
Technische Universität Dresden

Chair for Compiler Construction

Bachelor’s Thesis

Lingua Franca in Robotics

Submitted by

Benedict Mehnert

First Corrector:

Prof. Jeronimo Castrillon

Second Corrector:

Prof. Roberto Calandra

[July, 2024]

Contents

1 Introduction 2

2 Background 3
2.1 Lingua Franca . 3
2.2 Robot Control . 4
2.3 XArm 7 . 5
2.4 Lingua Franca Control . 6
2.5 ROS . 7

2.5.1 Resource Manager . 8
2.5.2 Controller Manager . 8
2.5.3 Controller . 8
2.5.4 Hardware Components . 8
2.5.5 Hardware Description in URDF 9

3 Design and Implementation 10
3.1 Interface to the Robot . 10
3.2 Motion Planning Network . 11
3.3 Trajectory Planning . 13
3.4 Velocity Control . 16
3.5 Perception . 19
3.6 Robot Control Design in ROS2 . 22

3.6.1 Creating the URDF file . 22
3.6.2 Construction . 22
3.6.3 Hardware Interface . 22
3.6.4 Writing a Controller . 23
3.6.5 Controller Implementation 24
3.6.6 Further Network Nodes . 24
3.6.7 Summary . 25

4 Evaluation 26
4.1 Debugging . 28
4.2 Comparison . 32

4.2.1 Real-time Performance and Reliability 33
4.2.2 Scalability and Node Management 34

5 Conclusion and Outlook 35

1

1 Introduction

The field of robotics is advancing rapidly. Robots require increasingly adaptive
and safe software frameworks to handle complex tasks in real-time environments.
One such framework is Lingua Franca (LF), a coordination language designed for
implementing real-time and cyber-physical systems. Lingua Franca combines de-
terministic execution, robust concurrency support and scalability. In this thesis we
will explore whether Lingua Franca is suitable in robotic applications where pre-
cision, reliability and efficiency are of importance. To highlight Lingua Franca’s
advantages, we will integrate a camera with a robotic arm. The demo will feature
the arm tracking an object seen by the camera, demonstrating LF’s real-time per-
formance. The Lingua Franca network will dynamically process image, robot, and
state data to generate control output for the robot. In the end, we will compare
Lingua Franca to ROS 2 (Robot Operating System 2) in the context of robotic
applications.

2

2 Background

2.1 Lingua Franca

While nondeterminism can be useful, the majority of computational tasks widely
profits from repeatable behavior, especially when it comes to debugging, testing
and understanding the code. Lingua Franca preserves determinism by default and
only allows non-determinism if explicitly introduced by the developer. A logical
timeline is used to order events and ensure deterministic execution. Lingua Franca
is a polyglot coordination language. It is designed to coordinate the execution of
mainstream target programming languages like C++, C or Rust. It equips those
target languages with a deterministic concurrency model. The LF compiler synthe-
sizes plain target program code. This code then is compiled using standard tool
chains. Since Lingua Franca coordinates and declares explicitly data dependencies
between reactors, independent reactions can be executed in parallel[13].

Lingua franca specifies the interactions between components called reactors. A
reactor can be described as a deterministic actor with a discrete-event execution
semantics. It has explicitly declared ports and connections. Reactors are compa-
rable to classical object oriented classes, encapsulating state and methods. They
offer a form of inheritance and are parametrized at instantiation. But contrary to
the classical object oriented paradigms, methods cannot be invoked by other reac-
tors, they only serve to manage code inside a reactor. Triggering functionality of
different reactors is only possible by emitting events. A reactor is comparable to
a software component that sends messages, with these messages typically carrying
values that are then passed to the reaction. Lingua Franca programs usually consist
of a reactor network. The LF diagram generation tool visualize the network which
helps developers.

