TECHNISCHE
UNIVERSITAT
DRESDEN

Faculty of Computer Science Institute of Computer Engineering, Chair for Compiler Construction

Efficient Cloud-Based
Privacy-Preserving Computation
via Fully Homomorphic
Encryption and Proxy
Re-Encryption

Mirko Schafer

mirko.schaefer@tu-dresden.de
Born on: 30.08.1995 in Sebnitz
Matriculation number: 4052462

Diploma Thesis

Supervisors

Lars Schitze, TU Dresden

Kilian Becher, SAP SE

Supervising professors

Prof. Dr.-Ing. Jerénimo Castrillén, TU Dresden
Prof. Dr.-Ing. Thorsten Strufe, KIT

Submitted on: 25.01.2022

Statement of authorship

| hereby certify that | have authored this document entitled Efficient Cloud-Based Pri-
vacy-Preserving Computation via Fully Homomorphic Encryption and Proxy Re-Encryption
independently and without undue assistance from third parties. No other than the
resources and references indicated in this document have been used. | have marked
both literal and accordingly adopted quotations as such. There were no additional
persons involved in the intellectual preparation of the present document. | am aware
that violations of this declaration may lead to subsequent withdrawal of the academic
degree.

Dresden, 2;.01 ;)2\2 -

TECHNISCHE | Clfaed g
UNIVERSITAT =
DRESDEN .

TU Dresden Fakultat Informatik, Institut fiir Technische Informatik, Professur fiir Compilerbau

Task Description for Final Thesis (Diplomarbeit)

For: Mirko Schéfer

Degree program: Diplom Informatik (Studienordnung 2010)

Matriculation number: 4052462

E-mail: mirko.schaefer@tu-dresden.de

Topic: Efficient cloud-based privacy-preserving computation via fully

homomorphic encryption and proxy re-encryption

Fully Homomorphic encryption (FHE) enables computation over encrypted data without intermediate
decryption. This allows outsourcing of computations to untrusted parties, such as cloud environments,
while preserving privacy of inputs, intermediate results, and outputs. Confidential inputs can be provided
by multiple parties. Such scenarios may require the use of different encryption keys to ensure privacy of
the different parties’ inputs. Proxy re-encryption (PRE) is a technique that enables the privacy-preserving
transformation of ciphertexts encrypted under one key into ciphertexts of the same plaintexts which are
encrypted under a different key. However, PRE adds substantial computational overhead.

The main research question of this work is: How can PRE be utilized best to enable efficient cloud-based
privacy-preserving computation using FHE such that inputs can be encrypted under different encryption
keys? This includes an analysis of the effect that introducing PRE has on key management. benchmarking
to identify sources of inefficiencies, and a study of graph optimizations to improve the overall efficiency of
cloud-based privacy-preserving computations. This study is enabled by an initial DSL and will be built
on its corresponding IR and compiler infrastructure.

This thesis addresses the following aspects:

e Design and implementation of efficient methods for combining PRE and FHE to enable cloud-based
privacy-preserving computation with support for different encryption keys.

e Analysis of approaches to graph optimization such as parallelization and outsourcing of pre and
post computations to the parties’ client applications.

o Fvaluation of the impact that introducing PRE has on key management and computation runtime.

Start: 24.08.2021
End: 25.01.2022 @
1% referee: Prof. Dr.-Ing. Jerénimo Castrillon :

2nd yeferee: Prof. Dr.-Ing. Thorsten Strufe Prof. Dr.-Ing. Jerénimo Castrillén

Supervisor: Lars Schiitze, Kilian Becher (SAP SE) (Professor in charge)

Contents

List of Figures iX
List of Listings Xi
List of Tables Xiii
List of Acronyms XV
1. Introduction 1
1.7, Motivation 1
1.2. Objectives 1
1.3, Structure o 2

2. Preliminaries 3
2.1. Fully Homomorphic Encryption 3
2.1.1. Encryption Schemes and Implementations 5

2.1.2. ComputationScenario oo 5

21.3. TheBRVScheme L 6

2.2. Proxy Re-Encryption 7/
2.3. HElium Compiler 8
2.3.1. HElium Domain-Specific Language 8

2.3.2. Intermediate Representation 9

233, TypeSystem 10

234, Backends 10

3. Related Work 11
3.1. Libraries for Fully Homomorphic Encryption 11
3.2. Compilers for Fully Homomorphic Encryption 12

4. Scenario, Use Cases and Requirements 13
el T o o 13
4.2. Key Management for Programs using Proxy-Re-Encryption 14
4.3. Requirements for Compilers for Proxy Re-Encryption. 16

5. Concept of Proxy Re-Encryption Compiler Support 18
5.1. Domain-Specific-Language Support for Proxy-Re-Encryption 18
52. Multi-Key Type System 19
5.3. Optimization of Proxy Re-Encryption Programs 27

Vil

Contents

Viii

Implementation of Proxy Re-Encryption in HElium

6.1. Key-Label Argumentsin HElium'sDSL
6.2. Intermediate-Representation Extension for Proxy Re-Encryption
6.3. Efficient Insertion of Proxy Re-Encryption Operations
6.4. Implementation of a Backend with Proxy-Re-Encryption Support

Evaluation of the Proxy Re-Encryption Implementation
7.1. Use Case: Aggregation of Patient Data for Cancer Research
7.2. Evaluation of the HElium Compiler
7.2.1. The Effect of Proxy Re-Encryption on Execution Runtimes
7.2.2. The Efficiency of the Introduction of Proxy Re-Encryption Oper-
ations
7.2.3. Scalability of the Compiler
730 SUMMATY .« oo

Optimization for Homomorphic Encryption and Proxy Re-Encryption

8.1. Parallelism
8.1.1. Concurrent Executiono Lo
8.1.2. DataParallelism

8.2. Client-Aided Computation
8.2.1. Pre-ComputationbytheClient.
8.2.2. Post-Computations

8.3, SUMMATY o

Conclusion and Future Work

9.1. Conclusion
9.2. Future Work
9.3. Thesis Statement

Additional Resources for HElium
A.1. Supported Operations of HEliums Intermediate Representation
A.2. ANTLR4 Grammar of HElium

Measurement Results of the Evaluation

25
25
26
27
29

30
30
31
32

34
35
36

38
38
38
39
41
41
43
44

45
45
46
47

51
51
52

56

List of Figures

2.1.
2.2.
2.3.

4.1.
4.2.
4.3.

5.1.

5.2.
5.3.
54.

6.1.

7.7,
7.2.
7.3.
7.4,
7.5.

8.1.
8.2.
8.3.
8.4.

8.5.
8.6.

Abstract FHE Scenario 6
Compiler Pipeline of HElium 8
IR Graph Representation 9
Abstract FHE Scenariowith PRE L. 14
Abstract FHE Scenariowith PRE oL 15
Example Sequence of a Computation with Proxy Re-Encryption 16

Example Computation Graph with Inputs under Different Encryption

Keys . o 20
Example Integer Type 27
Example Computation Graph with Unknown Key Labels 22
Example Graph Before and After Key-Label Selection 23
Type System of HElium 26
Execution Runtime: Recurrence Rate Use Case (n/k=1) 32
Number of Inserted PRE Operations 35
Number of Inserted PRE Operations: Sorted and Unsorted Inputs . . . 36
Compile Time and Number of Operations Relative to Data-Set Sizen . 37
Runtime of Compiler Processes 37
Large-Scale Architecture for Execution of FHE Programs 39
Emulating Array Access using Rotation and Addition 39

Emulating Array Construction from Scalar using Rotation and Addition 40
Emulating Array Construction from Multiple Scalars using Rotation and

Addition ... 40
Computation Graph of g(x) = ax? + bx with and without Pre-Computation 42
Computation Graph of h(a, b, x) = 2% with and without Post-Computation 43

X+b

List of Listings

5.1.
5.2.

6.1.
6.2.
6.3.

7.1,
7.2.
7.3.

AT,
A2.

Input and Output Definition. L 18
Example Program with Three Inputsand Two Keys 19
Excerpt of the ANTLR4 Grammar of the Lexer of HElium 25
Excerpt of the ANTLR4 Grammar of the Parser of HElium 25
Excerpt of BuildASTVisitor.cpp - AST Type Construction 27
HElium Program: Recurrence Rate of Tumors 31
Sorted INpULS L 34
Unsorted Inputs 34
ANTLR4 Grammar oftheLexer 52
ANTLR4 Grammar of the Parser 53

Xi

List of Tables

2.1. Overview of FHE Libraries with Supported Schemes and Availability of

Bootstrapping & Batching 5
5.1. Comparison of Selection of Different Key Pairs 23
7.1. Execution Runtimes with and without PRE 33
7.2. Percentage and Runtime of PRE Operation. 33

A.1. Intermediate-Representation Operations of HElium with Description . 51

B.1. EvaluationResultsins 56
B.2. Evaluation Results: Compiler-Stage Runtimesinus 57
B.3. Evaluation Results: Key-Generation and Encryption Runtimesins . .. 58
B.4. Evaluation Results: Results of the Execution Runtime ins 59

Xiii

List of Acronyms

AST
BFV
CpPU
CsT
CKKS
DAG
DSL
EVA
FHE
HE
IDE
IR
LWE
MPC
PHE
PRE
RLWE
SHE
SIMD
SMC
TTP

abstract syntax tree
Brakerski-Fan-Vercauteren
central processing unit

concrete syntax tree
Cheon-Kim-Kim-Song

directed acyclic graph
domain-specific language
encrypted vector arithmetics

fully homomorphic encryption
homomorphic encryption
integrated development environment
intermediate representation
learning with errors

multi-party computation

partially homomorphic encryption
proxy re-encryption

ring learning with errors
somewhat homomorphic encryption
single instruction, multiple data
secure multi-party computation
trusted third party

XV

1. Introduction

1.1. Motivation

Nowadays, healthcare institutions collect a large amount of data about their patients
like medical-treatment protocols and surgical reports. This patient data is highly con-
fidential and strict data-protection requirements apply [20]. Consequently, sharing
and aggregation of patient data with research institutions are very complicated due
to regulatory reasons. Fully homomorphic encryption (FHE) combined with proxy re-
encryption (PRE) can enable researchers to combine their patient-data records with-
out sharing them in plaintext. FHE schemes are special encryption schemes that en-
able performing operations on encrypted data without intermediate decryption [22].
Proxy re-encryption (PRE) enables the transformation of ciphertexts encrypted under
one key into ciphertexts of the same plaintexts but encrypted under a different key
without intermediate decryption [6]. In combination, FHE and PRE enable computa-
tions on distributed data sets that are encrypted under different encryption keys [30].
Therefore, it allows analyzing distributed patient-data sets and gaining more signif-
icant insights. For example, with larger data sets, more accurate information about
correlations between genome mutations and properties of tumors can be identified.
That can enable researchers to develop more specific treatment methods against
the tumors [37, 27].

Developing efficient FHE applications with PRE is challenging and requires crypto-
graphic expertise. Compilers can help developers by automating tasks like parame-
terization and the efficient use of re-encryptions. Afew compilers that aim to improve
the development process of FHE programs have been proposed in the past. For FHE
exist a variety of compilers that aims to improve the developer experience. However,
compiler support for PRE is currently not present.

1.2. Objectives

This work aims to study methods of utilizing proxy re-encryption to enable cloud-
based privacy-preserving computations using FHE such that inputs can be encrypted
under different encryption keys. Therefore, the main objective of this thesis is to de-
sign and implement an extension of the HElium FHE compiler to support PRE. Due
to the fact that single proxy re-encryptions can be expected to add a fair amount of
computational overhead to FHE-based programs, the main focus of this extension is

1. Introduction

to enable the efficient use of PRE. Furthermore, the resulting compiler has to be eval-
uated to analyze the impact of PRE. This includes the effect of PRE on the execution
runtime of FHE programs and the identification of opportunities for further optimiza-
tion. Based on the evaluation results, this thesis will address further optimizations
and point out future work.

1.3. Structure

This section provides a brief overview of the structure of this work. First, Chap-
ter 2 presents required preliminary information about fully homomorphic encryption
(FHE) and proxy-re-encryption (PRE). Thereafter, related work is discussed in Chap-
ter 3. Chapter 4 elaborates the computation scenario for computations with FHE and
PRE and derives requirements. Within the scope of the scenario, Chapter 5 presents
design concepts of a PRE integration into the HElium compiler. Subsequently, the
concepts are implemented in Chapter 6. The resulting implementation is then eval-
uated in Chapter 7. This evaluation provides valuable findings for the following elab-
oration of further optimization opportunities in Chapter 8. The findings and results
of this work are concluded in Chapter 9.

2. Preliminaries

This chapter provides the required preliminaries for this work. This includes an intro-
duction to fully homomorphic encryption (FHE), proxy re-encryption (PRE), and the
HElium compiler.

2.1. Fully Homomorphic Encryption

Encryption schemes consist of three main components: a key-generation function
KeyGen(-), an encryption function £(-), and a decryption function D() [33]. The (prob-
abilistic) key generation function KeyGen(-) takes as input a security parameter A and
yields an encryption key, denoted by kenc, as well as a decryption key, denoted by
kgec, as shown in Equation (2.1). The (probabilistic) encryption function £(-) takes as
input the encryption key pk and the message, denoted by m € M, that is to be en-
crypted, and yields a ciphertext ¢ € C as depicted in Equation (2.2). M and C denote
the plaintext space and ciphertext space, respectively. In contrast, the decryption
function D(-) yields the plaintext message m € M. It takes as input the decryption key
sk and the ciphertext ¢ € C, like shown in Equation (2.3).

(kgec, kenc) « KeyGen(A) (2.1)
¢ «— E(m, konc) (2.2)
m « D(c, kyec) (2.3)

In asymmetric encryption schemes, the encryption key kenc is public. Therefore, it is
typically referred to as public key pk. Whereas the decryption key is secret and there-
fore referred to as secret key sk [33]. In symmetric schemes, the same secret key sk
is used for encryption and decryption. For simplicity, encryption and decryption can
be denoted by ¢ = E(m) and m = D(c), respectively.

Homomorphic Encryption (HE) is a special type of encryption scheme that allows
computations on ciphertexts [22]. That means that performing an operation ® on a
ciphertext yields a ciphertext of the result of the corresponding homomorphic oper-
ation o applied to the plaintexts, as shown in Equation (2.4) [1].

aob = D(E(a) ® E(b)) (2.4)

HE schemes can have different homomorphic properties and therefore support dif-
ferent operations on encrypted data. Four different types of HE schemes exist [1].

2. Preliminaries

Homomorphic encryption schemes that have only one homomorphic property are
referred to as partially homomorphic encryption (PHE) schemes. They support, e.g.,
either multiplicative or additive homomorphic operations. Somewhat homomorphic
encryption (SHE) schemes support two types of operations, typically addition and
multiplication. However, SHE schemes only allow a limited number of operations and
a particular type of circuits. Leveled fully homomorphic encryption (LFHE) schemes
also provide two homomorphic operations. These schemes can evaluate arbitrary
circuits with bounded depth depending on certain parameters of the scheme. Fully
homomorphic encryption (FHE) schemes can perform an arbitrary number of two
different homomorphic operations, e.g., additions and multiplications.

The RSA scheme introduced by Rivest, Shamir, and Adleman in [31] is an example
for multiplicative PHE schemes. In RSA, the multiplication of two ciphertexts yields a
ciphertext of the multiplication of the corresponding plaintexts, as depicted in Equa-
tion (2.5).

a-b=D(E(a)- Eb)) (2.5)

In contrast, the PHE cryptosystem introduced by Pallier in [28] is additively homomor-
phic. As shown in Equation (2.6), a multiplication of two ciphertexts yields a ciphertext
of the sum.

a+b = D(E(a)- E(b)) (2.6)

In 2009, Gentry proposed the first FHE scheme [22]. In the following years, a variety
of schemes were presented. Similar to Gentry's approach, modern FHE schemes
follow a similar pattern: In these schemes, the public key is an element that cancels
out to zero when combined with the corresponding secret key [35].

