmin = |KI \ KO| (7.3)

However, not for all programs, it is possible to reach pmin due to the structure of theprograms. HElium aims to achieve a number of PRE operations p between pnaive and
pmin. To measure the efficiency of HElium in inserting PRE operations, the numberof necessary PRE operations is measured for different data-set sizes. Furthermore,the ratio between data sets n and keys k, denoted as n/k, is varied. The number ofinserted PRE operations is measured for n/k = 1, n/k = 2, n/k = 5, and n/k = n.Figure 7.2 depicts the number of inserted PRE operations p in relation to the num-ber of data sets for different n/k ratios. The grey-highlighted area represents valuesfor p that are equal or less than pnaive. All results within this area are equal or betterthan the naive approach. The figure shows that for n/k ̸= 1, the HElium compiler in-serts fewer PRE operations than pnaive. Consequently, HElium inserts PRE operationsmore efficiently than the naive approach. For n/k = 2, p is reduced by 50 % com-pared to pnaive. For n/k = 5, it is reduced by 92%. The variant n/k = n represents thecase in which all inputs are encrypted under a common input key. HElium reducesthe necessary PRE operation constantly to p = 2. That results in a reduction of upto 99.96% of the PRE operations for n = 1000. However, for n/k = 1, the compilercan not reduce p. In that case, each data set is provided under its own key that isdifferent from the output key and needs to be re-encrypted. The results of Figure 7.2are measured using a program with sorted inputs.Listing 7.2 and Listing 7.3 show a comparison of sorted and unsorted inputs. Inthe sorted variant, the inputs and following operations are grouped by their keys.The experiments are re-conducted with unsorted inputs to analyze the impact of theprogram structure.

Listing 7.2: Sorted Inputs
1 input a0 : in t <1>@Key0 ;2 input a1 : in t <1>@Key0 ;3 input a2 : in t <1>@Key1 ;4 input a3 : in t <1>@Key1 ;5 . . .

Listing 7.3: Unsorted Inputs
1 input a0 : in t <1>@Key0 ;2 input a1 : in t <1>@Key1 ;3 input a2 : in t <1>@Key0 ;4 input a3 : in t <1>@Key1 ;5 . . .

Figure 7.3 depicts the number of inserted PRE operations p in relation to the num-ber of data sets n for n/k = 5. It compares a variant using sorted inputs with a variantwith unsorted inputs. The figure shows that the "unsorted" variant has a higher pthan the "sorted" variant. Furthermore, the "unsorted" variant has only an up to 0.4%lower p than pnaive. Consequently, the efficiency of the PRE insertion of the compilerdepends on the structure of the program and its inputs.
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Figure 7.2.: Number of Inserted PRE Operations

To summarize, the evaluation showed that the compiler can reduce PRE opera-tions to a minimum necessary number. Unfortunately, the compiler performs notas efficient in programs with unstructured and unsorted inputs. Hence, there areopportunities for optimization. Future versions of the compiler could automaticallyrestructure the program to lower the number of necessary PRE operations. Addi-tionally, future optimization could not only target a low number of PRE operations.Instead, the parallelism of the computation graph could be taken into account.
7.2.3. Scalability of the Compiler

This section analyzes how the compiler performs for different problem sizes. Thecompilation time is measured for different data-set sizes n of the use case. Further-more, the runtime of the internal processes of the compiler is analyzed individually.It is expected that the compilation time grows for programs with a larger data setsize. Figure 7.4 depicts the compile time relative to the set size n. In parallel, it showsthe number of nodes of the compiled computation graph in relation to the set size
n. While the number of nodes is linear in the set size n, the compile time growsquadratically.In order to analyze the cause of the non-linear growth of the compile time, theruntimes of the compile processes are measured. Figure 7.5 depicts the runtime ofthe internal compiler processes for the use-case program relative to the data-set size
n. Each color represents the runtime of one process in the compilation. For furtherinformation about the compiler processes, see Section 6.4. It shows that the "TypeDeduction", "Key Selection", and "Metrics" processes cause the non-linear growth ofthe compile time.Future versions of the compiler could aim to improve the complexity of these pro-cesses. However, the compiler performs the compilation for n = 1000 data setsin less than 0.8 s. Compared to the execution runtime of the compilation result the
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Figure 7.3.: Number of Inserted PRE Operations: Sorted and Unsorted Inputs

compile time can be still sufficient.