In Lingua Franca, all computation is performed in reactive code segments called
reactions. Reactions are implemented in the target language. They must explicitly
declare their triggers, dependencies, and potential effects. The reaction may access
the reactors state or schedule events via logical actions or output ports addressing
subsequent reactions in the same reactor or in different reactors. A reaction is seen
as logically instantaneous to its triggering event. If two reactions of the same reactor
triggered at the same logical time are accessing the reactor state, the reactions are
invoked after each other. Interaction between reactors in Lingua Franca occur
through event emissions via ports. Each event that is invoked bears the same
timestamp as its triggering event and be associated a specific trigger object. In
addition, events can carry objects that can be passed to reactions. As reactions
invoke downstream reactions, each reaction can be assigned a level. Dependencies
are determined by the LF dependency analysis. All reactions within the same level
can be executed safely in parallel. LF threads, called workers, are managed by the
runtime environment, which maps reactions to workers. The number of workers

3

is predefined by the developer. The scheduler implementation schedules the next
level of reactions when the current level of execution is finished. This introduces
a key feature and strength of Lingua Franca, it promotes deterministic behavior
while still allowing concurrency.

The reactor model introduced so far is purely instantaneous. But a key feature of the
model is its semantic notion of time, differentiating between two variants: the logical
and the physical time. Physical time should be regarded as the ’real’ time, while
the logical time is a system-internal concept introduced to reason deterministically
about the execution order of events. The logical time ’chases’ the physical time.
The runtime only processes the events associated with a certain tag once the current
physical time exceeds the time value of the tag. This allows for setting deadlines.
The interaction with the physical time is however also possible under explicitly
defined semantics[13].

The event-driven architecture enables responsive behavior to sensor inputs, com-
mands or environmental changes. Hardware interface reactors can encapsulate in-
terfaces to sensors and actuators, transmitting joint data and sensor data into an
LF network. Control reactors react to input and generate control output. In the
context of robot control, Lingua Franca offers advantages for managing complex
robotic systems.

2.2 Robot Control

Effective robot control typically includes several key components. Data gathering,
detecting objects and targets is achieved by sensors. Based on the sensed informa-
tion, robots make decisions, this includes path planning and responding to changes.
Once path planning is finished, robots execute the movement or task using actua-
tors such as motors. With continuous feedback, robots adjust their actions based
on real-time data.

Figure 1: Classical ROS2 robot control flow[7]

Motion planning is a computational problem that involves determining a sequence
of valid configurations to guide the robot to its target location[24]. Robot kinematics
examines the relationship between the position, velocity, and acceleration of each
link in a robotic system[26]. The process of computing joint parameters for a
specified position of the end-effector is known as inverse kinematics.

The robotic demo built within this thesis integrates a camera, the XArm 7 robotic
arm and Lingua Franca into a real-time robot application. The robotic arm will

4

attempt to trace an object seen by the camera. A typical robot control flow for
this setup is shown in Figure 1. The Camera processes image data to identify and
localize a target, this target is sent to the ’Motion Planning’ component. Given the
position of the target object and the current joint configuration, the target joint
position of the end-effector of the robotic arm can be calculated via inverse kine-
matics. With this target joint position and the current position of the robotic arm,
a complete joint trajectory mapping joint position output to time is transmitted to
the controller. The ’Controller’, shown in the Figure 1, directly regulates the joint
positions usually with PID controllers as it follows the given trajectory.

2.3 XArm 7

Figure 2: The XArm7, 7 degrees of freedom, partially made of carbon, load capacity
of 3.5 kg and repeatability of ±0.1 mm

The robot used within this thesis is a robotic arm. The XArm 7 is produced by
UFACTORY[21]. It is capable of performing a variety of tasks, from holding a
camera to precisely packaging an object. The arm has seven joints promoting seven
degrees of freedom. The system consists of the robotic arm mounted on a table
and a control box. The control box serves as the interface between the robot and a
computer and can be connected to the computer via a LAN cable. An emergency
stop button is installed on the control, instantly stopping all activities of the robot
in case of an emergency. The last joint is known as the tool side. It can be used to

5

connect the end-effector. UFACTORY provides a vacuum gripper and a classical
gripper, but custom end-effectors can also be mounted. The robot features collision
detection. If the torque deviation of a joint exceeds the normal range during arm
movement, the arm will automatically stop to prevent damage. Besides sending
commands to the robot via an SDK, the XArm can also be controlled with Ufactory
Studio, a graphical user application for user without programming background. It
incorporates various modes such as ’Live Control’, which allows users to adjust the
posture of the robot arm. Track recording is also featured, as well as ’Blockly’,
enabling users to program the robot by simply dragging and dropping code blocks.