To ensure security, a small error is added to the message that is referred to as
noise. If the noise is small enough, the initial message can be reconstructed correctly.
Homomorphic operations cause noise growth. If the noise exceeds some limit, the
message can not be reconstructed, i.e., the ciphertext cannot be decrypted correctly.
Therefore, this construction only supports a limited number of operations. To over-
come this problem, a function, called Bootstrapping, is introduced by Gentry [22].
This computationally complex operation reduces the noise of a ciphertext. In the
Bootstrapping operation, the decryption function of the encryption scheme is trans-
lated into a circuit. The bootstrapping circuit is homomorphically evaluated given the
encrypted secret key of the encryption system and the ciphertext. This yields fresh
encryption of the plaintext. In this context, fresh means that the resulting cipher-
text contains less noise than the input ciphertext of the Bootstrapping algorithm.
Therefore, further operations can be applied to the fresh ciphertext. Consequently,
such a scheme can evaluate an arbitrary number of computation gates. Thus, such
construction is an FHE scheme built from a SHE scheme and a corresponding Boot-
strapping operation.

However, Gentry's initial FHE scheme is not suitable for practical applications due
to high computational complexity [23]. More recent FHE schemes are much more
efficient. In [9], Brakerski, Gentry, and Vaikuntanathan presented a more recent SHE
scheme based on the ring learning with errors (RLWE) problem. This and following
schemes like BFV [21] and CKKS [12] improved the growth of noise during homo-
morphic operations. This allows performing larger circuits without Bootstrapping.
Furthermore, they introduced batching, the packing of multiple plaintexts into one
ciphertext [34]. Batching allows computations in a SIMD fashion, i.e., an operation is
applied to multiple elements simultaneously. Therefore, this technique can improve
the efficiency of a program.

2.1. Fully Homomorphic Encryption
2.1.1. Encryption Schemes and Implementations

Table 2.1.: Overview of FHE Libraries with Supported Schemes and Availability of
Bootstrapping & Batching

Implementation Supports Supports

Scheme Type of operations PRE

Library Bootstrap. Batching
HEAAN CKKS approx. arithmetic yes yes no
HELib CKKS approx. arithmetic no yes no
BGV arithmetic yes yes no
SEAL CKKS approx. arithmetic no yes no
BFV arithmetic no yes no
. BFV arithmetic no yes yes
Palisade BGV arithmetic no yes yes
CKKS arithmetic no yes yes
TFHE Boolean yes no no
TFHE TFHE Boolean yes no no
Concrete TFHE Boolean & arithmetic yes yes no

Since Gentry's seminal work [22], various encryption schemes were proposed [9,
12, 14]. These schemes can be divided into two groups. The first group is schemes
derived from the BGV [9] scheme. They are optimized for fast arithmetic calculations.
Recent schemes support techniques like Batching and provide highly efficient integer
or fixed-point operations [8, 12]. Since they allow batching of ciphertexts, computa-
tions can have a high throughput which can be beneficial, for example, in machine-
learning scenarios. However, the existing bootstrapping algorithms of these schemes
have high computational complexity. Fortunately, these schemes can be used in a
leveled mode, i.e., with encryption parameters that allow the necessary amount of
computations without intermediate bootstrapping. The amount of levels depends
on the complexity and the structure of the problem.

The second group is derived from the GSW scheme [24] and is optimized for boo-
lean operations and fast bootstrapping. Due to the existence of efficient algorithms,
bootstrapping can be applied after each operation. Therefore, the encryption pa-
rameters are independent of the depth and structure of the circuit. This allows com-
putations of circuits of arbitrary depth. However, these schemes do not support
batching, since it is incompatible with the fast bootstrapping approach [14]. As GSW-
based schemes like TFHE are optimized for Boolean operations, i.e., they provide op-
erations in GF(2), higher-level integer operations must be constructed from Boolean
operations.

Table 2.1 provides an overview of FHE libraries and their supported encryption
schemes.

2.1.2. Computation Scenario

HE and especially FHE has a wide range of applications. One promising use case is the
application of machine learning models. Let there be two participants: Party Aholds a

2. Preliminaries

data set and Party B has a data model that provides further analysis of As data. How-
ever, the data set of Party A may be confidential and the data model of Party B a trade
secret. HE enables such computations. It allows to prevent the revealing of data of
Party A and does not require direct access to the model of Party B. Figure 2.1 depicts
such a computation of a function f(-) in an abstract form. It shows three parties: Party

Party S E kl(Party C T Party R

- (m) > — Dy (B (f(m)
@™ pkn Applies f(m) homomorphically P> skp

Figure 2.1.: Abstract FHE Scenario

S, Party R, and Party C. Party A represents the provider of data, i.e., the message m.
It holds a public key pkg to encrypt its message m. Party B is the receiving party. It
holds the secret key skg, gets the computation results, and decrypts the ciphertext
to retrieve the result of f(m). Party C is placed between the others. It receives the en-
crypted message from Party S. Then, it performs the homomorphic computation of
f(m)without intermediate decryption and sends the resulting ciphertext to Party R. In
practical applications, Party S and Party R can be represented by one participant. For
example, this is the case for the previously presented application. In this use case,
Party A acts as the sender of the message and receiver of the results too. Similarly,
Party C represents the computation party.

2.1.3. The BFV Scheme

A promising FHE scheme is the Fan-Vercauteren variant [21] of Brakerski's scale-
invariant scheme [9]. It is referred to as Brakerski-Fan-Vercauteren (BFV) scheme.
BFV performs operations over polynomial rings and is based on the assumed hard-
ness of the Ring Learning With Errors (RLWE) problem. Its security relies on adding
a small error component (noise) during encryption. Taking the notation of [25], text-
book BFV can be formalized as follows.

In the following section, operations modulo b are denoted by [a],. Vectors are
highlighted by bold text if not stated otherwise. Furthermore, rounding down, up,
and to the nearest integer is denoted by |a],[a], and |a], respectively. Sampling
some a from a distribution D is denoted by a « D.

Let R = Z[X]/{f(X)) be a ring such that f(X) € Z[X] is a monic irreducible polynomial
of degree n, typically a cyclotomic polynomial. Arithmetic computations in R are per-
formed modulo f(X). The plaintext space is denoted by the quotient ring Ry = R/tR. It
is referred to the integer t > 2 as the plaintext modulus. Plaintexts in R; are polynomi-
als in R with coefficients in Z;. Similarly, the ciphertext space is denoted by Rq = R/gR
with the ciphertext modulus g > t. Additionally, a decomposition base w € Z is
defined to represent polynomials in Ry by /+ 1 polynomials in base w and require
I = |lognq]. Furthermore, let y, be a Gaussian distribution with expected value y = 0
and yx be a uniform distribution over {-1,0,1}". The BFV scheme consists of five
procedures.

2.2. Proxy Re-Encryption

Key generation - G(x,w): Sample a low-norm secret s g)(k and set sk = (1,s) € R”.

Randomly choose a g Rq and e & Xe, cOMpute b = [-(as +e)|; € Rq, and set pk =
(pk[Q], pk[1]) = (b, a). Additionally, G(-) outputs a public evaluation key evk, referred
to as relinearization gadget. It is a set of / + 1 pairs of polynomials and is computed

for'O < i < | as follows. First, sample g; g Rq and noise ¢ & Xe. Then, set evk[/] =
([W's? - (a; - sk + e,')]q ,0)). The output of G(k, w) is the tuple (sk, pk, evk).

Encryption - £,(m): Sample u g R> and eq, e; ﬁ)(e, The encryption of m € R;is a
pair ¢ = (c[0], c[1]) of elements in Ry. It is computed as
¢ = ([Am + pkiOlu + eq],, [pk[1]u + €2],)

suchthat4 = [Z].

Decryption - Dg(c): To decrypt ¢ and obtain m, compute

m = H;[C[O] + C[T]sk}qH .

t

Homomorphicaddition - EvalAdd(cq, ¢;): Given two ciphertexts ¢, ¢, the encrypted
sum ¢1 @ ¢, of the underlying plaintexts is computed as

Cagd = (C1[0] + 2[0]],, [c1 [1] + [1]],)-

Homomorphic multiplication - EvalMult.«(c1, ¢2): Given two ciphertexts ¢1, ¢, the
encrypted product ¢; © ¢, of the underlying plaintexts is computed in two steps:
tensoring and relinearization. For tensoring, compute

|t
Gty = | | 71101 cz[OJHq,
oo = | | L@ 101- &[]+ 611 cZ[ODH |
_q q
Conlt, = ;Cw M7 szHq.

For relinearization, first decompose ¢, In base w such that ¢y, = Zﬁzo C%U/QW’.
Then, compute the result
Crutt = (Cruie[01, Crure[11) as follows for j € {0, 1}.

/
Cmu/t[j] = [Cmu/t/ + Z evk(i] U]C%u/tzl
q

i=0

2.2. Proxy Re-Encryption

Re-encryption transforms a ciphertext ¢; = Epy, (M) encrypted under a key pky into
a ciphertext c; = £y, (m) of the same plaintext, encrypted under a different key pk;.
Proxy re-encryption (PRE) allows an untrusted party to perform this transformation

2. Preliminaries

TFHE Circuit
Backend
HElium DSL Backend ~—
Program Frontend > IR > s:fe(iirlm
CKKS Circuit
Backend \/_\

Figure 2.2.: Compiler Pipeline of HElium

without affecting confidentiality [6]. A standard construction to obtain a PRE scheme
from an FHE scheme is described in [22].
Following the notation of [30], a PRE scheme is defined as a tuple

PRE = (PG,KG, ReGK, E, D, RE) of six procedures. Parameter generation PG(-) com-
putes a set of public parameters related to the security parameter A. The key gener-
ation algorithm KG(-) outputs a key pair (pk, sk). Re-encryption-key generation ReKG(-)
takes a secret key sk; and a public key pki.; and computes a re-encryption key rki_,.
The re-encryption algorithm RE(-) transforms a ciphertext ¢; of m encrypted under
pk; into a ciphertext ¢; of m such that ¢; encrypts m under pky;. £(-) and D(-) denote
encryption and decryption algorithms, respectively.

2.3. HElium Compiler

The HElium compiler is a compiler prototype for FHE. It compiles programs that are
written in an external DSL into computation graphs that are compatible to FHE im-
plementations. Its main contribution is an automatic encryption scheme selection.
Figure 2.2 depicts the internal compiler stages of HElium. First the program is parsed
by the frontend and an abstract syntax tree (AST) is built. Thereafter, the AST is con-
verted to an intermediate representation (IR). A backend-selection stage analyzes the
IR and selects a suitable backend for further compilation. Helium comprises two dif-
ferent backends: a backend targeting Boolean circuits and an arithmetic backend.
The following subsections provide further information about the stages of the HE-
lium compiler.

2.3.1. HElium Domain-Specific Language

The HElium compiler provides its own domain-specific language (DSL). The type sys-
tem of HElium consists of three base types: signed integer, unsigned integer, and
floating-point numbers. These base types are configurable, i.e., their size could be
adjusted to the developer's needs. By using these type parameters other types could
be constructed. For example, a Boolean type could be represented through an un-
signed integer of length 1, i.e., int<7>. The type system further differentiates between
encrypted and plaintext data. Each variable is defined as encrypted per default if it is
not annotated with the qualifier p/ain. This behavior ensures security by default.

HElium provides different types of operations: arithmetic operations, vector-specific
operations, Boolean operations, and comparison operations. These operations are
expressed by symbols. For a complete list of operations see Appendix A.1. All oper-
ations are operating on vectors, i.e., they perform element-wise operations. Scalar
operands are treated as single-element vectors. In addition to operations, HElium

2.3. HElium Compiler

provides built-in functions. For instance, the method size() returns the size of a vec-
tor.

Due to the properties of HE, control-flow decisions on encrypted conditions cannot
be made directly without access to the corresponding decryption key. HElium em-
ulates ff-then-else constructs and for-loops trough MUX operations. Furthermore, it
supports for-loops that operate like a for-each-loop in other programming languages.
It represents the iteration over the elements of a vector.

2.3.2. Intermediate Representation

HElium implements a term-based intermediate representation (IR). A term repre-
sents a node in the computation graph, i.e., an operation on a ciphertext or a plain-
text. Depending on the type of operation, each term has a certain number of oper-
ands. There are unary terms that are taking one operand as input and binary terms
require two operands. Input terms and output terms are special terms with none
or one operand, respectively. Constant values are represented by a constant term
without an operand. Each operand is a term as well. Together the terms form a
computation graph.

Figure 2.3 shows the IR of a program which implements Equation (2.7). The nodes
0 to 5 are terms. The terms 0 and 1 represent the arguments ag and x. Both are
operands of the multiplication term 3. Term 2 represents a constant of value 5.0.
The constant term and the multiplication result are added by term 4. The result of
the addition is provided to term 5 which represents the output y of the computation.

y=al-x+50 (2.7)

operand

Figure 2.3.: IR Graph Representation

2. Preliminaries

An IR term refers to an operation on encrypted or unencrypted data. A complete
list of operations including descriptions can be found in Appendix A.1.

2.3.3. Type System

Each term of HElium has a type assigned to. HElium supports two adjustable base
types: n-bit integer and fixed-point numbers. On top of these, it provides an ar-
ray data type to represent array structures of the base types. Custom types can be
constructed by adjusting the base types. For example, a boolean type can be repre-
sented by a one-bit integer. This type system is used in the abstract syntax tree (AST)
of HElium and in the IR.

For INPUTS and CONST terms, the type is set during transformation from the AST. The
type of other terms is inferred from the operation the term represents and from its
operands.

2.3.4. Backends

The HElium compiler is designed to be scheme-independent. It provides backends
for different encryption schemes like CKKS, and TFHE. Its design allows extension with
backends for further encryption schemes. The TFHE backend of HElium focuses on
compiling functions to efficient boolean circuits. Therefore, it utilizes common tools
from the subject of hardware design. The arithmetic backend utilizes the low-level
compiler EVA for the CKKS scheme. Hence, the backend transforms the IR into the
IR of EVA and serializes the resulting optimized circuit. HElium decides automatically
which backend is most suitable for a provided program and compiles the program
with the selected backend.

10

3. Related Work

This chapter addresses related work. This comprises libraries that implement fully
homomorphic encryption (FHE) schemes as well as compilers that are optimized for
secure computation based on FHE.

3.1. Libraries for Fully Homomorphic Encryption

There exist a variety of open-source libraries that implement one or multiple FHE
schemes. One of the first libraries is HElib.! It was initially developted at IBM by Gen-
try, Shoup, and Halevi. Now it is developed by an open-source community. HElib
provides implementations of the BGV and the CKKS scheme. Furthermore, it imple-
ments Bootstrapping for BGV. The SEAL library is developed at Microsoft Research.?
It implements the BFV and CKKS scheme. Furthermore, it provides support for var-
ious platforms like Android, iOS, and embedded systems. The Lattigo library imple-
ments the CKKS and the BFV scheme and is written in Go.3 Similar to Palisade, Lattigo
provides threshold variants of the implemented schemes. The TFHE library imple-
ments a variant of the GSW scheme.* TFHE is optimized for binary operations and
fast bootstrapping. The concrete library developed by Zama implements a further im-
proved version.> Concrete supports programmable bootstrapping. This technique
allows the application of unary functions during bootstrapping via lookup tables. It is
a promising technology to enable efficient computation of non-linear functions like
square roots or activation functions like ReLU. The ability to compute non-linear func-
tionsis a big advantage for machine learning use cases. However, the concrete library
does not provide PRE support.

There are further libraries that do not directly implement an FHE scheme. The
Intel HEXL library uses 512-bit Advanced Vector Extension (AVX) of Intel processors
to provide efficient implementations of integer arithmetic.

Thttps://github.com/homenc/HElib
https://github.com/microsoft/seal/
3https://github.com/Idsec/lattigo
“https://tfhe.github.io/tfhe/
>https://github.com/zama-ai/concrete/

11

3. Related Work

3.2. Compilers for Fully Homomorphic Encryption

In addition to libraries, a variety of compilers for FHE exist. However, none of the pub-
lic available compilers for FHE has support for PRE builtin. This section gives a brief
overview of the available compiler for FHE. See [35] for a more detailed comparison
of FHE compiler. Alchemy is a compiler built on top of Haskel [16].° It supports a
set of operations to define arithmetic functions. Alchemy uses its own implementa-
tion of the BFV scheme. The integrated compiler automatically inserts maintenance
operations into the program and selects suitable encryption parameters. However,
Alchemy is limited to basic arithmetic operations.