7.3. Summary

Within the previous sections the PRE implementation of the HElium compiler is evalu-ated with regard to effects of PRE on the execution runtime, the efficiency of the PREimplementation and the scalability of the compiler itself. The experiments demon-strated that the HElium compiler can generate efficient results while supporting PREand an arbitrary number of encryption keys. It showed that PRE can be integratedinto FHE programs to acceptable costs in terms of runtime performance. The com-piler and the resulting FHE programs scale sufficiently and can solve problems ofpractically relevant size.Furthermore, opportunities for further improvements were identified during theexperiments. For example, it showed that HElium’s DSL can be inconvenient to de-velop programs with many inputs. To mitigate this problem, HElium could supportarrays and other data structures with elements of different keys. That would allowsimplifying the previously presented program. Additionally, it showed that the com-piler may not reach the optimal value of PRE operations in the case of restructuredinputs. Therefore, internal balancing and reordering processes in the compiler wouldfurther improve its performance.
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8. Optimization for
Homomorphic Encryption and
Proxy Re-Encryption

This chapter discusses different approaches for further optimization of FHE pro-grams with and without Proxy Re-Encryption (PRE). The performance of FHE pro-grams can benefit from parallel-execution capabilities of modern computers. There-fore, Section 8.1 discusses optimizations for operation-level and data-level paral-lelism. Another important optimization opportunity are client-aided computations.Section 8.2 presents differentmechanisms of pre and post- computations performedby the clients of a computation.

8.1. Parallelism

8.1.1. Concurrent Execution

Concurrent execution is an important mechanism to perform multiple independentoperations in parallel. Modern CPUs often consist of multiple computation cores thatare able to computemultiple threads in parallel. Similarly, FHE applications can bene-fit from concurrent execution. Nodes of an FHE computation graph can be evaluatedin parallel if they do not depend on each other. This parallelism can be implementedby parallel threads or parallel nodes. Figure 8.1 depicts a typical execution architec-ture for large FHE applications. It shows a management service that distributes theworkload to worker nodes. Each worker node spawns a set of threads that executeparts of the program. This architecture has advantages for the execution of large pro-grams. By using multiple worker nodes and multiple threads per worker, the compu-tation can be distributed. Consequently, even complex analytics can be performedin an acceptable time. However, the architecture introduces the main challenge: thepartitioning of the computation graph for different workers and threads.
Dependencies between workers require additional communication. Due to thesize of ciphertexts, communication is costly and can have a negative impact on per-formance. Therefore, it is important to avoid dependencies between workers. Oneapproach to this is the use of graph-partitioning algorithms. This is only worthwhilefor circuits of a certain size and with opportunities for parallelism.
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Figure 8.1.: Large-Scale Architecture for Execution of FHE Programs

8.1.2. Data Parallelism

Modern CPUs provide a variety of vector instructions, also referred to as single in-struction multiple data (SIMD). These allow performing a single operation on mul-tiple data values in parallel. FHE schemes can provide a similar mechanism that isreferred to as batching or ciphertext packing [9]. This applies especially to schemesthat rely on the ring variant of the learning with errors problem (RLWE). These allowencrypting multiple messages into one ciphertext. For example, a BFV ciphertext canencrypt n/2 elements, referred to as slots. The scheme parameter n denotes thepolynomial degree. Typical values for n are between 1024 and 32, 768 according tothe homomorphic encryption standardization initiative [2].Homomorphic operations performed on packed ciphertext apply to all elementsof the ciphertext in parallel [9]. Therefore, batching allows SIMD-like operations onciphertexts. It can speed up programs with a large amount of parallel data. For exam-ple, a program that uses batching with n/2 = 1024 slots can perform an operation on1024 elements in parallel. That results in a theoretical amortized speedup of 1023compared to the execution on a single slot. For example, Chen et al. used batch-ing perform fast private set intersection [11]. The following constructions of utilizingbatching for parallelization are based on previous work. For example, Dathathri etal. proposed mechanism to encode matrices using batching to perform efficient ma-trix multiplications. Furthermore, there are a variety of use cases that benefit fromefficient encoding, for example [11, 7, 32, 4].Currently, available schemes do only support performing element-wise operationson batched ciphertexts. This includes addition, multiplication, and rotation. Perform-ing operations on specific elements is not directly possible. However, by using ad-dition, multiplication, and rotation array access can be emulated, as shown in Fig-ure 8.2 For example, access of the i-th element of a vector a = (a0, a1, . . . , an/2) canbe achieved by multiplication with a selection-mask vector b. That vector b is filedwith zeros and its i-th element is one. The resulting vector contains the selectedelement at the i-th position and is filled with zeros. It shows that there exist differ-

MUL ROT

Figure 8.2.: Emulating Array Access using Rotation and Addition
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8. Optimization for Homomorphic Encryption and Proxy Re-Encryption

ent variants to encode data into the slots of a batched ciphertext. The slots can beused to encrypt vectors or matrices [18, 17]. In such cases, each slot can representan element of the vector or matrices. Scalars can be either encoded in a particularslot or encoded in all slots in parallel. The second variant is beneficial for followingelement-wise vector operations.Figure 8.3 depicts one approach to "copy" a particular element to all slots of abatched ciphertext. It uses log n2 rotation and addition operations.

ROT

repeat  times

ADD

Figure 8.3.: Emulating Array Construction from Scalar using Rotation and Addition

Similarly, arrays can be constructed frommultiple batched ciphertexts that encodea single scalar. Figure 8.4 shows a construction that uses rotation and addition op-erations to combine multiple ciphertexts with a scalar encoded into the first slot. Foran array of length l it requires l rotations and log l addition operations. The presented

ROT

...