The robot implements several sorts of motion modes. The servo motion mode
will be the mode through which the robot is controlled using Lingua Franca. This
thesis focuses exclusively on positional control. In this mode, the robot reaches the
specified Cartesian position with maximum velocity and acceleration. Since velocity
and acceleration are at their peak, precise robot control is mandatory to prevent
overloading the robot joints with too much force. Commands are not buffered and
only the last received target point is executed. In this mode, the robot ought to
be controlled using motion planning. The maximum receiving frequency of the
control box is 250 Hz. Rather than transmitting only the target position, the
robot is provided with intermediate positions along the path to the target at a
high frequency. With each cycle, the robot makes a small step towards the target.
Further modes are joint velocity control, where angular velocities are provided to
the robot. Or cartesian velocity control mode, instead of specifying end-effector
positions, the end-effector velocity vector is provided to the robot[21].

2.4 Lingua Franca Control

Figure 3: The Lingua Franca control approach

The control approach promoted within this thesis will differ from the control flow
introduced in Section 2.2. Instead of transmitting timestamped trajectories, the
Lingua Franca networks shown in Figure 3 will produce robot end-effector config-
urations, consisting of the position in cartesian space and the end-effector’s roll,
pitch, and yaw, periodically at a high frequency. Every cycle, the network will
fetch state data from the robot and the camera to produce the control output. To
translate the end-effector position to joint motions, the network relies on the XArm
7 control box to perform the inverse kinematics and joint position control.

6

In order to track the object, the color and depth frame provided by the camera are
fed into the Lingua Franca network. The ’Camera Processing Network’ processes
and interpretes the depth and color images and transmits the target to the ’Motion
Planning Network’.

The ’Motion Planning Network’ is described in detail in Section 3.2 and is the main
control component designed within this thesis. It consists of many Lingua Franca
reactors. As highlighted in Figure 3, this network takes camera data and positional
joint data as input and determines the next cartesian position of the end-effector
and its roll, pitch and yaw in real-time.

2.5 ROS

A very established framework in robotics is ROS2 (Robot Operating System 2). It
is an open-source meta-operating system designed for robots. It offers a framework
for developing, managing, and deploying robotic applications. ROS 2 provides sup-
port for a wide range of hardware platforms and software architectures. At its core,
it simplifies robotics development through abstracting low-level device interfaces
providing essential libraries and tools for implementing commonly-used functional-
ities such as motion control, perception and navigation. Message passing facilitates
the communication between modular components (nodes). This allows the develop-
ment and maintaining of modular and reusable software components. Tools allow
runtime parameter configuration or visualization of network and robot.

Nodes are a fundamental unit of computation in ROS2. Each node serves a specific
purpose, ranging from data publication and subscription to providing services and
managing system parameters and lifecycles. Publisher Nodes can publish messages
to a specific topic. This could include publishing camera sensor data or joint sensor
data to a topic for other nodes to consume. A Subscriber node could receive and
process camera images from to perform object detection. Service server nodes
provide services that can be called by other nodes to execute specific tasks like
calculating the inverse kinematics. Service client nodes can call services provided
by other nodes to request a specific task. Parameter nodes manage and share
configuration parameters across the ROS 2 system such as sensor calibration values.
Controller nodes implement control algorithms to manage actuators based on sensor
data. For example, a node computing motor commands based on sensor feedback
to control a robotic arm’s joint position[15] is a Controller node. Often nodes are a
complex combination of some or all different node types.

Nodes mainly communicate through a publisher-subscriber model. Communication
means are topics, services, actions and parameters. Services allow nodes to send
requests and receive responses. Actions are similar to services, but are designed for
long-running tasks that may provide periodic feedback and have a goal completion
status. Parameters allow storing and retrieving configurations settings dynamically
during runtime. This forms a distributed system for controlling robotic system.

7

2.5.1 Resource Manager

The Resource Manager plays a critical role in managing the allocation and utiliza-
tion of hardware resources within a robotic system. It abstracts physical hardware
and its drivers for the ROS 2 control framework. It loads the components, manages
their lifecycles, states and command interfaces. This allows reuse of implemented
hardware components. It oversees the allocation and utilization of hardware re-
sources such as CPU cores, memory, but also sensors and actuators. This also
includes that critical processes receive adequate resources, e.g. ensuring that con-
trol loops and sensor data processing receives sufficient CPU time, in real-time and
safety critical applications.