There exist a variety of source-to-source compilers that transforms C++ code into
FHE programs. For example, Cingulata compiles C++ programs to fully homomorphic
encryption (FHE) programs. 7 The resulting programs operate on Boolean circuits
and support the TFHE library and a BFV implementation as backends [10]. Similar to
HElium, Cingulata uses tools from hardware synthesis to optimize generated boolean
circuits. Another tool that compiles C++ code into an FHE program is Encrypt-Everything-
Everywhere (E3).2 E3s input language supports both arithmetic and boolean circuits
in BFV, BGV, and TFHE [13]. Furthermore, it provides basic support for SIMD op-
erations of BFV and BGV. However, the expressibility of E3 is limited since it does
not support rotation operations. Furthermore, maintenance operations are inserted
naively, and encryption parameters must be chosen manually. Marble is an inte-
grated DSL for FHE based on C++ [36]. Marble's central entrypoint is the proxy type
M which represents a ciphertext message. Marble tracks all operations performed
with objects of M via operator overloading and constructs a computation graph from
them. It supports the construction of arithmetic and boolean circuits using the BFV
scheme. HE Transpiler is a library that converts C++ code into FHE programs. It is
maintained by Google.'® The HE Transpiler uses Google's XLS library to compile C++
code into boolean circuits. For the execution of the boolean circuits, it provides run-
times based on TFHE or Palisade.

There are specialized compilers for FHE with a strong focus on machine learning
applications and tensor operations. EVA is a low-level compiler for vector-arithmetic
operations [19, 18]. It is a C++ library with a python interface.’’ EVA is mainly de-
signed for arithmetic functions and vector operations. It targets the CKKS implemen-
tation of SEAL. The main contributions of EVA are efficient insertion of maintenance
operations to the computation graph and automatic parameter selection. The Com-
piler and Runtime for Homomorphic Evaluation of Tensor Programs (CHET) project is
built on top of EVA and focuses on optimizations for matrix operations. It comes with
a high-level language for machine-learning operations. NGraph-HE is an extension
of Intel's nGraph machine-learning compiler [7]. It is focused on the inference of ma-
chine learning models over encrypted data.'? NGraph-HE translates Tensorflow com-
putations into FHE circuits for BFV or CKKS. It applies optimizations on the computa-
tion graph and supports SIMD-packing, i.e., the efficient packing of multi-dimensional
tensors into batched ciphertexts. Furthermore, nGraph-HE supports non-polynomial
functions by implementing interactive protocols which compute these functions with
the client.

®https://github.com/cpeikert/ALCHEMY
“https://github.com/CEA-LIST/Cingulata
8https://github.com/momalab/e3
https://github.com/MarbleHE/Marble
Ohttps://github.com/google/fully-homomorphic-encryption
Mhttps://github.com/microsoft/EVA
2https://github.com/IntelAl/he-transformer

12

4. Scenario, Use Cases and
Requirements

This chapter gives an introduction to the scenario of privacy-preserving computation
via homomorphic encryption combined with proxy re-encryption (PRE). Based on the
scenario, Section 4.3 derives requirements for compilers with support for PRE.

4.1. Scenario

Digitalization of processes and evolving capabilities of data analysis results in novel
problems about privacy and confidentiality. Homomorphic encryption (HE) is con-
sidered to be a promising approach to overcoming some challenges. This section
provides an overview of the abstract computation scenario.

Computation using standard FHE has some major limitations. For example, for the
result to be encrypted under a common key, the inputs also need to be encrypted
under the same key. That makes it challenging for scenarios with more than one
data-providing participant. All participants have to agree on a key pair before encryp-
tion. Therefore, this model is not well-suited for frequently changing participant sets.
There exist approaches like multi-key FHE and threshold FHE that address computa-
tions with multiple participants. However, multi-key FHE requires a pre-determined
set of encryption keys, i.e., a relatively constant set of participants [26]. Threshold
FHE allows distributing operations like the decryption of ciphertexts to a group of
participants [3]. Nonetheless, threshold FHE requires active communication of the
participants.

PRE can be a flexible solution for these problems. It allows the transformation of
Ciphertexts that are encrypted under one key to a ciphertext that is encrypted under
another key without intermediate decryption. To perform this transformation, a re-
encryption key is needed. Such a key can be generated from the source secret key
and the target public key. For further information on PRE see Section 2.2.

Figure 4.1 depicts an abstract scenario of a PRE program. It comprises three types
of participants: the senders {S1,S;,...,5}, the receiving party R, and a computa-
tion party in between. The sender parties have data that is encoded in messages
mq,my,...,m;. They want to compute a function f(mq,my,...,m;) by joining their
messages. The result gets the receiving party R. All senders and the receiver have
own key pairs to encrypt and decrypt messages. The computation party in between
enables the joint computation of the function and acts as a re-encryption proxy. It

13

4. Scenario, Use Cases and Requirements

re-encrypts the ciphertexts using corresponding re-encryption keys and homomor-
phically computes the function f(m, m,, ..., m;). This construction allows use cases

Party S : :
E Party C '
my y = f(mi,ma,...,m;) y
(- g : Re-encrypts Inputs l @~ PatyR
Party Sy E mi,ma,...M; :
i >
. H >~
. : > >
Applies
m; : f(my,ma, ..., m;)
E homomorphically
> ; :
PartyS; TTTTTTTTmmmmmmmTmmmmmmmeeees

Figure 4.1.: Abstract FHE Scenario with PRE

with frequently-changing participants since new participants only have to provide a
corresponding re-encryption key. Furthermore, it enables asynchronicity between
encryption and usage of the data. Since data can be encrypted under participant-
specific keys, computations can use data that is encrypted at different times. The
receiving party or the computation itself does not need to be determined at the time
of encryption. Therefore, PRE adds flexibility with regard to key management and the
participant setup to FHE programs.

Figure 4.2 shows an instance of the abstract scenario with two senders. The send-
ing parties and Party R have key pairs (Sks,, pKs,)(Sks,, pks,) and (Skg, pkr), respectively.
Similar to Figure 2.1, the parties S1 and S, have messages my and my. Similarly,
Party C acts as re-encryption proxy and computation party that computes a func-
tion f(m4, my) homomorphically over the two messages. Therefore, Party C holds two
re-encryption keys allowing to re-encrypt ciphertexts of Party S and Party S, for Party
R.

4.2. Key Management for Programs using
Proxy-Re-Encryption

This section addresses the key management in computations with proxy re-ecryption
(PRE). Before elaborating on concepts of key management for multiple encryption
keys, the scenario of single encryption can be analyzed. In scenarios with a single key,
i.e. without PRE, typically a single party generates a key pair (sk, pk) in cases where an
asymmetric encryption scheme is used. Other parties can encrypt their data using
the public key pk. Therefore, the key-generating party has to distribute its public key
to other participants.

In contrast with PRE, participants can have their own key pair. Each participant
generates its own key pair (sk;, pk;). Therefore, participants are immediately able to
encrypt data using their encryption key pk;. Furthermore, participants can generate
multiple key pairs over time. For example, separate keys can be used for different
chunks of data or to implement key-rotation mechanisms. As for other types of en-

14

4.2. Key Management for Programs using Proxy-Re-Encryption

£

Party S}
Epksl (ml) e
sks, , pks,
ks, f(my, ms)
Party C T Party R
> PRE(Epksl (m1)77'esl‘}R) —_—> Dskg (Epkn (.f(mlva)))
PRE(Epg, (m2),res,r) @ skp,pkr
Applies f(my, ms) homomorphically & re-encrypts
my rks,sr
rks, R
Party So
Eprs, (m2) —
0" Skzz ,pk52
TRS,—R

Figure 4.2.: Abstract FHE Scenario with PRE

cryption, it is important to mention that individual keys of a party must be stored
properly to allow later access.

From the perspective of the participant, there are different ways to provide its data
to an FHE computation.

+ The participant can provide the raw data itself via a secure communication
channel. However, this requires that the participant has still direct access to
the data. Furthermore, it gives control over its data completely to the receiving

party.

+ The Participant can provide the secret key of the encrypted data directly to the
receiving participant. It does not require the participant to have access to its
data. However, the control over its data is still passed to the receiving party.

+ The Participant can provide the secret key of the encrypted data to a trusted
third-party that performs the computation. This moves the trust assumptions
from the receiving party to the computation party. Furthermore, it can be diffi-
cult to agree on such a trusted third party.

+ The participant can provide a re-encryption tag to a third party that allows per-
forming re-encryption to the data from the participant’s key to the key of the
receiving party. The intermediate party does not have access to the data.

Figure 4.3 depicts a sequence diagram of computation using FHE and PRE. Itis a gen-
eralized variant of the procedure proposed by Polyakov [30]. The figure comprises
two participants Alice and Bob, and a computation party with a storage. The storage
can be implemented in various ways. For example, distributed ledgers can be used
as storage [5]. Alice and Bob want to compute a function f(m) on a message m that
is provided by Bob. Bob encrypts its message m with its own encryption key pkgop.
This can take place completely asynchronous with no time related to the computa-
tion. When Alice wants to start a computation it sends Bob its public key pkjice. If Bob
agrees on the computation it generates the re-encryption key rkgop_,aice and sends
it to the computation party. This allows the computation party the transformation
of the ciphertext and to start with the computation. The re-encryption key does not

15

4. Scenario, Use Cases and Requirements

provide direct access to the data. After the computation finished, the function result
can be decrypted by Alice. However, it must be assumed that the computation party
does not colude with Alice. Otherwise, it could retrieve the message by re-encrypting
¢ and decrypting it with the private key of Alice.

Receiving Data-Providing Computation
Participant Participant Ppa s Storage
Alice Bob Y
KeyGen(-) '
< 1
Encrypt E
Data .
€= B,y () Store(c) .
dispatch | < >
KeyGen(-) ' [I
< > ; :
Pk Atice TkBob—s Alice ' ;
>4 :
Load(c) :
1l
c
< T
:lCompute d = f(e)
P c
Decrypt H
f(m) f(m) = Dakyy,, (<)
(—_

Figure 4.3.: Example Sequence of a Computation with Proxy Re-Encryption

4.3. Requirements for Compilers for Proxy Re-Encryption

This section elaborates requirements on compilers for FHE to support PRE and the
previously defined computation scenario. Since this work extends the HElium com-
piler, these requirements are defined in the context of the available functionalities of
HElium.

HElium has its own general-purpose DSL to describe FHE programs. According to
the scenario description, the DSL has to model the computation between multiple
participants. Each participant can provide inputs to the computation. Participants
can provide their inputs under a common key or their own key. Therefore, the DSL
must be able to map inputs to participants and to the encryption key that is used to
encrypt data.

In addition to a multi-party-enabled frontend, the compiler needs a backend that
supports PRE. This backend has to target an encryption scheme that supports PRE.
Furthermore, it needs a scheme implementation that provides operations to gener-
ate re-encryption keys and provides operations to re-encrypt ciphertexts. In addi-
tion, the compiler needs to provide the targeted scheme with the information that
is necessary for the execution. First, it is necessary to define at which point of the
computation a proxy re-encryption takes place. Therefore, the circuit representation
must be extended with a PRE operation. Second, the parameter selection of the back-
end must be modified. Since PRE operations add additional noise to the ciphertexts,
parameters need to be adjusted to ensure correct execution.

16

4.3. Requirements for Compilers for Proxy Re-Encryption

Security and confidentiality are the main intentions to use FHE and PRE. According
to the scenario, the inputs of the computations are confidential. However, the com-
putation function can be publicly known by all participants. The computation party
should not learn anything about the inputs besides their data structure. However, the
compiler can assume that the computation party is performing the computation cor-
rectly. For example, the computation party can be a cloud provider which charges the
participants for the computation resources. Such a cloud provider can lose its repu-
tation if it actively violates the computation protocol. Consequently, a cloud provider
has a strong intention to compute the function correctly. Furthermore, there are
mechanisms to prove empirically that the computation party performs the intended
computation. For example, the participants can randomly prove the computations
by inserting test data without the knowledge of the computation party. However,
the use of FHE prevents the leakage of input data or results to attackers who listen
passively. The compiler has a direct impact on the security of the used FHE scheme.
The security of FHE encryption depends on various scheme parameters that are se-
lected by the compiler automatically. The parameters must be selected automatically
according to the suggestions of the HE Standard [2].

Depending on the use case, different requirements can apply to the performance
of the compiler and its results. On the one hand, performance can relate to different
metrics like runtime or memory usage and can contradict each other. For example,
applying more complex optimizations during compilation can reduce the runtime of
the computation result while increasing the compilation time. On the other hand,
the requirements of the actual use case on interactivity or responsiveness impact
the compiler requirements as well. Using FHE in a real-time application can have
much higher requirements on the execution runtime than a benchmarking solution.

17

5. Concept of Proxy Re-Encryption
Compiler Support

This chapter elaborates on concepts for integrating proxy re-encryption (PRE) into
HElium, an existing compiler for FHE. It describes necessary additions to HElium in
order to support computations with multiple encryption keys via PRE. Section 5.1
discusses concepts to integrate mechanisms for PRE into HElium's DSL. Based on
this, Section 5.2 derives requirements on the type system. Section 5.3 and 4.2 discuss
challenges related to the PRE introduction and provide approaches for optimization.

5.1. Domain-Specific-Language Support for
Proxy-Re-Encryption

This section derives requirements of PRE on domain-specific languages (DSL). First,
on DSLs with support of PRE apply similar data flow restrictions and implications on
the type system as for general FHE DSLs. The main difference is that PRE-enabled FHE
schemes provide additional operations that allow switching the encryption key of ci-
phertexts. Consequently, such DSLs can inherit operations and properties of DSLs
without PRE support. The additional functionalities of PRE-enabled FHE schemes al-
low computation on inputs provided by different participants and encrypted under
different keys. These operations can be represented either directly or indirectly in the
DSL. In DSLs with indirect integration, PRE operations are not part of the DSL. The
re-encryption is indirectly determined by the keys of the inputs and outputs. There-
fore, developers do not need to determine the insertion location of PRE operation
themselves. This lowers the programming complexity for developers.

As presented in the previous section, encryption key pairs can be represented by
labels. The DSL of HElium models inputs and outputs of FHE programs via input and
output statements, respectively. With regard to PRE, the input statements of HElium
can be extended with key labels.

Listing 5.1: Input and Output Definition

input a: int<5> @Keyl <= Party1;
input b: int<6> @Key2 <= Party2;
input c: int<1> <= Party3;
outputmy = (a + b) * c;

QYU NS

18

Lars Schütze
Type?

5.2. Multi-Key Type System

Listing 5.1 shows an example program in HElium that contains an input and an output
definition. In line 1, the input g of type int<5> is defined. The source identifier shows
that this input is provided by Party1 and encrypted using the key pair Key1. Similarly,
line 2 contains an input definition with name b of type int<6> provided by Party2 and
encrypted under Key2. In line 3, the input ¢ is defined without a key label. If the key
label is omitted, the compiler automatically applies a default key label. Line 4 shows
an output definition of y to which the result of (o + b) - ¢ is assigned. It comes without
a key declaration. According to the use-cases defined in Chapter 4, the results of the
FHE computations are encrypted under one key. Therefore, the compiler applies the
default key labels on output definitions. The data type of outputs is determined by
the compiler, too.

The mapping of an input or output definition to its source or target party, respec-
tively, has no technical function for the compiler. However, these mappings can be
useful at runtime. For example, they can be the basement for external authorization
by the execution runtime. Input-providing, as well as output-retrieving, parties can
be identified by the participant identifiers of the HElium program. Furthermore, it
may make the program code more readable and can help users and developers to
understand data dependencies between different parties.

5.2. Multi-Key Type System

Strong type systems can provide helpful information for compilers and their optimiza-
tions. In general-purpose programming languages, commonly used data types like
boolean values, signed and unsigned integers, real numbers, and string types exist.
On a higher layer, there can be more complex structures like arrays, matrices, and
objects. Programs using FHE can add more layers of complexity to the type system.
For example, in FHE programs, the type system must distinguish between encrypted
and plaintext data. Additionally, the encodingiofidatarcaniberdifferent.

This section discusses an approach to extend the type system of the FHE-compiler
HElium to support multiple encryption keys via PRE. In such scenarios, inputs of pro-
grams can be provided to the computation under different encryption keys. List-
ing 5.2 shows a slightly modified version of the previously presented example pro-
gram. Similar to Listing 5.1, it represents the computation of y = (a+b)-c. Whereas, a
and b are provided by Party1 and encrypted under Key1. Input c is provided by Party2
under Key2. All inputs are of type int<8>, i.e., eight-bit integers.