ROT

ADD

ADD

......

......

Figure 8.4.: Emulating Array Construction from Multiple Scalars using Rotation andAddition

approaches of transformation between different encoding variants of batched ci-phertexts require additional operations. Therefore, they add computational com-plexity. However, there are programs that can benefit from an automatic transfor-mation from a scalar encoding to vector encoding. For example, a transformationof l scalar-encoded ciphertexts to an array encoding and back to a scalar encodingrequires additional 2l rotations, l multiplications, and log l additions. Although thisrequires additional operations and adds complexity, it can speed-up operations thatcan be performed in parallel by a factor of l – 1.HElium supports batching for FHE schemes that support this technique. The com-piler translates element-wise operations on arrays to batched ciphertext operations.For example, the use case presented in Section 7.1 utilizes batching to compute therecurrence rate relative to many mutations in parallel. However, HEliums batching
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support is limited. It does only support element-wise operations on vectors. Accessto single elements of the vector or automatic restructuring of scalar data into vectorsis not supported yet. Future versions could automatically detect opportunities foroptimizations through batching and automatically insert necessary transformationoperations.

8.2. Client-Aided Computation

This section presents mechanisms to utilize the computation power of the clients,i.e., data-providing participants, to improve the execution-runtime performance ofFHE programs. Subsections 8.2.1 and 8.2.2, discuss approaches of offloading partsof the computation graph to the clients.

8.2.1. Pre-Computation by the Client

The encoding of inputs and outputs of an FHE program is an important starting pointfor optimizations. For example, one straightforward optimization can be the selectionof suitable bit lengths for the input values. In many use cases, the domain of inputscan be reduced by simple operations of the data-providing party.The computation of polynomials using FHE is a good example problem to high-light the advantages of pre-computation by the client. The example, a polynomial of
f (x) = ax9 +bx–5 requires computational-complex multiplications if the computationis performed completely using FHE. It would require at least log29 multiplications of
x to compute x9. Multiplications using FHE can be computational complex. However,for the data-providing client, the calculation of x9 is an operation on plaintexts witha low complexity compared to FHE. Therefore, the client can directly provide the re-sult of x9 as an additional input x′ to the computation. This results in the function
f (x′, x) = ax′ + bc – 5 whereas x′ = x9 is a preliminary function that is calculated bythe client that provides x. Consequently, the communication complexity is doubledsince the client has to transmit two inputs x and x′ instead of one input x. However,the function f (x′, x) has a much lower computational complexity because it consistsonly of additions and subtractions. A similar construction was used by Chen et al. tooptimize private set intersection [11]. In this example, it would be even possible to re-place the FHE scheme with a partially homomorphic encryption (PHE) scheme. A PHEscheme supports only one type of homomorphic operation, for example, additionsand multiplications. Despite this limitation, PHE schemes are much more efficientthan FHE schemes.To summarize, the pre-computation of some operations of the function reducesthe complexity effectively. Operations that are computational complex in FHE canbe performed in plaintext on the client. This can be accompanied by the cost of ad-ditional communication and additional operations on the client. Therefore, in somecases, it is a tradeoff between computational and communication complexity.For the presented example it is unchallenging to identify opportunities for pre-computation. However, for more complex programs this task can become difficult.A compiler can support developers with the identification of optimization opportuni-ties. From a theoretical perspective, this process follows similar rules as the insertionof PRE operations. Each operation that depends by itself or by its operands only onthe inputs of a single participant can be pre-computed by the participant. Figure 8.5depicts the initial computation graph of g(x) = ax2 + bx on the left side. Nodes thatdepend only on inputs, i.e., data of the same single party are colored homogeneous.
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Figure 8.5.: Computation Graph of g(x) = ax2 + bx with and without Pre-Computation

On the right, it shows a possible computation graph that utilizes pre-computation.This computation graph is partitioned into two parts. One part is executed at theparticipant PARTY1. The other part is still executed by a computation party. Similarlyto the previous example, the function x2 is pre-computed by the client and providedas an additional input.The pre-computation of parts of the computation circuit has onemajor limitation. Itrequires that the function that is to be computed is known at the time of encryptionof the inputs. As it may require specific encoded inputs or additional inputs, thefunction or at least the pre-computed part must be known before encryption.One approach to determine operations on the computation graph that can bepre-computed is tainting or labeling the operations. Therefore, each party is a labelassigned. The labels represent a partition of the computation graph. In the first step,only the input nodes are labeled with the label of the corresponding input-providingparty. Then the labels can be propagated through the graph by a greedy algorithm.Beginning from the input nodes can traverse the computation graph from nodes totheir usages in a depth-first-search manner. Each visited node can be labeled in thecase that all operands of the node share the same label. This process is repeateduntil no more nodes can be labeled. An example result of a labeled graph can beseen in Figure 8.5. Similar to this example, the graph can now be partitioned intosubgraphs according to the applied labels.However, as previously discussed, this approach can increase the communicationcomplexity, i.e., the amount of data that must be transmitted by the participants.There are maybe scenarios that are limited in terms of communication. For exam-ple, mobile applications. Therefore, a heuristic can be applied to the labeled nodesin order to decide whether the nodes should be pre-computed or part of the maincomputation. This decision is done with the tradeoff between communication andcomputational complexity in mind. The selected or labeled subgraphs can be sepa-rated from the main computation graph. The leaf nodes of the subgraphs must bereplaced by additional input nodes of the main graph to maintain correctness. Theseinputs represent the intermediate results of the pre-computation subgraphs. An ex-ample of such a split graph is shown in Figure 8.5. The resulting pre-computationgraphs can be evaluated directly by the input-providing participants.
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8.2.2. Post-Computations

The same mechanism can be applied to the outputs of computation in order tooffload post-computations of the function to the receiving party. Similarly to pre-computation, operations that are dependencies of outputs can be separated fromthe main computation graph to form a post-computation. The receiving party canperform the post-computation in plaintext. Consequently, the overall-computationalcomplexity decreases compared to a complete FHE-based solution. For example, inthe use case presented in Section 7.1, the final division operation is performed bythe receiving party to lower the computational complexity of the function. A similarconstruction is used in [5] to offload a complex division operation to a participantwith the decryption key. Chen et al. implemented a construction that offloads finalcomparison operations to the decrypting participant [11].
Figure 8.6 depicts an example computation graph of the function h(a,b, x) = a·x

x+bon the left. On the right, it shows on possibility to partition the computation graphinto a main computation and a post computation. The parts h0(a, x) = a · x and
h1(b, x) = x+b are computed by the computation party. The receiving party performsthe second part of the computation and combines both intermediate results via adivision h(a,b, x) = h0(a,x)

h1(b,x) . This lowers the complexity of the main computation butrequires additional communication since two encrypted results must be transmittedto the receiving party.
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Figure 8.6.: Computation Graph of h(a,b, x) = a·x
x+b with and without Post-Computation

However, an important aim of FHE is to enable computations and analyses of datawhile preserving privacy and confidentiality. Therefore, it is important to limit post-computations to prevent leakage of the inputs. As one approach, the separation ofpost-computations can be limited to operations that do not yield a result with lowerentropy than its operands. As another approach, the computation party could blindthe intermediate results such that the result of the computation does not change andthe receiving party does not learn the intermediate results. For example, in the previ-ously presented program showed in Figure 8.6, the intermediate results h0(a, x) = a·xand h1(b, x) = x+b could be blinded by a random r. Therefore, the blinding factor r israndomly sampled from a Gaussian distribution andmultiplied with the intermediate
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results, as depicted in Equations (8.1) and (8.2).
h
′0(a, x) = a · x · r (8.1)

h
′1(b, x) = (x + b) · r (8.2)

When combining these two blinded intermediate results, the blinding factor r elimi-nates itself, as shown in Equation (8.3). The intermediate values are secured withoutchanging the result.
h(a,b, x) = h′0(a, x)

h′1(b, x)= a · x · r
(x + b) · r= a · x
x + b

(8.3)

Furthermore, if a compiler applies partitioning of pre and post-computations si-multaneously without any limitations, FHE can be removed completely from the com-putation. In this case, the inputs or their pre-computed successors are revealed tothe receiving party. This violates the confidentiality requirements. Consequently, theseparation of post-computations must be used consciously to prevent data leakage.

8.3. Summary

The previous sections discuss a variety of opportunities for optimizations of FHE pro-grams with support for PRE. Each of them aims to improve the execution runtimeof FHE programs towards practical usability. It showed that there are opportunitiesfor optimization at each level of abstraction: On the data level, batching allows per-forming SIMD-like operations on ciphertexts. This can provide an important efficiencyimprovement for data-parallel problems. On the operation level, the replacement ofcomplex operations with approximate alternatives can be beneficial. Additionally, op-erations can be offloaded to participants of the computation and performed in plain-text. On graph level, re-balancing and re-structurings of the computation graph pro-vide many opportunities for optimization. For example, re-ordering of chained oper-ations can reduce the number of necessary PRE operations significantly, as shown inSection 7.2.2. Furthermore, offloading of pre and post-computations is an importantmechanism to reduce the complexity of programs. On a larger scale, the compu-tation power of modern cloud environments can be used to execute even complexprograms with many data records. Partitioning of computation graphs can help todistribute the computation to many computation nodes. In summary, there havebeen various opportunities for further optimization of FHE programs identified thatare a base for future work.
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9. Conclusion and Future Work
This chapter concludes the finding of the thesis. The following section 9.1 provides aconclusion of this thesis by recapitulating the previous chapters. Section 9.2 presentsopportunities for further improvement that have been identified, followed by the the-sis statement in Section 9.3.