Listing 5.2: Example Program with Three Inputs and Two Keys

input a: int<8> @ Keyl <= Party1;
input b: int<8> @ Keyl <= Partyl;
input c: int<8> @ Key2 <= Party2;
output v = (a + b) * ¢;

NW N —

When compiling this example with HElium, the compiler transforms the DSL code into
a corresponding IR form. The nodes of the IR represent operations, inputs, outputs
or constant values. Dependent nodes are connected by edges. In programs with
multiple encryption keys, the inputs can not be described only by types and names. It
needs an additional "key" property to indicate under which key an input is encrypted.
For the inputs a and b this property is Key1, for input c it is Key2, respectively. One
approach to integrating such properties to the IR is the introduction into the type
system of HElium.

19

Lars Schütze

5. Concept of Proxy Re-Encryption Compiler Support

Figure 5.3 depicts a computation graph representing the function y = (a + b) c.
The graph consists of six nodes. Three nodes represent the inputs a, b,c, and d,
encrypted under two different keys Key 7 and Key 2. The computation result y can be
decrypted with Key 3. The intermediate nodes 4, 5, 6 and 7 represent the operations
addition and multiplication. Different colors of the nodes stand for the key under
which an input or an output is encrypted. Each input and output node has a type and
label that identifies the corresponding encryption key. At this point, the key labels of
intermediate nodes are undetermined.

0: INPUT a
int<8>
Key 1

1: INPUT b
int<8>
Key 1

2:INPUT c 3: INPUT d
int<8> int<8>
Key 2 Key 2

6: MUL
int<18>
Key ?

7: ADD
int<19>
Key ?

8: OUTPUT y
int<19>
Key 3

FigurerSi Example Computation Graph with Inputs under Different Encryption Keys

Execution of the example program shown in Figure 5.3 starts at the input nodes.
Since the encrypted value of the operands of node 4 is already present, the execution
proceeds with node 4. The operands of node 4 are the inputs g and b. Since both
are encrypted under Key7, the addition can take place without further adjustments
and the encrypted value of node 4 can be computed. Thereafter, the execution can
proceed with node 6 that represents a "square" operation. At the same time, the
encrypted values of all operands of node 5 are present. Both shares the same key
Key 2. Therefore, the multiplication operation yields a ciphertext that is encrypted
under Key 2. At this point, the encrypted values of all operands of node 7 are present.
However, the values of its operands are encrypted under different keys. While the
value of node 6 is encrypted under Key 7, the value of node 5 is encrypted under Key 2.
As stated in Section 2.2, homomorphic operations on ciphertexts require operands
that are encrypted under the same key. Operations on ciphertexts encrypted under

20

Lars Schütze
Is this ever used?

5.3. Optimization of Proxy Re-Encryption Programs

different keys are not possible without further adjustments. PRE allows transforming
a ciphertext encrypted under one key to a ciphertext that is encrypted under another
key. In the case of the example program, the values of node 4 and node 3 can be
re-encrypted to a common key by performing a PRE operation. Consequently, the
introduction of PRE operations can enable the execution of node 5. Hence, PRE is
one approach to enable computation with inputs that are encrypted under different
keys.

The example program has a small computation graph with only six nodes. For
larger computation graphs it becomes challenging to determine where a PRE opera-
tion must be inserted. Compilers can automate this process. For this, it is crucial to
determine the encryption keys of intermediate results of the computation. Similar to
the example shown in Figure 5.3, encryption keys can be represented by key labels
identifiers or key labels. Each key label maps uniquely to a key. For the compiler, it
is sufficient to use only key labels. Further information like the party who issued the
key is unnecessary. Therefore, a mapping from key identifiers to parties is not part of
the compiler. One approach of integration of key labels into the IR is the direct stor-
age within the type system of the IR. Figure 5.2 shows an abstract base type class. It
holds three main information: the encryption state encrypted and the corresponding
key label represented by keyPair.

IntegerType

+ encrypted: bool
+ keyPair: string
+ bitWidth: uint

Figure 5.2.: Example Integer Type

The additional type information can be used to solve the original challenge: the
determination of key labels of intermediate nodes of the computation graph. The
key-label information that is provided with the inputs can be propagated through the
computation graph. This process can be assumed to be similar to the type deduction
ofithercompiler The following section focuses on concepts to determine key labels
efficiently.

5.3. Optimization of Proxy Re-Encryption Programs

The advantages of proxy re-encryption come with the cost of additional complexity.
In the BFV scheme (see Section 2.1.3), the PRE operation has a similar computational
complexity as homomorphic multiplications [30]. Furthermore, PRE operations can
introduce additional noise to the ciphertext. Consequently, larger encryption param-
eters could be necessary to ensure correct computation. The execution performance
typically decreases with larger scheme parameters. Therefore, it is important to per-
form only as few PRE operations as necessary for the execution.

This problem can be reduced to the problem of inserting PRE operation at the

right point in the computation graph. As mentioned previously, a PRE operation is
necessary where the key-pair label of the IR term differs from the key-pair labels of

27

Lars Schütze

5. Concept of Proxy Re-Encryption Compiler Support

the operands.

In terms of key labels, a computation graph can consist of nodes of two types: nodes
with an explicitly defined key-par label, for example, inputs and outputs, and inter-
mediate nodes. The key-pair of the intermediate nodes is not defined.

1: INPUT a
int<8>
Key 1

2: INPUT b
int<8>
Key 1

3:INPUT c
int<8>
Key 2

6: OUTPUT y
int<17>
Key 3

Figure 5.3.: Example Computation Graph with Unknown Key Labels

Figure 5.3 shows a computation graph with six nodes. The key-pair identifiers of
the three inputs 1, 2, and 3, as well as, of the output node 6 are defined. However,
there is no explicit definition for nodes 4 and 5.

To insert PRE operations properly, the compiler must determine sufficient key-pair
labels for node 4 and 5. From a theoretical perspective, these can use either KeyT,
Key2 or Key3. Consequently, there are 32 = 9 possible variants of computation graphs
with a different amount of necessary PRE operations and a different depth. These
nine variants and their additional inserted PRE operations are presented in Table 5.1.
The table lists variants of key selection for the two nodes including the number of in-
serted PRE operations p, the depth d of the resulting circuit, and a list of necessary
re-encryption keys rk. It shows that the first and third variants require the lowest
Aumberof PRE'operationsandhavethelowestdepthy Therefore, it can be assumed
that these variants are most efficient and have the lowest execution runtime.

An evaluation of all possible key-selection variants allows finding the most efficient
one. However, their number grows polynomial in the number of keys and expo-
nential in the number of nodes. Consequently, this method is unfeasible for larger
computation graphs with many keys.

In practical scenarios, the set of allowed transformations between different keys is
limited. Each key transformation from a key k; to k; requires a re-encryption key rk;_,;.
In the presented scenario, the input-providing parties do not interact with each other.
Therefore, only re-encryption keys for PRE operations from input keys to output keys
are available. In the presented example, this means that the set of re-encryption keys
is limited to {rki_3,rko_3}. Consequently, the list of key-selection variants depicted

22

Lars Schütze

5.3. Optimization of Proxy Re-Encryption Programs

Table 5.1.: Comparison of Selection of Different Key Pairs

Node4 Node5 PREOpsbetweenNodes p d rk

1 Key1 Key1 3—-5),5—-06) 2 5 rko_1, k123
Key1 Key?2 (4 —5),(5 —06) 2 6 rki_,rka_3
Key Key3 (4—-5),3-05) 2 5 rky 3, ko3

(1 —4),2—4,4-=5),
(3—5),5—-0)

5 Key2 Key2 (1-4Q2-46-6 3 6 rkiorkos

(1—-4),2 -4,
4—-5),83—-5)

(1 —-4),2—-4),4—-5),
(3—5),(5—-0)

(1—=4),02—4),
(4 —-05),(5—06)

9 KeyB K€y3 (1 — 4), (2 — 4), (3 — 5) 3 5 I’/(1 3 szﬁg

4 Key2 Key1 5 7 rkisarkaoa,rkaos

6 Key2 KeyB 4 6 f/(1 H2,/'/<2H3

7 Key3 Key1 5 7 rkiszi ks, ko

8 Key3 Key2 4 7 rkioz, koo rkaos

in Table 5.1 can be reduced to rows #3 and #9. This limits the number of possible
key selections and limits the complexity.

However, it shows that there is still room for optimization since variant #3 needs
fewer PRE operations than variant #9.

Since the use cases of this work require a single output key, a simple yet effective
approach can be applied to determine key labels. First, the compiler iterates over
all nodes of the computation graph in a breadth-first search (BFS) order beginning
from the inputs. For each node, it checks if the operands of the node have the same
key label. In that case, the node uses the same key label as its operands. Otherwise,
the default output-key label is selected. Figure 5.4 depicts an example computation
graph. On the left, the initial state is shown. The right graph shows the result of the
key-label propagation. The key labels are propagated through the graph until a node
has operands with two different key labels. The edges between differently colored
nodes require the insertion of re-encryption operations.

NV

&> B

Figure 5.4.: Example Graph Before and After Key-Label Selection

23

Lars Schütze
1. & 3. row show best results
It is said to be practical to just use 3. and 9. row because of availability of re-encryption keys.

If the receiving participant is required to provide it’s pk then everyone else could also provide his pk and then only the optimal solution is used.

5. Concept of Proxy Re-Encryption Compiler Support

If this naive algorithm is applied to the example from Figure 5.3, it starts with the
input nodes. These are skipped by the procedure. In node 4, the key labels of the
operands are both Keyl. Therefore, node 4 is labeled with Key7, too. The following
node 5 has node 4 and the input node 3 as an operand. Hence, its operands are
labeled with KeyT and Key2, respectively. Consequently, the key label of node 5 is set
to the default output key. The resulting variant is identical to #3 of Table 5.1.

Based on the key labels, the compiler can insert PRE operations between nodes
with different key labels. The insertion can be performed by iterating over all nodes
of the graph. An additional PRE node must be inserted in the case that an operand
of a node has a different key label than the node itself.

The current work focuses on programs with a single output key. Future versions can
extend the approach to multiple keys.

24

Lars Schütze

6. Implementation of Proxy
Re-Encryption in HElium

This Chapter focuses on the practical integration of proxy re-encryption (PRE) into the
HElium compiler by implementing the concepts defined in the previous chapter. In
Section 6.2, the extension of HEliums intermediate representation (IR) is discussed.
This is followed by an explanation of the implementation of the reduction of PRE op-
erations in Section 6.3. Thereafter, Section 6.4 addresses processes of the backend.

6.1. Key-Label Arguments in HElium'’s DSL

This section discusses additions that are made to the frontend of HElium to support
multiple encryption keys. HElium @sestthe’ANTLER4 parsergeneratorforitsifrontend.
Bases on a grammar description, ANTLR4 generates a lexer, parser, and a concrete-
syntax-tree structure. To implement the concepts of Section 5.1, the syntax of type
identifiers is extended with a key argument. Listings 6.1 and 6.2 depict excepts of
the ANTLR4 grammar of HElium. In lines 48 to 50 of Listing 6.2, it shows that the
type_ident rule is extended with an optional key_arg. This key_arg represents the key-
label property of the type. The key_arg consists of an IDENTIFIER and is prefixed by an
'@'"-sign. For the complete grammar of HElium, see A.2

Listing 6.1: Excerpt of the ANTLR4 Grammar of the Lexer of HElium

7 TAT: @'

7/ IDENTIFIER: [a-zA-Z][a-zA-Z0-9]*:

Listing 6.2: Excerpt of the ANTLR4 Grammar of the Parser of HElium

46 ident : IDENTIFIER;

47 type_ident: TYPEINT CLT INTEGERLIT CGT type_args* key_arg?
48 | TYPEAUTO type_args* key_arg?

49 | TYPEFLOAT CLT INTEGERLIT CGT type_args* key_arg? ;
50 key_arg: TAT IDENTIFIER;

51 type_args: LSBRACE INTEGERLIT RSBRACE ;

25

Lars Schütze

6. Implementation of Proxy Re-Encryption in HElium

6.2. Intermediate-Representation Extension for Proxy
Re-Encryption

This work extends the HElium compiler. HElium's type system consists of tree base
types: integer, fixed-point numbers, and arrays. Each type can either represent plain-
text or ciphertext data. Furthermore, each type has type-specific properties. For ex-
ample, the integer type has a width property to represent integers of different bit
widths. The compiler of this work adds support for PRE and multiple encryption keys
to HElium.

According to Section 5.2, it is sufficient to represent encryption keys by identifiers.
These are referred to as key labels. The compiler and further processes only need
to know under which key the inputs are encrypted. Such a label can be interpreted
as a property of types of the type system. Figure 6.1 depicts a simplified version of
the extended type system of HElium. The base class of the types now has a keylLabel
property of type std::string that represents the corresponding key. Each type provides
a getter and a setter method for the keyLabel property.

The key label of input and output nodes is set during translation of the concrete-
syntax tree (CST) to the abstract syntax tree (AST) in the frontend of HElium. List-

BaseType

+ secure: bool

+ keyLabel: string
A

Integer Real ArrayType
+ width: int32 + scale + subType: BaseType
+ size: int32

Figure 6.1.: Type System of HElium

ing 6.3 shows parts of the type construction during translation of the CST to an AST.
The identifier of the DSL program is parsed as string and directly used as key label. If
no identifier is provided for input or output nodes, the label "default” is applied. The
key labels of intermediate nodes are undetermined. They are determined at later
stages of the compilation chain.

The IR itself is then built from the AST. Since the AST and the IR share the same type
system, the key labels of the types are not modified during the translation process.
Therefore, the type identifier of the DSL are propagated to the IR in the form of key
labels. In most computation graphs the key labels of intermediate nodes are unde-
termined.

26

6.3. Efficient Insertion of Proxy Re-Encryption Operations

Listing 6.3: Excerpt of BuildASTVisitor.cop - AST Type Construction

1T antlrcpp :: Any BuildASTVisitor ::visitType_ident(

2 hedsl::hedslParser:: Type_identContext *context) {

3 std::shared_ptr<ExprType> type;

4 /7 ..

5 if (context—->key_arg()) {

6 type—>setEncryptionKey(context->key_arg ()—>IDENTIFIER () —>
getText()),;

7 1 else {

8 type—>setEncryptionKey("default");
9 1}

10 //

113}

One important addition to the IR is the PRE operation itself. It is implemented as a
unary operation, i.e., an operation with one operand. Each PRE operation represents
a re-encryption of a ciphertext from a source key to a target key. The key label of
the operand defines the source key. The target key is defined by the key label of
the type of operation. PRE operations are inserted by the compiler. Hence, a freshly
constructed IR does not contain any PRE operation. Future versions of HElium can
support the manual insertion of PRE operations via built-in methods added to the
DSL.

Oneimportant rule applies to the key labels of all operations of a computation graph:
Each node must share the same key label as its operands, except for PRE operations.
Consequently, a PRE operation must be introduced into each edge between nodes
with different key labels to ensure consistency.

6.3. Efficient Insertion of Proxy Re-Encryption Operations

As described in Section 5.3, the number of inserted PRE operations and their posi-
tion affects the execution runtime. HElium inserts PRE operations in two steps. First,
all key labels of intermediate nodes are determined by the compiler. Second, PRE
operations are inserted based on the previously determined key labels. Themnumiben
of inserted PRE operations is mainly influenced by the first step.

The main objective of the first step is the selection of suitable key labels for interme-
diate nodes. Thereby, the goal is to reduce the number of edges between nodes with
different key labels. For programs with fewer input key-labels than inputs, there can
be an opportunity for reducing PRE operations.

Algorithm 1 describes an approach to omit PRE operations. It iterates over graph
nodes beginning with the inputs. Constant, input, output, and proxy re-encryption
nodes are skipped. For each node, it checks whether the operands share the same
key. If they do, the shared key label is applied to the node. Otherwise, the node
needs a different key label. The problem of selecting a suitable target key can have
high complexity, as previously shown in Section 5.3. The scenarios of this work have
two constraints that can reduce the complexity: There is only one output key and only
PRE operations from input to output keys are allowed. Since only re-encryptions from
input keys to outputs keys are supported, the default output key is used as key label.
Consequently, the selectKey() function is defined as

selectKey(node) =" default’.

However, future versions of HElium can extend this mechanism and can support
more than one output key.

27

Lars Schütze

6. Implementation of Proxy Re-Encryption in HElium

Algorithm 1: Key-Label Propagation Algorithm
Data: nodes
Result: nodes with key labels

1 foreach node of nodes do topological sorting

2 | if node.type € {PRE,INPUT, OUTPUT, CONST} then
3 | continue;
4 else
5 k < node.operands[0];
6 S « true;
7 for i =1,/ <size(node.operands); i+ + do
8 L s « s A (k = node.operands[i]);
9 if s = true then
10 \ node.keyLabel « k;
11 else
12 L node.keyLabel < selectKey(node);

Furthermore, the separation between key-label determination and insertion of PRE
operations allows further optimizations in future versions. The key labels could be
used for re-balancing optimizations or parallelizing. Ifitherstructurerofithergraph
changes, the key labels can be recalculated easily. This separation prevents inserting
or removing PRE operations during ongoing optimizations.

Nonetheless, after all optimizations took place, PRE operations have to be inserted
into the graph. At this point, the key labels of all nodes of the computation graph
are determined. The PRE operation itself can be inserted based on the operands
or usages of a node. Algorithm 2 shows one approach to insert PRE operations.
It traverses the computation graph beginning from the leaf nodes, i.e. the output
nodes. For each node, it checks whether one of its successor nodes, i.e. its usages,
has a different key label than the node itself. In the case that the key labels differ, it
inserts a PRE-operation node between it and the successor. The algorithm uses map
data structure to cache PRE nodes to prevent that the algorithm inserts an equivalent
PRE operation more than one time.

Algorithm 2: Key-Label Propagation Algorithm
Data: nodes with key labels
Result: graph with PRE operations

1 foreach node of nodes do topological sorting

2 if node.type € {PRE, INPUT, OUTPUT, CONST} then
3 | continue;
4 else
5 p—1{k
6 for i = 1;i < size(node.usages); i + + do
7 if node.usageslil.keyLabel! = node.keyLabel then
8 if |p.has(node.usages[il.keyLabel) then
9 L p.add(makePRENode(mode, node.usageslil.keyLabel));
10 node.usageslil.replaceOperand(node, p.at(node.usages(il.keyLabel));

28

Lars Schütze

6.4. Implementation of a Backend with Proxy-Re-Encryption Support

6.4. Implementation of a Backend with
Proxy-Re-Encryption Support

This section discusses the implementation of a compiler backend for the BFV FHE
scheme. As described in Section 2.3, the main task of a backend of HElium is to pre-
pare the execution of the computation graph. The compiler provides a program in
the form of an intermediate representation to the backend. In the case of HElium,
the IR is a computation graph. Then, backends may apply runtime or scheme-specific
optimizations to the IR. In the last step, the backend typically determines suitable
encryption parameters and serializes the program. HElium provides a common in-
terface to serialize programs for various execution runtimes. It uses protocolbuffers,
a message-structure-description protocol proposed by Google."

The HElium backend with PRE support utilizes the PALISADE Lattice Cryptography
Library.? PALISADE, is a library for lattice cryptography, especially for homomorphic
encryption (HE), which implements a wide range of FHE schemes. It comprises an
implementation of the BFV scheme with PRE support. The backend consists of two
loosely coupled parts. The first part is integrated in the compiler. IEmeasures'spe:
cific metrics like the multiplicative depth and the number of inserted PRE operations.
These metrics are necessary to determine suitable encryption parameters. Then, the
backend uses the integrated circuit serialization to serialize the computation graph.
None of the backends that are currently implemented in HElium does support PRE.

The second part is a parameter generator with uses a parameter-generation func-
tion of PALISADE. This function takes the measured graph metrics and derives se-
cure scheme parameters according to the Homomorphic Encryption Standard Initia-
tive [2].

Thttps://github.com/protocolbuffers/protobuf
https:/gitlab.com/palisade/palisade-release

29

Lars Schütze

7. Evaluation of the Proxy
Re-Encryption Implementation

This chapter investigates the effect of HElium’s PRE extension on the compile time,
execution runtime, and efficiency, where efficiency is defined as introducing as mini-
mum PRE operations as necessary. All experiments are conducted using the example
use case of health data aggregation. Therefore, Section 7.1 gives a detailed overview
of the use case and the computed function. Based on this example program, Sec-
tion 7.2 presents the different conducted experiments including the corresponding
evaluation results. The results and findings are summarized in Section 7.3

7.1. Use Case: Aggregation of Patient Data for Cancer
Research

Hospitals, universities, and private healthcare companies collect a large amount of
data about their patients. This includes, for example, protocols from medical treat-
ments, drug applications, and surgical reports. With the introduction of the electronic
medical file, more information will be digitalized [15]. This information about patients
is highly confidential and high data protection requirements apply [20]. Therefore,
sharing and aggregation of patient data is very complicated due to regulatory rea-
sons. FHE combined with PRE can enable researchers to combine their patient-data
sets with other researchers without sharing the patient data as plaintext. It allows
performing analyses on the shared data sets without disclosing individual patient
records.

For example, records of genome mutations can be compared with histology anal-
ysis or surgical reports of tumor patients to obtain information about correlations
between specific genome mutations and the properties of the tumor [27, 37]. That
enables researchers to develop more specific treatment methods for tumors. One
measure that is analyzed in the context of cancer research is the recurrence rate of
variants of tumors. It represents the percentage of patients for whom particular can-
cer reappears. This measure indicates the medical treatment of the cancer patient.
The particular tumor type can often only be determined by surgery and the following
histology analysis. A non-invasive determination of the tumor type and its properties
can allow treatment of the tumor without surgery. Therefore, finding correlations
between genome mutations and tumor properties is an active field of research.

Equation (7.1) depicts the calculation of the tumor-recurrence rate r’ of patients.

30

Lars Schütze
Remember. The party doing the computation and the output receiving party should not collaborate.

7.2. Evaluation of the HElium Compiler
It is calculated as an average of the recurrence of a tumor in relation to the absolute
number of patients with the same tumor variant.

B Number of Tumor Patients with Recurrence
- Number of Tumor Patients

(7.1)

In order to find correlations between genome mutations and tumor recurrence, r can
be calculated with the presence of different mutations. The presence of mutations
for the /-th patient P; can be efficiently encoded by bits of a bit vector denoted by b,.
Each element b; of b; represents the presence or absence of a mutation j. Similarly,
the tumor recurrence of a patient / can be encoded as a single bit a;. The recurrence
rate r in relation to the presence of mutations is defined as shown in Equation (7.2).
Each element of the fesultvectort represents the recurrence rate in relation to the
J-th mutation. This measure can help to find correlations between the presence of
mutations and the recurrence of tumors.

r_) _iLo¥i-bi
> iLob
Listing 7.1, shows the HElium code of an example implementation of the presented

use case. Each patient data-set consists of two values a; and b; that are provided
under an own key Key;.

(7.2)

Listing 7.1: HElium Program: Recurrence Rate of Tumors

input al:int<1>@KeyO;
input b0:int<1>[1024]@Key0;
input al:int<1>@Keyt;
input bl:int<1>[1024]@Key1;
input a2:int<1>@Key2;
input b2:int<1>[1024]@Key2;
input a3:int<1>@Key3;
input b3:int<1>[1024]@Key3;

output R = a0*b0+al*b1+a2*b2+a3+b3
output n = b0+b1+b2+b3

QO VWoO~NOUTDdWN =

o

In lines 1 to 8, the inputs are defined for four datasets of four different participants.
The outputs and the function are declared in lines 10 and 11. The division of two
unknown ciphertexts is an operation with high computational complexity. Therefore,
the example program computes only the two sums with FHE. The division is per-
formed afterward at the client as plaintext operations.

7.2. Evaluation of the HElium Compiler

In this section, the HElium compiler and its PRE integration are evaluated using the
previously described use case. The following aspects are evaluated. First, the effect of
PRE on the execution runtime is analyzed. Second, the effectiveness of the compiler
in terms of the introduction of PRE operations is studied. Third, the scalability of the
compiler is examined.

All experiments are conducted on a (virtual) server with 8 Intel(R) Xeon(R) Platinum
8124M CPU cores and 16 GB of RAM that is hosted on Amazon Web Services (AWS).
Each experiment is performed 100 times, and the average, as well as the standard
deviation, are calculated. After each run, the results are decrypted and compared

31

Lars Schütze

7. Evaluation of the Proxy Re-Encryption Implementation

with the expected result of the corresponding plaintext function to verify correct-
ness of the compiled program. Therexperimentsiarerconducted forsetsizesiofup
tor1000: This relates to typical data-set sizes of medical research [37]. Often, only a
few hundred patient records are available at a research institution depending on the
type of tumor. For a complete list of all measurements, see Appendix B.

7.2.1. The Effect of Proxy Re-Encryption on Execution Runtimes

This section discusses the effect of PRE operations on execution time. To analyze the
effect, the execution time of the previously described use-case program (Listing 7.1)
is measured with PRE and without PRE. The example program is compiled, executed,
and its runtime, as well as the number of performed PRE operations, is measured for
different patient-data set sizes n. One time with PRE and a different encryption key k
for each input n, i.e., n/k = 1. A second time without PRE and all inputs and outputs
encrypted under the same key pair. It can be expected that the use of PRE results in
a higher execution time due to the added computational complexity.

Figure 7.1 shows the execution times of the example program for different data-
set sizes n € {4,10,250,500, 750, 1000}. For each data set, it depicts a bar for the
execution with PRE and one without. Furthermore, the execution time is divided into
the raw computation time and "IO" time, i.e., the time used to deserialize keys, inputs,
and to serialize the results.

80 -
EEl Compute (without PRE)
70 A IO (without PRE)
Compute (n/k=1)

60 10 (n/k=1)
0 50 -
()
£ 40 -
IS
S5
o 30 -

20 A

10 1 . !

0 T _ i T - T . T .
0 200 400 600 800 1000

Number of Data Sets n

Figure 7.1.: Execution Runtime: Recurrence Rate Use Case (n/k=1)

Table 7.1 gives a detailed overview of results from the conducted measurements.
It shows that the variant with PRE has a higher execution runtime. For 1000 data sets,
the total execution time is approximately 114 % higher than for the variant without
PRE. However, it shows that the raw computation time is only 46 % higher than with-
out PRE. The time spent for 10 operations grows to approximately 133 %. The largest
part of the execution runtime is spent on input-output operations like loading keys or

32

Lars Schütze

7.2. Evaluation of the HElium Compiler

inputs. For the PRE version and a set size n = 1000, approximately 78 % of the execu-
tion time is caused by 10 operations. Consequently, only 22 % of the runtime is spent
on the evaluation of the function. Furthermore, the experiments indicate that the

Table 7.1.: Execution Runtimes with and without PRE

IO (s) Execution(s) Runtime (s) 10 Percentage (%)

PRE Setsn

w/ 4 0.214 0.031 0.246 87.271
10 0.381 0.078 0.459 83.050
250 7.053 1.935 8.988 78.470
500 14.007 3.865 17.872 78.375
750 20.963 5.875 26.838 78.108
1000 27904 7.782 35.686 78.193

w/o 4 0.327 0.043 0.369 88.411
10 0.716 0.108 0.824 86.898
250 16.317 2.834 19.151 85.201
500 32.577 5.668 38.245 85.179
750 48.853 8.479 57.333 85.210
1000 65.008 11.388 76.396 85.094

runtime is growing linear in the number of data sets n. In addition, the percentage of
time spent on 10 operations stays relatively constant for sets n > 250. That could be
a result of efficiency gains of the higher number of sequential data-load operations.

To further analyze the effect of PRE on the runtime, the time spent on PRE oper-
ation is measured. Table 7.2 depicts the measured runtimes of PRE operations, the
number of performed PRE operations, and the percentage of the execution runtime,
that is spent on PRE operations. It shows that the percentage of time spent on PRE is
relatively constant for n > 250. Additionally, the table shows the calculated average
runtime of a single PRE operation. For n = 1000, a PRE operation takes on average
1.803ms.

Table 7.2.: Percentage and Runtime of PRE Operation

Sets Execution (s) PRETime(s) PRETime (%) Time per PRE (ms)

4 0.043 0.012 26.998 1.445

10 0.108 0.030 27.899 1.506
250 2.834 0.899 31.723 1.798
500 5.668 1.804 31.818 1.804
750 8.479 2.604 30.712 1.736
1000 11.388 3.606 31.664 1.803

To summarize, the constant behavior of single PRE operations adds an amount of
complexity to the computation that depends linearly on the data-set size n. Further-
more, it showed that the example program can aggregate data sets of 1000 patients
in less than one and a half minutes. This is a suitable runtime compared to the typical
runtime of preparatory processes that take place before computation. For example,
the process of genome sequencing for a single data set can take from a few hours up
to a few days depending on the technique that is applied and the size of the genome
[29]. With the linear behavior in mind, a much larger number of data sets could be
aggregated within one or a few hours.

33

Lars Schütze
batching? parallelization?

How well have the 8 cores been utilized? Maybe I/O was bad because of the type of system used?

7. Evaluation of the Proxy Re-Encryption Implementation

7.2.2. The Efficiency of the Introduction of Proxy Re-Encryption
Operations

This section discusses how effectively the compiler Insertions PRE operations. The
compiler aims to insert only as few PRE operations as necessary. A naive approach
of inserting PRE operations re-encrypts all inputs before calculation and transforms
them to a common key. The number of used PRE operation ppgive is determined by
the number of inputs / of the program, i.e., pnaive = i. From a theoretical perspective,
the minimal number of PRE operations pm, is determined by the keys of the inputs
and outputs of the program, as shown in Equation (7.3). K; and Kp denote the set of
input or output keys, respectively. IntheloesticaseronlyonePREoperationisneeded
for all keys that are members of K; but not of Ko, i.e., the difference of K; and Ko.

Pmin = |Ki\ Kol (7.3)

However, not for all programs, it is possible to reach py,, due to the structure of the
programs. HElium aims to achieve a number of PRE operations p between ppgje and
Pmin- TO measure the efficiency of HElium in inserting PRE operations, the number
of necessary PRE operations is measured for different data-set sizes. Furthermore,
the ratio between data sets n and keys k, denoted as n/k, is varied. The number of
inserted PRE operations is measured for n/k = 1, n/k = 2, n/k = 5, and n/k = n.

Figure 7.2 depicts the number of inserted PRE operations p in relation to the num-
ber of data sets for different n/k ratios. The grey-highlighted area represents values
for p that are equal or less than ppgive. All results within this area are equal or better
than the naive approach. The figure shows that for n/k # 1, the HElium compiler in-
serts fewer PRE operations than pngie. Consequently, HElium inserts PRE operations
more efficiently than the naive approach. For n/k = 2, p is reduced by 50 % com-
pared to ppgive. FOr n/k =5, it is reduced by 92 %. The variant n/k = n represents the
case in which all inputs are encrypted under a common input key. HElium reduces
the necessary PRE operation constantly to p = 2. That results in a reduction of up
to 99.96 % of the PRE operations for n = 1000. However, for n/k = 1, the compiler
can not reduce p. In that case, each data set is provided under its own key that is
different from the output key and needs to be re-encrypted. The results of Figure 7.2
are measured using a program with sorted inputs.

Listing 7.2 and Listing 7.3 show a comparison of sorted and unsorted inputs. In
the sorted variant, the inputs and following operations are grouped by their keys.
The experiments are re-conducted with unsorted inputs to analyze the impact of the
program structure.

Listing 7.2: Sorted Inputs Listing 7.3: Unsorted Inputs

input a0:int<1>@Key0; input a0:int<1>@Key0;
input al:int<1>@KeyO, input al:int<1>@KeyTl;
input az2:int<1>@Key1; input a2:int<1>@Key0,
input a3:int<1>@Key1; input a3:int<1>@Keyl;

g dwnNn —
apdwnNn —

Figure 7.3 depicts the number of inserted PRE operations p in relation to the num-
ber of data sets n for n/k = 5. It compares a variant using sorted inputs with a variant
with unsorted inputs. The figure shows that the "unsorted" variant has a higher p
than the "sorted" variant. Furthermore, the "unsorted" variant has only an up to 0.4 %
lower p than ppgie. Consequently, the efficiency of the PRE insertion of the compiler
depends on the structure of the program and its inputs.