9.1. Conclusion

In this thesis, the efficient integration of proxy re-encryption (PRE) into compilers forfully homomorphic encryption (FHE) is studied.First, Chapter 2, discusses the preliminaries of this work. This includes informationabout FHE and PRE, as well as a presentation of the HElium compiler and its parts.Chapter 3 discusses relevant related lines of work and focuses on libraries and com-pilers for FHEAs a foundation for the following chapters, the computation scenario is elaboratedin Chapter 4. It addresses the targeted setting for computation, communication, andkey management. Section 4.3 derives general requirements on a PRE integrationfrom the elaborated scenario. This includes requirements on usability, security, andperformance.Based on that, concepts for integration of PRE into the FHE compiler HElium aredeveloped in Chapter 5. This chapter focuses on the abstraction of encryption keysby key labels and its conceptual integration into HElium. Therefore, as a first step,a concept to extend HEliums domain-specific language (DSL) with an encryption-keyproperty, i.e., the key label, is presented in Section 5.1. Similarly, Section 5.2 ad-dresses a concept to integrate the key label as a regular property into HElium’s typesystem. By using the abstraction of key labels, Section 5.3 discusses approaches ofinsertion of re-encryption operations in the computation graph. The main idea is topropagate the key labels from the roots of the computation graph to the leaf nodeto perform as few re-Encryptions as necessary.Chapter 6 addresses the implementation of the previously defined concepts intoHElium. Therefore, in Section 6.1, the key labels are integrated into HElium’s DSLvia an extension of the grammar of HElium. Thereafter, the re-encryption opera-tion is added to the intermediate representation of HElium, and the type system isextended by the key-label property, in Section 6.2. The key labels are propagatedthrough the computation graph. One algorithm is presented and implemented inSection 6.3. Section 6.4 addresses the functionalities and the implementation of the
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compiler backend for PRE. For example, the backend collects additional metrics forthe generation of parameters for the FHE scheme. In the last step, it serializes thecomputation graph.The resulting integration of PRE into HEliums is evaluated in Chapter 7. It is evalu-ated with a program developed for combining medical data from cancer patients toidentify correlations between genome mutations and the recurrence of the tumors.This evaluation addresses three main aspects. In the first experiment, the effect ofPRE on the execution runtime is investigated. Therefore, Section 7.2.1 compares theexecution runtime with PRE with the runtime of a similar program without PRE. Thevariant that uses PRE has a higher execution runtime that is mainly caused by theadditionally required communication of re-encryption keys. In Section 7.2.2, the sec-ond experiment analyses the efficiency of the PRE integration in the insertion of PREoperations by measuring the number of introduced PRE operations. The compileraims to insert only as few as necessary PRE operations. It showed that the compilercan achieve a number of PRE operations that is close to the theoretical minimum.However, the level of efficiency depends on the structure of the program. The scala-bility of the compiler is investigated in a third experiment, in Section 7.2.3. Compiletimes are measured for different problem sizes. It shows that the compiler scaleswell for practical problem sizes.Chapter 8 addresses opportunities for further optimization. Section 8.1.2 discussesapproaches to parallelize the execution on data, operation, and graph level. TheSections 8.2.1 and 8.2.2 present mechanisms to reduce the complexity of FHE pro-grams by offloading computationally complex operations to data-providing or data-receiving participants.In summary, this thesis develops concepts of integration of PRE into FHE programsand describes the implementation of those concepts into the HElium compiler. Theresult is the first compiler for FHE that supports PRE and automatically optimizes theuse of re-encryption operations.

9.2. Future Work

This section addresses opportunities for further improvement that have been iden-tified.This thesis already provides a practically usable integration of proxy re-encryption(PRE) into the HElium compiler as shown by the evaluation in Chapter 7. The evalua-tion helped to identify opportunities for further improvements that are described inChapter 8. Therefore, future versions of HElium could implement advanced mecha-nisms to enable parallelism onmultiple levels. On the data level, for example, HEliumcould automatically determine the most efficient encoding of data and introduce re-quired transformations automatically. On the operation level, advanced schedulingalgorithms could enable more parallelism. Furthermore, the PRE integration in HEli-ums is currently limited to a constrained scenario. Additionally, future versions couldprovide more flexibility by supporting arbitrary settings of input and output keys.HElium and its DSL provide already a set of critical functionalities. Nonetheless,future versions can further improve the developer experience of the compiler. Forexample, a mechanism to define higher-level data structures could improve HElium’susability. A module system that allows developers to encapsulate algorithms intoseparate models could reduce code duplications and could enable the developmentof function libraries for HElium. Furthermore, more comprehensive support throughdeveloper tools like integrated-development environments can ease access to HE-lium and can improve usability.
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9.3. Thesis Statement

9.3. Thesis Statement

This thesis addresses the question of how fully homomorphic encryption (FHE) pro-grams can be efficiently extended by proxy re-encryption (PRE) to allow computationsover inputs under different keys. It describes the extension of an existing compilerwith PRE functionalities and discusses approaches for further optimization. The prac-ticality of the compiler and the generated FHE programs was demonstrated using theanalysis of confidential patient data as a lifelike example.
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A. Additional Resources for
HElium