34

Lars Schütze

7.2. Evaluation of the HElium Compiler

5250 -®- p(n/k=1)
p(n/k = 2)
Q 4
. 20001 -@- p(n/k=5) P
S 1750 @~ plnk=n) 7
o P < Pnaive(n) ‘/'/
0 1500 A .
)
w 1250 pr
& e
‘5 1000 A &
o e
o 750 7
€ -~
500 - y
= e e —®
250_ $/‘/ ——l—‘—_'_—‘—__‘__.“
‘/ -—-.—_.-__ —
Og'g-—_ —= T — T S -
0 200 400 600 800 1000

Number of Data Sets n

Figure 7.2.: Number of Inserted PRE Operations

To summarize, the evaluation showed that the compiler can reduce PRE opera-
tions to a minimum necessary number. Unfortunately, the compiler performs not
as efficient in programs with @nsStructured and unsorted inputs. Hence, there are
opportunities for optimization. Future versions of the compiler could automatically
restructure the program to lower the number of necessary PRE operations. Addi-
tionally, future optimization could not only target a low number of PRE operations.
Instead, the parallelism of the computation graph could be taken into account.

7.2.3. Scalability of the Compiler

This section analyzes how the compiler performs for different problem sizes. The
compilation time is measured for different data-set sizes n of the use case. Further-
more, the runtime of the internal processes of the compiler is analyzed individually.
It is expected that the compilation time grows for programs with a larger data set
size. Figure 7.4 depicts the compile time relative to the set size n. In parallel, it shows
the number of nodes of the compiled computation graph in relation to the set size
n. While the number of nodes is linear in the set size n, the compile time grows
quadratically.

In order to analyze the cause of the non-linear growth of the compile time, the
runtimes of the compile processes are measured. Figure 7.5 depicts the runtime of
the internal compiler processes for the use-case program relative to the data-set size
n. Each color represents the runtime of one process in the compilation. For further
information about the compiler processes, see Section 6.4. It shows that the "Type
Deduction", "Key Selection", and "Metrics" processes cause the non-linear growth of
the compile time.

Future versions of the compiler could aim to improve the complexity of these pro-
cesses. However, the compiler performs the compilation for n = 1000 data sets
in less than 0.8s. Compared to the execution runtime of the compilation result the

35

Lars Schütze

7. Evaluation of the Proxy Re-Encryption Implementation

p(n/k =5)
22501 “®~ ynsorted
Q 2000 - p(n/k =5) S
9 sorted Prig
O Y
'g 1750 1 P < Pnaive(N) /‘/'/
¢ 1500 A »
(@) /‘/
W 1250 - e
o e
5 1000 - v
) e
o 750 A e
€ /-/
= 500 /‘p'
250{
o
0 — T T T T T
0 200 400 600 800 1000

Number of Data Sets n

Figure 7.3.: Number of Inserted PRE Operations: Sorted and Unsorted Inputs

compile time can be still sufficient.

7.3. Summary

Within the previous sections the PRE implementation of the HElium compiler is evalu-
ated with regard to effects of PRE on the execution runtime, the efficiency of the PRE
implementation and the scalability of the compiler itself. The experiments demon-
strated that the HElium compiler can generate efficient results while supporting PRE
and an arbitrary number of encryption keys. It showed that PRE can be integrated
into FHE programs to acceptable costs in terms of runtime performance. The com-
piler and the resulting FHE programs scale sufficiently and can solve problems of
practically relevant size.

Furthermore, opportunities for further improvements were identified during the
experiments. For example, it showed that HElium’'s DSL can be inconvenient to de-
veloprprograms withrmany inputs. To mitigate this problem, HElium could support
arrays and other data structures with elements of different keys. That would allow
simplifying the previously presented program. Additionally, it showed that the com-
piler may not reach the optimal value of PRE operations in the case of restructured
inputs. Therefore, internal balancing and reordering processes in the compiler would
further improve its performance.

36

Lars Schütze

Lars Schütze

7.3. Summary

700 7000 -

. 600 - Z 6000 -
0 S

£ 5004 © 5000 -
Q (0]
E o

S 400 - O 4000 A
o ‘G

= 300 - & 3000 1
e O

S 200 A € 2000 -
>
=2

100 - 1000 -

0 T T T O T T T
0 250 500 750 1000 0 250 500 750 1000
Data Sets n Data Sets n

Figure 7.4.: Compile Time and Number of Operations Relative to Data-Set Size n

700 4 Il Parser
I CST to AST
B AST to IR
600 1 mmm Type Deduction
I Key Selection
’g 500 | ™™ PRE Insertion
> [Metrics
£ B Serialization
F 400 -
C
)
©
‘2 300 A
£
o
O
200 A
100 -
0 -
0 200 400 600 800 1000

Number of Data Sets n

Figure 7.5.: Runtime of Compiler Processes

37

8. Optimization for
Homomorphic Encryption and
Proxy Re-Encryption

This chapter discusses different approaches for further optimization of FHE pro-
grams with and without Proxy Re-Encryption (PRE). The performance of FHE pro-
grams can benefit from parallel-execution capabilities of modern computers. There-
fore, Section 8.1 discusses optimizations for operation-level and data-level paral-
lelism. Another important optimization opportunity are client-aided computations.
Section 8.2 presents different mechanisms of pre and post- computations performed
by the clients of a computation.

8.1. Parallelism

8.1.1. Concurrent Execution

Concurrent execution is an important mechanism to perform multiple independent
operations in parallel. Modern CPUs often consist of multiple computation cores that
are able to compute multiple threads in parallel. Similarly, FHE applications can bene-
fit from concurrent execution. Nodes of an FHE computation graph can be evaluated
in parallel if they do not depend on each other. This parallelism can be implemented
by parallel threads or parallel nodes. Figure 8.1 depicts a typical execution architec-
ture for large FHE applications. It shows a management service that distributes the
workload to worker nodes. Each worker node spawns a set of threads that execute
parts of the program. This architecture has advantages for the execution of large pro-
grams. By using multiple worker nodes and multiple threads per worker, the compu-
tation can be distributed. Consequently, even complex analytics can be performed
in an acceptable time. However, the architecture introduces the main challenge: the
partitioning of the computation graph for different workers and threads.

Dependencies between workers require additional communication. Due to the
size of ciphertexts, communication is costly and can have a negative impact on per-
formance. Therefore, it is important to avoid dependencies between workers. One
approach to this is the use of graph-partitioning algorithms. This is only worthwhile
for circuits of a certain size and with opportunities for parallelism.

38

8.1. Parallelism

Thread

Inputs
Worker Thread
% A Thread
Program

A

Management

Service
Thread
iﬁ A 4

Thread
Worker

Outputs Thread

o

A

Figure 8.1.: Large-Scale Architecture for Execution of FHE Programs

8.1.2. Data Parallelism

Modern CPUs provide a varietyrof vectorinstructions, also referred to as single in-
struction multiple data (SIMD). These allow performing a single operation on mul-
tiple data values in parallel. FHE schemes can provide a similar mechanism that is
referred to as batching or ciphertext packing [9]. This applies especially to schemes
that rely on the ring variant of the learning with errors problem (RLWE). These allow
encrypting multiple messages into one ciphertext. For example, a BFV ciphertext can
encrypt n/2 elements, referred to as slots. The scheme parameter n denotes the
polynomial degree. Typical values for n are between 1024 and 32, 768 according to
the homomorphic encryption standardization initiative [2].

Homomorphic operations performed on packed ciphertext apply to all elements
of the ciphertext in parallel [9]. Therefore, batching allows SIMD-like operations on
Ciphertexts. It can speed up programs with a large amount of parallel data. For exam-
ple, a program that uses batching with n/2 = 1024 slots can perform an operation on
1024 elements in parallel. That results in a theoretical amortized speedup of 1023
compared to the execution on a single slot. For example, Chen et al. used batch-
ing perform fast private set intersection [11]. The following constructions of utilizing
batching for parallelization are based on previous work. For example, Dathathri et
al. proposed mechanism to encode matrices using batching to perform efficient ma-
trix multiplications. Furthermore, there are a variety of use cases that benefit from
efficient encoding, for example [11, 7, 32, 4].

Currently, available schemes do only support performing element-wise operations
on batched ciphertexts. This includes addition, multiplication, and rotation. Perform-
ing operations on specific elements is not directly possible. However, by using ad-
dition, multiplication, and rotation array access can be emulated, as shown in Fig-
ure 8.2 For example, access of the j-th element of a vector a = (ag, 01, . . ., 0p/2) Can
be achieved by multiplication with a selection-mask vector b. That vector b is filed
with zeros and its /-th element is one. The resulting vector contains the selected
element at the j-th position and is filled with zeros. It shows that there exist differ-

(@, .-, Qiyenns Apj2) (o,..., 0,a;,0,..., 0) (a;,0,..., 0)

Figure 8.2.: Emulating Array Access using Rotation and Addition

39

Lars Schütze
Also pipelining

8. Optimization for Homomorphic Encryption and Proxy Re-Encryption

ent variants to encode data into the slots of a batched ciphertext. The slots can be
used to encrypt vectors or matrices [18, 17]. In such cases, each slot can represent
an element of the vector or matrices. Scalars can be either encoded in a particular
slot or encoded in all slots in parallel. The second variant is beneficial for following
element-wise vector operations.

Figure 8.3 depicts one approach to "copy" a particular element to all slots of a
batched ciphertext. It uses log 5 rotation and addition operations.

[

Figure 8.3.: Emulating Array Construction from Scalar using Rotation and Addition

Similarly, arrays can be constructed from multiple batched ciphertexts that encode
a single scalar. Figure 8.4 shows a construction that uses rotation and addition op-
erations to combine multiple ciphertexts with a scalar encoded into the first slot. For
anarray of length /it requires / rotations and log / addition operations. The presented

(a0,0,..., 0)

(a1,0,...,0) 0,a1,0,...,0) ° (a0, a1,0,...,0)
(@n/2,0,..-,0) 0,,...,0,a,/2) (@0, a1, -+, 0n)2)

Figure 8.4.: Emulating Array Construction from Multiple Scalars using Rotation and
Addition

approaches of transformation between different encoding variants of batched ci-
phertexts require additional operations. Therefore, they add computational com-
plexity. However, there are programs that can benefit from an automatic transfor-
mation from a scalar encoding to vector encoding. For example, a transformation
of / scalar-encoded ciphertexts to an array encoding and back to a scalar encoding
requires additional 2/ rotations, / multiplications, and log/ additions. Although this
requires additional operations and adds complexity, it can speed-up operations that
can be performed in parallel by a factor of /- 1.

HElium supports batching for FHE schemes that support this technique. The com-
piler translates element-wise operations on arrays to batched ciphertext operations.
For example, the use case presented in Section 7.1 utilizes batching to compute the
recurrence rate relative to many mutations in parallel. However, HEliums batching

40

8.2. Client-Aided Computation

support is limited. It does only support element-wise operations on vectors. Access
to single elements of the vector or automatic restructuring of scalar data into vectors
iStnot'supportediyetmFuture versions could automatically detect opportunities for
optimizations through batching and automatically insert necessary transformation
operations.

8.2. Client-Aided Computation

This section presents mechanisms to utilize the computation power of the clients,
i.e., data-providing participants, to improve the execution-runtime performance of
FHE programs. Subsections 8.2.1 and 8.2.2, discuss approaches of offloading parts
of the computation graph to the clients.

8.2.1. Pre-Computation by the Client

The encoding of inputs and outputs of an FHE program is an important starting point
for optimizations. For example, one straightforward optimization can be the selection
of suitable bit lengths for the input values. In many use cases, the domain of inputs
can be reduced by simple operations of the data-providing party.

The computation of polynomials using FHE is a good example problem to high-
light the advantages of pre-computation by the client. The example, a polynomial of
f(x) = ax” + bx -5 requires computational-complex multiplications if the computation
is performed completely using FHE. It would require at least /og,9 multiplications of
x to compute x”. Multiplications using FHE can be computational complex. However,
for the data-providing client, the calculation of x? is an operation on plaintexts with
a low complexity compared to FHE. Therefore, the client can directly provide the re-
sult of x? as an additional input X’ to the computation. This results in the function
(<, x) = ax’ + bc - 5 whereas x’ = x? is a preliminary function that is calculated by
the client that provides x. Consequently, the communication complexity is doubled
since the client has to transmit two inputs x and x” instead of one input x. However,
the function f(x’,x) has a much lower computational complexity because it consists
only of additions and subtractions. A similar construction was used by Chen et al. to
optimize private set intersection [11]. In this example, it would be even possible to re-
place the FHE scheme with a partially homomorphic encryption (PHE) scheme. A PHE
scheme supports only one type of homomorphic operation, for example, additions
and multiplications. Despite this limitation, PHE schemes are much more efficient
than FHE schemes.

To summarize, the pre-computation of some operations of the function reduces
the complexity effectively. Operations that are computational complex in FHE can
be performed in plaintext on the client. This can be accompanied by the cost of ad-
ditional communication and additional operations on the client. Therefore, in some
cases, it is a tradeoff between computational and communication complexity.

For the presented example it is unchallenging to identify opportunities for pre-
computation. However, for more complex programs this task can become difficult.
A compiler can support developers with the identification of optimization opportuni-
ties. From a theoretical perspective, this process follows similar rules as the insertion
of PRE operations. Each operation that depends by itself or by its operands only on
the inputs of a single participant can be pre-computed by the participant. Figure 8.5
depicts the initial computation graph of g(x) = ax? + bx on the left side. Nodes that
depend only on inputs, i.e., data of the same single party are colored homogeneous.

41

Lars Schütze

8. Optimization for Homomorphic Encryption and Proxy Re-Encryption

... R e e L L e e e e EE L
'

E Computation Party PARTY 1

INPUT @ o E
PARTY 2 . :

: 1 Computation Party / ;

© 1/ INPUTa INPUT b !
Lo PARTY 2 PARTY 2 :

INPUT
PARTY 1

J

INPUT INPUT 22
PARTY 1 PARTY 1

Figure 8.5.: Computation Graph of g(x) = ax? + bx with and without Pre-Computation

On the right, it shows a possible computation graph that utilizes pre-computation.
This computation graph is partitioned into two parts. One part is executed at the
participant PARTY1. The other part is still executed by a computation party. Similarly
to the previous example, the function x? is pre-computed by the client and provided
as an additional input.

The pre-computation of parts of the computation circuit has one major limitation. It
requires that the function that is to be computed is known at the time of encryption
of the inputs. As it may require specific encoded inputs or additional inputs, the
function or at least the pre-computed part must be known before encryption.

One approach to determine operations on the computation graph that can be
pre-computed is tainting or labeling the operations. Therefore, each party is a label
assigned. The labels represent a partition of the computation graph. In the first step,
only the input nodes are labeled with the label of the corresponding input-providing
party. Then the labels can be propagated through the graph by a greedy algorithm.
Beginning from the input nodes can traverse the computation graph from nodes to
their usages in a depth-first-search manner. Each visited node can be labeled in the
case that all operands of the node share the same label. This process is repeated
until no more nodes can be labeled. An example result of a labeled graph can be
seen in Figure 8.5. Similar to this example, the graph can now be partitioned into
subgraphs according to the applied labels.

However, as previously discussed, this approach can increase the communication
complexity, i.e., the amount of data that must be transmitted by the participants.
There are maybe scenarios that are limited in terms of communication. For exam-
ple, mobile applications. Therefore, a heuristic can be applied to the labeled nodes
in order to decide whether the nodes should be pre-computed or part of the main
computation. This decision is done with the tradeoff between communication and
computational complexity in mind. The selected or labeled subgraphs can be sepa-
rated from the main computation graph. The leaf nodes of the subgraphs must be
replaced by additional input nodes of the main graph to maintain correctness. These
inputs represent the intermediate results of the pre-computation subgraphs. An ex-
ample of such a split graph is shown in Figure 8.5. The resulting pre-computation
graphs can be evaluated directly by the input-providing participants.

42

8.2. Client-Aided Computation

8.2.2. Post-Computations

The same mechanism can be applied to the outputs of computation in order to
offload post-computations of the function to the receiving party. Similarly to pre-
computation, operations that are dependencies of outputs can be separated from
the main computation graph to form a post-computation. The receiving party can
perform the post-computation in plaintext. Consequently, the overall-computational
complexity decreases compared to a complete FHE-based solution. For example, in
the use case presented in Section 7.1, the final division operation is performed by
the receiving party to lower the computational complexity of the function. A similar
construction is used in [5] to offload a complex division operation to a participant
with the decryption key. Chen et al. implemented a construction that offloads final
comparison operations to the decrypting participant [11].

ax

Figure 8.6 depicts an example computation graph of the function h(a, b,x) = &%
on the left. On the right, it shows on possibility to partition the computation graph
into a main computation and a post computation. The parts hp(a,x) = a - x and
h1(b, x) = x+b are computed by the computation party. The receiving party performs
the second part of the computation and combines both intermediate results via a
division h(a, b, x) = Q?EZQ This lowers the complexity of the main computation but
requires additional communication since two encrypted results must be transmitted
to the receiving party.

INPUT b
PARTY 2

INPUT &
PARTY 1

INPUT &
PARTY 1

Figure 8.6.: Computation Graph of h(a, b, x) = Z% with and without Post-Computation

X+b

However, an important aim of FHE is to enable computations and analyses of data
while preserving privacy and confidentiality. Thereforepitisimportantitonlimitipost:
computations'torpreventileakagerof thelinputs. As one approach, the separation of
post-computations can be limited to operations that do not yield a result with lower
entropy than its operands. As another approach, the computation party could blind
the intermediate results such that the result of the computation does not change and
the receiving party does not learn the intermediate results. For example, in the previ-
ously presented program showed in Figure 8.6, the intermediate results ho(a, x) = a-x
and hq(b, x) = x+b could be blinded by a random r. Therefore, the blinding factor r is
randomly sampled from a Gaussian distribution and multiplied with the intermediate

43

Lars Schütze

8. Optimization for Homomorphic Encryption and Proxy Re-Encryption

results, as depicted in Equations (8.1) and (8.2).
ho(a,x)=a -x-r (8.1)

hi(b,x) = (x+b)-r (8.2)

When combining these two blinded intermediate results, the blinding factor r elimi-
nates itself, as shown in Equation (8.3). The intermediate values are secured without
changing the result.

hi(a, x)
A’ (b, x)
_ axr (8.3)

x+b)-r
a-x

 X+b

h(a, b, x) =

Furthermore, if a compiler applies partitioning of pre and post-computations si-
multaneously without any limitations, FHE can be removed completely from the com-
putation. In this case, the inputs or their pre-computed successors are revealed to
the receiving party. This violates the confidentiality requirements. Consequently, the
separation of post-computations must be used consciously to prevent data leakage.

8.3. Summary

The previous sections discuss a variety of opportunities for optimizations of FHE pro-
grams with support for PRE. Each of them aims to improve the execution runtime
of FHE programs towards practical usability. It showed that there are opportunities
for optimization at each level of abstraction: On the data level, batching allows per-
forming SIMD-like operations on ciphertexts. This can provide an important efficiency
improvement for data-parallel problems. On the operation level, the replacement of
complex operations with approximate alternatives can be beneficial. Additionally, op-
erations can be offloaded to participants of the computation and performed in plain-
text. On graph level, re-balancing and re-structurings of the computation graph pro-
vide many opportunities for optimization. For example, re-ordering of chained oper-
ations can reduce the number of necessary PRE operations significantly, as shown in
Section 7.2.2. Furthermore, offloading of pre and post-computations is an important
mechanism to reduce the complexity of programs. On a larger scale, the compu-
tation power of modern cloud environments can be used to execute even complex
programs with many data records. Partitioning of computation graphs can help to
distribute the computation to many computation nodes. In summary, there have
been various opportunities for further optimization of FHE programs identified that
are a base for future work.

44

9. Conclusion and Future Work

This chapter concludes the finding of the thesis. The following section 9.1 provides a
conclusion of this thesis by recapitulating the previous chapters. Section 9.2 presents
opportunities for further improvement that have been identified, followed by the the-
Sis statement in Section 9.3.

9.1. Conclusion

In this thesis, the efficient integration of proxy re-encryption (PRE) into compilers for
fully homomorphic encryption (FHE) is studied.

First, Chapter 2, discusses the preliminaries of this work. This includes information
about FHE and PRE, as well as a presentation of the HElium compiler and its parts.
Chapter 3 discusses relevant related lines of work and focuses on libraries and com-
pilers for FHE

As a foundation for the following chapters, the computation scenario is elaborated
in Chapter 4. It addresses the targeted setting for computation, communication, and
key management. Section 4.3 derives general requirements on a PRE integration
from the elaborated scenario. This includes requirements on usability, security, and
performance.

Based on that, concepts for integration of PRE into the FHE compiler HElium are
developed in Chapter 5. This chapter focuses on the abstraction of encryption keys
by key labels and its conceptual integration into HElium. Therefore, as a first step,
a concept to extend HEliums domain-specific language (DSL) with an encryption-key
property, i.e., the key label, is presented in Section 5.1. Similarly, Section 5.2 ad-
dresses a concept to integrate the key label as a regular property into HElium'’s type
system. By using the abstraction of key labels, Section 5.3 discusses approaches of
insertion of re-encryption operations in the computation graph. The main idea is to
propagate the key labels from the roots of the computation graph to the leaf node
to perform as few re-Encryptions as necessary.

Chapter 6 addresses the implementation of the previously defined concepts into
HElium. Therefore, in Section 6.1, the key labels are integrated into HElium's DSL
via an extension of the grammar of HElium. Thereafter, the re-encryption opera-
tion is added to the intermediate representation of HElium, and the type system is
extended by the key-label property, in Section 6.2. The key labels are propagated
through the computation graph. One algorithm is presented and implemented in
Section 6.3. Section 6.4 addresses the functionalities and the implementation of the

45

9. Conclusion and Future Work

compiler backend for PRE. For example, the backend collects additional metrics for
the generation of parameters for the FHE scheme. In the last step, it serializes the
computation graph.

The resulting integration of PRE into HEliums is evaluated in Chapter 7. It is evalu-
ated with a program developed for combining medical data from cancer patients to
identify correlations between genome mutations and the recurrence of the tumors.
This evaluation addresses three main aspects. In the first experiment, the effect of
PRE on the execution runtime is investigated. Therefore, Section 7.2.1 compares the
execution runtime with PRE with the runtime of a similar program without PRE. The
variant that uses PRE has a higher execution runtime that is mainly caused by the
additionally required communication of re-encryption keys. In Section 7.2.2, the sec-
ond experiment analyses the efficiency of the PRE integration in the insertion of PRE
operations by measuring the number of introduced PRE operations. The compiler
aims to insert only as few as necessary PRE operations. It showed that the compiler
can achieve a number of PRE operations that is close to the theoretical minimum.
However, the level of efficiency depends on the structure of the program. The scala-
bility of the compiler is investigated in a third experiment, in Section 7.2.3. Compile
times are measured for different problem sizes. It shows that the compiler scales
well for practical problem sizes.

Chapter 8 addresses opportunities for further optimization. Section 8.1.2 discusses
approaches to parallelize the execution on data, operation, and graph level. The
Sections 8.2.1 and 8.2.2 present mechanisms to reduce the complexity of FHE pro-
grams by offloading computationally complex operations to data-providing or data-
receiving participants.

In summary, this thesis develops concepts of integration of PRE into FHE programs
and describes the implementation of those concepts into the HElium compiler. The
result is the first compiler for FHE that supports PRE and automatically optimizes the
use of re-encryption operations.

9.2. Future Work

This section addresses opportunities for further improvement that have been iden-
tified.

This thesis already provides a practically usable integration of proxy re-encryption
(PRE) into the HElium compiler as shown by the evaluation in Chapter 7. The evalua-
tion helped to identify opportunities for further improvements that are described in
Chapter 8. Therefore, future versions of HElium could implement advanced mecha-
nisms to enable parallelism on multiple levels. On the data level, for example, HElium
could automatically determine the most efficient encoding of data and introduce re-
quired transformations automatically. On the operation level, advanced scheduling
algorithms could enable more parallelism. Furthermore, the PRE integration in HEIi-
ums is currently limited to a constrained scenario. Additionally, future versions could
provide more flexibility by supporting arbitrary settings of input and output keys.

HElium and its DSL provide already a set of critical functionalities. Nonetheless,
future versions can further improve the developer experience of the compiler. For
example, a mechanism to define higher-level data structures could improve HElium's
usability. A module system that allows developers to encapsulate algorithms into
separate models could reduce code duplications and could enable the development
of function libraries for HElium. Furthermore, more comprehensive support through
developer tools like integrated-development environments can ease access to HE-
lium and can improve usability.

46

9.3. Thesis Statement

9.3. Thesis Statement

This thesis addresses the question of how fully homomorphic encryption (FHE) pro-
grams can be efficiently extended by proxy re-encryption (PRE) to allow computations
over inputs under different keys. It describes the extension of an existing compiler
with PRE functionalities and discusses approaches for further optimization. The prac-
ticality of the compiler and the generated FHE programs was demonstrated using the
analysis of confidential patient data as a lifelike example.

47

Bibliography

[1]

[2]

(3]

[4]

[5]

[6]

[/]

[8]

[9]

[10]

[11]

48

Abbas Acar et al. “A Survey on Homomorphic Encryption Schemes: Theory and
Implementation”. In: ACM Computing Surveys 51.4 (July 2018).

Martin Albrecht et al. Homomorphic Encryption Security Standard. Tech. rep.
Toronto, Canada: HomomorphicEncryption.org, Nov. 2018.

Gilad Asharov et al. “Multiparty Computation with Low Communication, Com-
putation and Interaction via Threshold FHE". In: Advances in Cryptology - EURO-
CRYPT 2012. Ed. by David Pointcheval and Thomas Johansson. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012, pp. 483-501.

Gilad Asharov et al. “Privacy-Preserving Search of Similar Patients in Genomic
Data". In: Proceedings on Privacy Enhancing Technologies 2018.4 (2018), pp. 104~
124.

Kilian Becher,]J. A. Gregor Lagodzinski, and Thorsten Strufe. “Privacy-Preserving
Public Verification of Ethical Cobalt Sourcing”. In: 2020 IEEE 19th International
Conference on Trust, Security and Privacy in Computing and Communications (Trust-
Com). IEEE, 2020, pp. 998-1005.

Matt Blaze, Gerrit Bleummer, and Martin Strauss. “Divertible protocols and atomic
proxy cryptography”. In: Advances in Cryptology — EUROCRYPT98. Ed. by Kaisa
Nyberg. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 127-144.

Fabian Boemer et al. “nGraph-HE". In: Proceedings of the 16th ACM International
Conference on Computing Frontiers. Ed. by Francesca Palumbo et al. New York,
NY, USA: ACM, 2019, pp. 3-13.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) Fully Ho-
momorphic Encryption without Bootstrapping”. In: ACM Transactions on Com-
putation Theory 6.3 (2014), pp. 1-36.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) fully ho-
momorphic encryption without bootstrapping”. In: Proceedings of the 3rd In-
novations in Theoretical Computer Science Conference on - ITCS '12. Ed. by Shafi
Goldwasser. New York, New York, USA: ACM Press, 2012, pp. 309-325.

Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. “Armadillo”. In: Proceedings of
the 3rd International Workshop on Security in Cloud Computing. Ed. by Feng Bao
et al. New York, NY: ACM, 2015, pp. 13-19.

Hao Chen, Kim Laine, and Peter Rindal. “Fast Private Set Intersection from Ho-
momorphic Encryption”. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. New York, NY, USA: ACM, 2017.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Bibliography

Jung Hee Cheon et al. "Homomorphic Encryption for Arithmetic of Approximate
Numbers”. In: Advances in Cryptology - ASIACRYPT 2017. Ed. by Tsuyoshi Tak-
agi and Thomas Peyrin. Vol. 10624. Lecture notes in computer science. Cham:
Springer International Publishing, 2017, pp. 409-437.

Eduardo Chielle et al. E3: A Framework for Compiling C++ Programs with En-
crypted Operands. Cryptology ePrint Archive, Report 2018/1013. https://ia.
cr/2018/1013. 2018,

llaria Chillotti et al. “Faster Fully Homomorphic Encryption: Bootstrapping in
Less Than 0.1 Seconds”. In: Advances in cryptology - ASIACRYPT 2016. Ed. by Jung
Hee Cheon. Lecture notes in computer science. Berlin: Springer, 2016, pp. 3-
33.

Martin R. Cowie et al. “Electronic health records to facilitate clinical research”.
In: Clinical research in cardiology : official journal of the German Cardiac Society
106.1 (2017), pp. 1-9.

Eric Crockett, Chris Peikert, and Chad Sharp. "ALCHEMY: A Language and Com-
piler for Homomorphic Encryption Made EasY”. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. CCS'18. New York,
NY, USA: Association for Computing Machinery, 2018, pp. 1020-1037.

Roshan Dathathri et al. “CHET: An Optimizing Compiler for Fully-Homomorphic
Neural-Network Inferencing”. In: Proceedings of the 40th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. PLDI 2019. Phoenix,
AZ, USA: Association for Computing Machinery, 2019, pp. 142-156.

Roshan Dathathri et al. “CHET: Compiler and Runtime for Homomorphic Eval-
uation of Tensor Programs”. In: CoRR abs/1810.00845 (2018).

Roshan Dathathri et al. “"EVA: an encrypted vector arithmetic language and
compiler for efficient homomorphic computation”. In: Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation.
Ed. by Alastair F. Donaldson. ACM Digital Library. New York,NY,United States:
Association for Computing Machinery, 2020, pp. 546-561.

Edward S. Dove and Mark Phillips. “Privacy Law, Data Sharing Policies, and Medi-
cal Data: A Comparative Perspective”. In: Medical Data Privacy Handbook. Ed. by
Aris Gkoulalas-Divanis and Grigorios Loukides. Cham: Springer International
Publishing, 2015, pp. 639-678.

Junfeng Fan and Frederik Vercauteren. “Somewhat Practical Fully Homomor-
phic Encryption”. In: Cryptology ePrint Archive, Report 2012/144. 2012.

Craig Gentry. “A fully homomorphic encryption scheme”. PhD thesis. Stanford
University, 2009.

Craig Gentry and Shai Halevi. “implementing Gentry's Fully-Homomorphic En-
cryption Scheme”. In: Advances in Cryptology - EUROCRYPT 2011. Ed. by Kenneth
G. Paterson. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 129-148.

Craig Gentry, Amit Sahai, and Brent Waters. "Homomorphic Encryption from
Learningwith Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Ba-
sed". In: Advances in Cryptology - CRYPTO 2013. Ed. by Ran Canetti and Juan A.
Garay. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 75-92.

Shai Halevi, Yuriy Polyakov, and Victor Shoup. “An Improved RNS Variant of the
BFV Homomorphic Encryption Scheme”. In: Topics in Cryptology - CT-RSA 2019.
Ed. by Mitsuru Matsui. Cham: Springer International Publishing, 2019, pp. 83-
105.

49

https://ia.cr/2018/1013
https://ia.cr/2018/1013

Bibliography

[26] Adriana Lopez-Alt, Eran Tromer, and Vinod Vaikuntanathan. “On-the-fly multi-
party computation on the cloud via multikey fully homomorphic encryption”.
In: Proceedings of the 44th symposium on Theory of Computing - STOC '12. Ed.
by Howard Karloff and Toniann Pitassi. New York, New York, USA: ACM Press,
2012, p. 1219.

[27] Amy M Braden et al. “Breast cancer biomarkers: risk assessment, diagnosis,
prognosis, prediction of treatment efficacy and toxicity, and recurrence”. In:
Current pharmaceutical design 20.30 (2014), pp. 4879-4898.

[28] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree Residu-
osity Classes”. In: Advances in Cryptology — EUROCRYPT '99. Ed. by Jacques Stern.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 223-238.

[29] Erik Pettersson, Joakim Lundeberg, and Afshin Ahmadian. “Generations of se-
quencing technologies”. In: Genomics 93.2 (2009), pp. 105-111.

[30] Yuriy Polyakov et al. “Fast Proxy Re-Encryption for Publish/Subscribe Systems”.
In: ACM Transactions on Privacy and Security 20.4 (2017), pp. 1-31.

[31] R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtaining digital signa-
tures and public-key cryptosystems”. In: Communications of the ACM 21.2 (1978),
pp. 120-126.

[32] Shai Halevi and Victor Shoup. “Faster Homomorphic Linear Transformations
in HEIb". In: Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, 2018 (2018), pp. 93-120.

[33] Nigel P. Smart. Cryptography: An Introduction, 3rd Edition. London: McGraw-Hill
College, 2013.

[34] Nigel. P. Smart and F. Vercauteren. “Fully homomorphic SIMD operations”. In:
Designs, Codes and Cryptography 71.1 (2014), pp. 57-81.