A.1. Supported Operations of HEliums Intermediate
Representation

Table A.1.: Intermediate-Representation Operations of HElium with Description
Operation Description Newly added
ADD(a, b) Addition -SUB(a, b) Substraction -MUL(a, b) Multiplication -DIV(a, b) Division -MOD(a, m) Modulus -POW(a, p) Power -
AND(a,b) Boolean AND -OR(a, b) Boolean OR -XOR(a, b) Boolean XOR -NAND(a, b) Boolean NAND -NOT(a) Boolean NOT -MUX(s, a, b) Boolean MUX -

EQUAL(a, b) Equal -NEQUAL(a, b) Unequal -GT(a, b) Greater than -LT(a, b) Lower than -GET(a, b) Greater or equal -LET(a, b) lower than or equal -
ARRAYACCESS(a, i) Access the i-th element of a -
INPUT(name) Input with name -OUTPUT(a, name) Output a with name -CONST(value) Const value -
PRE(value) Proxy re-encryption yes
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A.2. ANTLR4 Grammar of HElium

The following Listings depict the grammar of the HElium DSL written for ANTLR4. Itis divided into a lexer grammar, shown in Listing A.1 and a parser grammar, shownin Listing A.2.
Listing A.1: ANTLR4 Grammar of the Lexer

1 lexer grammar hedslLexer ;2 /*3 Lexer4 */5 TVAR : ’ var ’ ;6 TAT : ’@’ ;7 TPARAMS : ’ # ’ ;8 TINPUT : ’ input ’ ;9 OUTPUT : ’ output ’ ;10 RETURN : ’ return ’ ;11 DEFFUNCTION : ’ fun ’ ;12 I F : ’ i f ’ ;13 FOR : ’ for ’ ;14 THEN : ’ then ’ ;15 SERVER : ’ server ’ ;16 ELSE : ’ e lse ’ ;17 FROM: ’ from ’ ;18 PUBLIC : ’ p la in ’ ;19 TTO : ’ = > ’ ;20 SEMICOLON : ’ ; ’ ;21 COLON: ’ : ’ ;22 TSIF : ’ ? ’ ;2324 TWODOTS: ’ . . ’ ;2526 SHIFTL : ’ < < ’ ;27 SHIFTR : ’ > > ’ ;28 EQUAL : ’ = ’ ;29 CEQ : ’ = = ’ ;30 CNE : ’ ! = ’ ;31 CLT : ’ < ’ ;32 CLE : ’ <= ’ ;33 CGT : ’ > ’ ;34 CGE : ’ >= ’ ;35 LPAREN : ’ ( ’ ;36 UNDERSCORE : ’ _ ’ ;37 RPAREN : ’ ) ’ ;38 LBRACE : ’ { ’ ;39 RBRACE : ’ } ’ ;40 LSBRACE : ’ [ ’ ;41 RSBRACE : ’ ] ’ ;42 OR : ’ | | ’ ;43 AND: ’&& ’ ;44 PIPE : ’ | ’ ;45 DOT : ’ . ’ ;46 COMMA: ’ , ’ ;47 PLUS : ’ + ’ ;48 MINUS : ’ − ’ ;49 MUL: ’ * ’ ;50 DIV : ’ / ’ ;
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A.2. ANTLR4 Grammar of HElium

51 POW: ’ * * ’ ;52 NOT : ’ ! ’ ;53 MODDIV : ’% ’ ;54 /**55 Types56 */57 TYPEAUTO : ’ auto ’ ;58 TYPEINT : ’ i n t ’ ;59 TYPEFLOAT : ’ f l o a t ’ ;6061 COMMENT: ’ / * ’ . * ? ’ * / ’ −> sk ip ;62 LINE_COMMENT : ’ / / ’ ~ [ \ r \n]* −> sk ip ;6364 IDENTIFIER : [ a−zA−Z ] [ a−zA−Z0−9]* ;65 INTEGERLIT : [0 −9]+ ;66 FLOATLIT : [ 0 −9 ]+ ’ . ’ [ 0 −9 ]+ ;6768 NEWLINE : ( ’ \ r ’ ? ’ \ n ’ | ’ \ r ’ ) + −> sk ip ;69 TAB : ( ’ t ’ | ’ ’ | ’ ’ ) −>sk ip ;70 WHITESPACE : ’ ’ + −> sk ip ;