[35] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. “SoK: Fully Homomorphic
Encryption Compilers”. In: 2021 IEEE Symposium on Security and Privacy (SP).
2021, pp. 1092-1108.

[36] Alexander Viand and Hossein Shafagh. “Marble”. In: Proceedings of the 6th Work-
shop on Encrypted Computing & Applied Homomorphic Cryptography. Ed. by Michael
Brenner. ACM Conferences. New York, NY: ACM, 2018, pp. 49-60.

[37] Sayaka Yuzawa, Hiroshi Nishihara, and Shinya Tanaka. “Genetic landscape of
meningioma”. In: Brain tumor pathology 33.4 (2016), pp. 237-247.

50

A. Additional Resources for

HElium

A.1. Supported Operations of HEliums Intermediate

Representation

Table A.1.: Intermediate-Representation Operations of HElium with Description

Operation Description Newly added
ADD(a, b) Addition -
SUB(a, b) Substraction -
MUL(a, b) Multiplication -
DIV(a, b) Division -
MOD(a, m) Modulus -
POWI(a, p) Power -
AND(a,b) Boolean AND -
OR(a, b) Boolean OR -
XOR(a, b) Boolean XOR -
NAND(a, b) Boolean NAND -
NOT(a) Boolean NOT -
MUX(s, a, b) Boolean MUX -
EQUAL(a, b) Equal -
NEQUAL(a, b) Unequal -
GT(a, b) Greater than -
LT(a, b) Lower than -
GET(a, b) Greater or equal -
LET(a, b) lower than or equal -
ARRAYACCESS(a, i) Access the i-th element of a -
INPUT(name) Input with name -
OUTPUT(a, name) Output a with name -
CONST(value) Const value -

PRE(value) Proxy re-encryption yes

57

A. Additional Resources for HElium

A.2. ANTLR4 Grammar of HElium

The following Listings depict the grammar of the HElium DSL written for ANTLR4. It
is divided into a lexer grammar, shown in Listing A.1 and a parser grammar, shown
in Listing A.2.

Listing A.1: ANTLR4 Grammar of the Lexer

lexer grammar hedsllLexer;
/*

Lexer

*/

TVAR : 'var'’;
TAT: '@’';
TPARAMS . "#';
TINPUT : 'input’;
OUTPUT: ’"output ’;
RETURN : ‘return’;
DEFFUNCTION: 'fun’;
lF it

FOR: 'for’;

THEN : ‘then’;
SERVER: ’server’;
ELSE: 'else’;
FROM: 'from’;
PUBLIC: 'plain’;
70 '=>7;
SEMICOLON: '"; ',
COLON: i %

TSIF: '?7';

N
QWU WN —

SR
N —

N
w

N —m =
O WO U

N N
N —

RN
~ W

TWODOTS: "..";

SHIFTL: '<<’;
SHIFTR: '>>"
EQUAL: '=";
CEQ: '==";
CNE: "1=";
CLT:
CLE: '
CGT: '>";
CGE: 7 "
LPAREN: "(';
UNDERSCORE: '_';
RPAREN: ") ';
LBRACE: '{’;
RBRACE: '},
LSBRACE: '[;
]

NN N
~ O U

w NN
O WO
— 1l
Iy

1.
i

w W w

w N =
V VvV N A
I

oW w W w w
0~ Oy U

A DS W
— O O

I
/

RSBRACE: '
42 OR: "%
43 AND: '&&’;
44 PIPE: "] "
45 DOT: ', ',
46 COMMA: ", ",
47 PLUS: "+ 7;
48 MINUS: ' —=7;
49 MUL: "+ 7
50 DIV: '/

52

A.2. ANTLR4 Grammar of HElium

57 POW: '#=*";

52 NOT: 'I'";

53 MODDV: "% ’;

54 [**

55 Types

56 */

57 TYPEAUTO: ‘auto’;

58 TYPEINT: 'int’;

59 TYPEFLOAT: 'float ’;

60

61 COMMENT: '/*' *7 '*/' —=> skip;

62 LINE.COMMENT: '//" ~[\r\n]* -> skip;

63

64 IDENTIFIER: [a-zA-Z][a-zA-Z0-9]%;

65 INTEGERLIT: [0-9]+;

66 FLOATLIT: [0-9]+".'[0-9]+;

67

68 NEWLINE (N2 \n' | \r')+ —> skip;

69 TAB O S S ") —>skip ;

70 WHITESPACE : ' '+ —> skip;

Listing A.2: ANTLR4 Grammar of the Parser

1 parser grammar hedslParser;

2

3 options {

4 tokenVocab = hedslLexer;

5}

6

/ program : stmts EOF;

8

9 stmts : stmt+

10 /* | stmts stmt*/

11 ;

12

13 stmt : TVAR var_decl SEMICOLON #VarDeclStmt

14 | input_def SEMICOLON #InputStmt

15 | ident (LSBRACE index=expr RSBRACE)#* EQUAL value=expr
SEMICOLON# VarAssignment

16 | func_decl #FuncDeclStmt

17 | if_stmt #IfStmt

18 | for_decl #ForExpressionStmt

19 | RETURN expr SEMICOLON #ReturnStmt

20 | OUTPUT ident EQUAL expr (TTO ident)? key_arg?
SEMICOLON? #QutputStmt

2 ;

22

23 block : LBRACE stmts RBRACE

24 | LBRACE RBRACE

25 ;

26

27 var_decl : TVAR? PUBLIC? ident COLON type_ident

28 | TVAR? PUBLIC? ident (COLON type_ident)? EQUAL
expr

29 ;

30

31 input_def : PUBLIC? TINPUT ident COLON type_ident (CLE ident)?

(TPARAMS input_params)? ;

53

32

2

34

35
36

39
40
41
42
43
44
45
46
47
48
49
50
57
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

54

. Additional Resources for HElium

3 input_params : IDENTIFIER EQUAL (IDENTIFIER |numeric)

| input_params COMMA IDENTIFIER EQUAL (
IDENTIFIER | numeric) ;

func_decl : DEFFUNCTION ident LPAREN func_decl_args RPAREN
COLON type_ident block;

for_decl : FOR LPAREN ident (COMMA ident)? COLON expr RPAREN
block;

func_decl_args : /*blank=*/
| var_decl
| func_decl_args COMMA var_decl

ident : IDENTIFIER

type_ident: TYPEINT CLT INTEGERLIT CGT type_args* key_arg?
| TYPEAUTO type_args* key_arg?
| TYPEFLOAT CLT INTEGERLIT CGT type_args* key_arg? ;

key_arg: TAT IDENTIFIER;
type_args: LSBRACE INTEGERLIT RSBRACE ;

numeric : INTEGERLIT
| FLOATLIT

!

expr : LPAREN expr RPAREN # SubExpression
| ident LPAREN call_args RPAREN # FunctionCall
| ident # VarUsage
| LSBRACE expr TWODOTS expr RSBRACE # RangeExpression
| ident (LSBRACE expr RSBRACE)+ # ArrayAcces
| ident DOT ident LPAREN call_args RPAREN # MethodCall
/* Literals */
| LSBRACE call_args? RSBRACE # Arrayliteral
| numeric # NumericlLiteral
| NOT expr # NotExpression
| expr DIV expr # DivExpression
| expr POW expr # PowerExpression
| expr MUL expr # MultExpression
| expr PLUS expr # PlusExpression
| expr MINUS expr # MinusExpression
| expr MODDIV expr # ModDivExpression
| expr AND expr # AndExpression
| expr OR expr # OrExpression
| expr comparison expr # ComparisonExpression
| expr TSIF expr COLON expr # IfExpression
| input_def # InputExpression

if_stmt : IF LPAREN expr RPAREN block ELSE block;

call_args : /*blank*/
| expr

A.2. ANTLR4 Grammar of HElium

87 | call_args COMMA expr

88 ;

89

90 comparison : CEQ | CNE | CLT | CLE | CGT | CGE;

55

B. Measurement Results of the
Evaluation

Table B.1.; Evaluation Results in's

Sets Keys Compile Time Evaluation Time 10 Time Number of Nodes

4 0 0.005 0.031 0.214 20.000

4 1 0.006 0.043 0.327 28.000

4 2 0.006 0.037 0.252 24.000

4 4 0.006 0.034 0.215 22.000

4 5 0.006 0.034 0.215 22.000

10 0 0.006 0.078 0.381 50.000
10 1 0.006 0.108 0.716 70.000
10 2 0.006 0.092 0.531 60.000
10 5 0.006 0.084 0.419 54.000
10 10 0.006 0.081 0.382 52.000
250 0 0.053 1.935 7.053 1250.000
250 1 0.062 2834 16317 1750.000
250 2 0.059 2.350 11.660 1500.000
250 5 0.057 2115 8.876 1350.000
250 250 0.056 1.946 7.057 1252.000
500 0 0.168 3.865 14.007 2500.000
500 1 0.197 5668 32577 3500.000
500 2 0.187 4753 23.249 3000.000
500 5 0.179 4278 17.701 2700.000
500 500 0.177 3.877 14.008 2502.000
750 0 0.354 5875 20.963 3750.000
750 1 0.412 8.479 48.853 5250.000
750 2 0.395 7.220 34.857 4500.000
750 5 0.374 6.433 26473 4050.000
750 750 0.364 5862 20958 3752.000
1000 0 0.606 7.782 27.904 5000.000
1000 1 0.698 11.388 65.008 7000.000
1000 2 0.668 9.791 46.455 6000.000
1000 5 0.641 8.672 35278 5400.000
1000 1000 0.622 7.874 27.904 5002.000

56

Table B.2.: Evaluation Results: Compiler-Stage Runtimes in ys

Type- Key- PRE- Metrics-
Keys Frontend Deduction Selection Insert pass

0 1454.7 36.0 20.5 7.3 21.1
1 1659.4 35.1 20.9 16.9 29.4
2 1665.5 34.9 22.9 13.4 259
4 1662.2 35.7 21.2 12.1 22.6
5 1812.5 33.2 22.4 12.1 22.2
0 1699.6 7.7 58.8 17.2 59.5
1 1976.1 72.5 59.7 39.7 83.0
2 1991.9 70.3 60.5 31.1 69.7
5 1983.6 70.0 60.5 23.8 64.0
10 19733 72.7 60.0 22.0 62.1
0 10406.0 11760.0 117733 427.4 11963.1
1 134403 11729.8 11752.7 939.0 16697.0
2 138123 11790.2 11794.8 695.3 14474.0
5 13606.2 11650.5 11687.5 543.1 12895.0
250 134747 11701.1 11709.5 431.5 11924.9
0 19956.0 46065.4 46259.7 957.9 46601.2

1 25956.1 46392.8 465455 2045.8 66204.1
2 265756 46584.4 46690.5 1511.2 56891.9

5 26376.6 45954 4 46177.2 1280.7 50515.1
500 25951.9 46885.2 47169.3 967.8 47503.4
0 297977 103834.0 104299.1 1650.3 104884.7
1 389052 104112.9 1049139 33442 1483228

2 39926.5 105702.8 1062755 25624 128874.1
5 38740.9 104033.0 104619.4 2020.2 113880.7
750 38835.1 1037381 104519.0 1693.4 104946.6
0 39709.7 182995.1 183850.1 2486.8 184692.8

1 512869 183344.8 1840103 4537.6 260199.1
2 532846 185355.5 186512.0 3837.6 2246034
5 51517.0 1849413 1861934 30043 2020834
1000 51739.8 184037.3 185076.9 25443 1857515

B. Measurement Results of the Evaluation

Table B.3.: Evaluation Results: Key-Generation and Encryption Runtimes in s

Sets Keys Key-Generation Runtime Encryption Runtime

4 0 0.110 0.191

4 1 0.280 0.190

4 2 0.195 0.190

4 4 0.156 0.192

4 5 0.152 0.190

10 0 0.109 0.431
10 1 0.538 0.431
10 2 0.320 0.432
10 5 0.193 0.431
10 10 0.153 0.435
250 0 0.110 10.127
250 1 10.656 10111
250 2 5.391 10.077
250 5 2.210 10.092
250 250 0.153 10.113
500 0 0.110 20.110
500 1 21.309 20.087
500 2 10.807 20.110
500 5 4.356 20.165
500 500 0.154 20.087
750 0 0.111 30.261
750 1 31.891 30.203
750 2 15.924 30.200
750 5 6.514 30.204
/750 750 0.153 30.337
1000 0 0.111 40.279
1000 1 43.055 40.479
1000 2 22121 40.257
1000 5 8.530 40.167
1000 1000 0.153 40.368

58

Table B.4.: Evaluation Results: Results of the Execution Runtime in s

Key- Input- . Storing Number

Sets Keys Loading Loading Fvaluation Ooutputs of PRE
4 0 0.102 0.111 0.031 0.001 0.000
4 1 0.215 0.111 0.043 0.001 8.000
4 2 0.140 0.111 0.037 0.001 4.000
4 4 0.103 0.111 0.034 0.001 2.000
4 5 0.103 0.111 0.034 0.001 2.000
10 0 0.102 0.278 0.078 0.001 0.000
10 1 0.437 0.278 0.108 0.001 20.000
10 2 0.252 0.278 0.092 0.001 10.000
10 5 0.140 0.278 0.084 0.001 4.000
10 10 0.103 0.278 0.081 0.001 2.000
250 0 0.102 6.949 1.935 0.001 0.000
250 1 9.368 6.948 2.834 0.001 500.000
250 2 4.712 6.947 2.350 0.001 250.000
250 5 1.927 6.948 2115 0.001 100.000
250 250 0.103 6.953 1.946 0.001 2.000
500 0 0.102 13.904 3.865 0.001 0.000
500 1 18.678 13.898 5.668 0.001 1000.000
500 2 9.357 13.892 4.753 0.001 500.000
500 5 3.795 13.905 4.278 0.001 200.000
500 500 0.103 13.904 3.877 0.001 2.000
750 0 0.103 20.859 5.875 0.001 0.000
750 1 28.004 20.848 8.479 0.001 1500.000
750 2 14.011 20.839 7.220 0.001 750.000
750 5 5.636 20.836 6.433 0.001 300.000
750 750 0.103 20.853 5.862 0.001 2.000
1000 0 0.103 27.800 7.782 0.001 0.000
1000 1 37.215 27.792 11.388 0.001 2000.000
1000 2 18.671 27.784 9.791 0.001 1000.000
1000 5 7.491 27.786 8.672 0.001 400.000
1000 1000 0.104 27.800 7.874 0.001 2.000

59

	Title page
	Contents
	List of Figures
	List of Listings
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Objectives
	Structure

	Preliminaries
	Fully Homomorphic Encryption
	Encryption Schemes and Implementations
	Computation Scenario
	The BFV Scheme

	Proxy Re-Encryption
	HElium Compiler
	HElium Domain-Specific Language
	Intermediate Representation
	Type System
	Backends

	Related Work
	Libraries for Fully Homomorphic Encryption
	Compilers for Fully Homomorphic Encryption

	Scenario, Use Cases and Requirements
	Scenario
	Key Management for Programs using Proxy-Re-Encryption
	Requirements for Compilers for Proxy Re-Encryption

	Concept of Proxy Re-Encryption Compiler Support
	Domain-Specific-Language Support for Proxy-Re-Encryption
	Multi-Key Type System
	Optimization of Proxy Re-Encryption Programs

	Implementation of Proxy Re-Encryption in HElium
	Key-Label Arguments in HElium's DSL
	Intermediate-Representation Extension for Proxy Re-Encryption
	Efficient Insertion of Proxy Re-Encryption Operations
	Implementation of a Backend with Proxy-Re-Encryption Support

	Evaluation of the Proxy Re-Encryption Implementation
	Use Case: Aggregation of Patient Data for Cancer Research
	Evaluation of the HElium Compiler
	The Effect of Proxy Re-Encryption on Execution Runtimes
	The Efficiency of the Introduction of Proxy Re-Encryption Operations
	Scalability of the Compiler

	Summary

	Optimization for Homomorphic Encryption and Proxy Re-Encryption
	Parallelism
	Concurrent Execution
	Data Parallelism

	Client-Aided Computation
	Pre-Computation by the Client
	Post-Computations

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Thesis Statement

	Additional Resources for HElium
	Supported Operations of HEliums Intermediate Representation
	ANTLR4 Grammar of HElium

	Measurement Results of the Evaluation