Listing A.2: ANTLR4 Grammar of the Parser
1 parser grammar hedslParser ;23 opt ions {4 tokenVocab = hedslLexer ;5 }67 program : stmts EOF ;89 stmts : stmt+10 /* | stmts stmt */11 ;1213 stmt : TVAR var_dec l SEMICOLON #VarDeclStmt14 | input_def SEMICOLON #InputStmt15 | ident ( LSBRACE index=expr RSBRACE ) * EQUAL value=exprSEMICOLON# VarAssignment16 | func_dec l #FuncDeclStmt17 | i f _ s tm t #I f S tmt18 | fo r _dec l #ForExpressionStmt19 | RETURN expr SEMICOLON #ReturnStmt20 | OUTPUT ident EQUAL expr ( TTO ident ) ? key_arg ?SEMICOLON? #OutputStmt21 ;2223 block : LBRACE stmts RBRACE24 | LBRACE RBRACE25 ;2627 var_dec l : TVAR? PUBLIC? ident COLON type_ ident28 | TVAR? PUBLIC? ident (COLON type_ ident ) ? EQUALexpr29 ;3031 input_def : PUBLIC? TINPUT ident COLON type_ ident ( CLE ident ) ?( TPARAMS input_params ) ? ;
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3233 input_params : IDENTIFIER EQUAL ( IDENTIFIER|numeric )34 | input_params COMMA IDENTIFIER EQUAL (IDENTIFIER|numeric ) ;3536 func_dec l : DEFFUNCTION ident LPAREN func_dec l _args RPARENCOLON type_ ident block ;3738 fo r _dec l : FOR LPAREN ident (COMMA ident ) ? COLON expr RPARENblock ;3940 func_dec l _args : /* blank */41 | var_dec l42 | func_dec l _args COMMA var_dec l43 ;4445 ident : IDENTIFIER46 ;47 type_ ident : TYPEINT CLT INTEGERLIT CGT type_args* key_arg ?48 | TYPEAUTO type_args* key_arg ?49 | TYPEFLOAT CLT INTEGERLIT CGT type_args* key_arg ? ;5051 key_arg : TAT IDENTIFIER ;5253 type_args : LSBRACE INTEGERLIT RSBRACE ;5455 numeric : INTEGERLIT56 | FLOATLIT57 ;5859 expr : LPAREN expr RPAREN # SubExpression60 | ident LPAREN ca l l _ a r g s RPAREN # Func t ionCa l l61 | ident # VarUsage62 | LSBRACE expr TWODOTS expr RSBRACE # RangeExpression63 | ident ( LSBRACE expr RSBRACE ) + # ArrayAcces64 | ident DOT ident LPAREN ca l l _ a r g s RPAREN # MethodCall65 /* L i t e r a l s */66 | LSBRACE c a l l _ a r g s ? RSBRACE # A r r a y L i t e r a l67 | numeric # Numer icL i tera l68 | NOT expr # NotExpression69 | expr DIV expr # DivExpress ion70 | expr POW expr # PowerExpression71 | expr MUL expr # MultExpression72 | expr PLUS expr # PlusExpress ion73 | expr MINUS expr # MinusExpression74 | expr MODDIV expr # ModDivExpression75 | expr AND expr # AndExpression76 | expr OR expr # OrExpression77 | expr comparison expr # ComparisonExpression78 | expr TSIF expr COLON expr # I fExpress ion79 | input_def # InputExpress ion80 ;818283 i f _ s tm t : I F LPAREN expr RPAREN block ELSE block ;8485 c a l l _ a r g s : /* blank */86 | expr
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87 | c a l l _ a r g s COMMA expr88 ;8990 comparison : CEQ | CNE | CLT | CLE | CGT | CGE ;
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B. Measurement Results of the
Evaluation

Table B.1.: Evaluation Results in s
Sets Keys Compile Time Evaluation Time IO Time Number of Nodes

4 0 0.005 0.031 0.214 20.0004 1 0.006 0.043 0.327 28.0004 2 0.006 0.037 0.252 24.0004 4 0.006 0.034 0.215 22.0004 5 0.006 0.034 0.215 22.00010 0 0.006 0.078 0.381 50.00010 1 0.006 0.108 0.716 70.00010 2 0.006 0.092 0.531 60.00010 5 0.006 0.084 0.419 54.00010 10 0.006 0.081 0.382 52.000250 0 0.053 1.935 7.053 1250.000250 1 0.062 2.834 16.317 1750.000250 2 0.059 2.350 11.660 1500.000250 5 0.057 2.115 8.876 1350.000250 250 0.056 1.946 7.057 1252.000500 0 0.168 3.865 14.007 2500.000500 1 0.197 5.668 32.577 3500.000500 2 0.187 4.753 23.249 3000.000500 5 0.179 4.278 17.701 2700.000500 500 0.177 3.877 14.008 2502.000750 0 0.354 5.875 20.963 3750.000750 1 0.412 8.479 48.853 5250.000750 2 0.395 7.220 34.851 4500.000750 5 0.374 6.433 26.473 4050.000750 750 0.364 5.862 20.958 3752.0001000 0 0.606 7.782 27.904 5000.0001000 1 0.698 11.388 65.008 7000.0001000 2 0.668 9.791 46.455 6000.0001000 5 0.641 8.672 35.278 5400.0001000 1000 0.622 7.874 27.904 5002.000
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Table B.2.: Evaluation Results: Compiler-Stage Runtimes in μs
Sets Keys Frontend Type-Deduction Key-Selection PRE-Insert Metrics-pass

4 0 1454.7 36.0 20.5 7.3 21.14 1 1659.4 35.1 20.9 16.9 29.44 2 1665.5 34.9 22.9 13.4 25.94 4 1662.2 35.7 21.2 12.1 22.64 5 1812.5 33.2 22.4 12.1 22.210 0 1699.6 71.7 58.8 17.2 59.510 1 1976.1 72.5 59.7 39.7 83.010 2 1991.9 70.3 60.5 31.1 69.710 5 1983.6 70.0 60.5 23.8 64.010 10 1973.3 72.7 60.0 22.0 62.1250 0 10406.0 11760.0 11773.3 427.4 11963.1250 1 13440.3 11729.8 11752.7 939.0 16697.0250 2 13812.3 11790.2 11794.8 695.3 14474.0250 5 13606.2 11650.5 11687.5 543.1 12895.0250 250 13474.7 11701.1 11709.5 431.5 11924.9500 0 19956.0 46065.4 46259.7 957.9 46601.2500 1 25956.1 46392.8 46545.5 2045.8 66204.1500 2 26575.6 46584.4 46690.5 1511.2 56891.9500 5 26376.6 45954.4 46177.2 1280.7 50515.1500 500 25951.9 46885.2 47169.3 967.8 47503.4750 0 29797.7 103834.0 104299.1 1650.3 104884.7750 1 38905.2 104112.9 104913.9 3344.2 148322.8750 2 39926.5 105702.8 106275.5 2562.4 128874.1750 5 38740.9 104033.0 104619.4 2020.2 113880.7750 750 38835.1 103738.1 104519.0 1693.4 104946.61000 0 39709.7 182995.1 183850.1 2486.8 184692.81000 1 51286.9 183344.8 184010.3 4537.6 260199.11000 2 53284.6 185355.5 186512.0 3837.6 224603.41000 5 51517.0 184941.3 186193.4 3004.3 202083.41000 1000 51739.8 184037.3 185076.9 2544.3 185751.5
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B. Measurement Results of the Evaluation

Table B.3.: Evaluation Results: Key-Generation and Encryption Runtimes in s
Sets Keys Key-Generation Runtime Encryption Runtime

4 0 0.110 0.1914 1 0.280 0.1904 2 0.195 0.1904 4 0.156 0.1924 5 0.152 0.19010 0 0.109 0.43110 1 0.538 0.43110 2 0.320 0.43210 5 0.193 0.43110 10 0.153 0.435250 0 0.110 10.127250 1 10.656 10.111250 2 5.391 10.077250 5 2.210 10.092250 250 0.153 10.113500 0 0.110 20.110500 1 21.309 20.087500 2 10.807 20.110500 5 4.356 20.165500 500 0.154 20.087750 0 0.111 30.261750 1 31.891 30.203750 2 15.924 30.200750 5 6.514 30.204750 750 0.153 30.3371000 0 0.111 40.2791000 1 43.055 40.4791000 2 22.121 40.2571000 5 8.530 40.1671000 1000 0.153 40.368
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Table B.4.: Evaluation Results: Results of the Execution Runtime in s
Sets Keys Key-Loading Input-Loading Evaluation StoringOoutputs Numberof PRE

4 0 0.102 0.111 0.031 0.001 0.0004 1 0.215 0.111 0.043 0.001 8.0004 2 0.140 0.111 0.037 0.001 4.0004 4 0.103 0.111 0.034 0.001 2.0004 5 0.103 0.111 0.034 0.001 2.00010 0 0.102 0.278 0.078 0.001 0.00010 1 0.437 0.278 0.108 0.001 20.00010 2 0.252 0.278 0.092 0.001 10.00010 5 0.140 0.278 0.084 0.001 4.00010 10 0.103 0.278 0.081 0.001 2.000250 0 0.102 6.949 1.935 0.001 0.000250 1 9.368 6.948 2.834 0.001 500.000250 2 4.712 6.947 2.350 0.001 250.000250 5 1.927 6.948 2.115 0.001 100.000250 250 0.103 6.953 1.946 0.001 2.000500 0 0.102 13.904 3.865 0.001 0.000500 1 18.678 13.898 5.668 0.001 1000.000500 2 9.357 13.892 4.753 0.001 500.000500 5 3.795 13.905 4.278 0.001 200.000500 500 0.103 13.904 3.877 0.001 2.000750 0 0.103 20.859 5.875 0.001 0.000750 1 28.004 20.848 8.479 0.001 1500.000750 2 14.011 20.839 7.220 0.001 750.000750 5 5.636 20.836 6.433 0.001 300.000750 750 0.103 20.853 5.862 0.001 2.0001000 0 0.103 27.800 7.782 0.001 0.0001000 1 37.215 27.792 11.388 0.001 2000.0001000 2 18.671 27.784 9.791 0.001 1000.0001000 5 7.491 27.786 8.672 0.001 400.0001000 1000 0.104 27.800 7.874 0.001 2.000
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