2.5.2 Controller Manager

The Controller Manager (CM) connects the controllers and hardware abstraction
sides of the ROS 2 control framework. It translates between high-level control com-
mands and low-level hardware-specific instructions. The CM manages controllers
(e.g. loading, activating, deactivating, unloading) and their required interfaces. It
gives controllers access to hardware via the Resource Manager when activated. Or it
reports an error if there is an access conflict and manages the loading and unloading
of controller plugins. When the system parameters change over time, the controller
manager allows passing parameters and configuration settings to controllers allow-
ing dynamic adjustment.

2.5.3 Controller

Controllers are software components responsible for managing and executing control
algorithms that regulate the behavior of robotic actuators. They play a crucial role
in translating high-level commands or desired states into low-level signals that drive
actuators such as motors or joints. Position controllers ensure actuators achieve
and maintain specific positions, often using PID algorithms. Other types include
velocity controllers and effort/torque controllers. Trajectory controllers execute
complex motion trajectories by interpolating between key points. Controllers are
typically implemented as ROS 2 nodes or components, subscribing to sensor data
topics and computing control commands based on desired goals or trajectories.

2.5.4 Hardware Components

The hardware components realize communication to physical hardware and repre-
sent its abstraction in the framework. There are three basic types of components:
The ’Actuator’, a simple robotic hardware component like motors or valves with 1
DOF. The ’Sensor’, related to a joint (such as an encoder) or a link (like a force-
torque sensor) and only capable of reading data. And the ’System’ component,
which stands out from the Actuator component by using complex transmissions
through a single logical communication channel[4].

8

2.5.5 Hardware Description in URDF

The ROS2 framework uses URDF(Unified Robot Description Format, XML) files
to describe its components, i.e. the physical configuration of the hardware setup.
The URDF files are essential for simulation and visualization, defining the dynamic
and kinematic properties of the robot. Controllers use this information to com-
pute necessary actions to achieve desired states of trajectories. The URDF files
also include collision geometry. Important components of URDF are links, repre-
senting rigid bodies with specific shapes, sizes and physical properties. There are
also joints (revolute, prismatic, fixed, etc.), specifying the type of motion allowed
between links describing the axis of rotation of translation and any limits on the
motion. Transmissions connect actuators to joints and specify how motor com-
mands translate into joint movements. This allows for integrating camera data into
the system[9][4].

We have established the groundwork of ROS2. Before, we introduced the essential
aspects Lingua Franca. We can proceed to the practical implementation. The next
part of this thesis illustrates the development of a robotic application in Lingua
Franca, showcasing the integration of the XArm 7 robotic arm and real-time camera
data to achieve precise control and object interaction.

9

3 Design and Implementation

3.1 Interface to the Robot

Figure 4: XArm Interface reactor, the reaction triggered by the timer fetches data
from the robot, whereas reaction 3 sets the cartesian position

To interact with the robot, UFACTORY provides an SDK for C++. The SDK can
be accessed within a Lingua Franca reactor. The reactor that will communicate
with the robot is the ’XArm Interface’ reactor shown in Figure 4 and further de-
tailed in Figure 5. Its purpose is to send commands to the robot and to receive
positional data from it. In addition to that, it is connected to the Motion Planning
Network introduced in 2.4. It sends positional data to the network and receives
control output which the reactor forwards to the robot. It contains three reactions,
represented by the gray chevrons in Figure 4. Also shown in the reactor diagram
are input and output diagrams and the timer specifying the period at which the
Lingua Franca network fetches data.

The data transfer within the Motion Planning Network highlighted in Figure 3
consists in parts of objects of the class WorlData encapsulating positional and joint
data from the robot. As of now, the network only utilizes positional and rotational
data from the end-effector, without examining the remaining factors such as joint
angles, torques, and velocities stored in WorlData objects.

The startup reaction, which is invoked once at the beginning of the program, ini-
tializes the state variable XArmAPI which will serve as the interface and allows to
communicate with the control box. The startup function also prepares the robot
for movement, as illustrated in lines 12 and 13, by configuring the motion mode to
servo motion control and setting the state to motion .

The second reaction to the timer fetches positional and joint data. It initializes
the procedure of the determination of the next position given the current data by
sending a WorldData object to the Motion Planning network via the output port as
shown in line 24 of Figure 5.

10

1 reactor RoboXArm7 (timer_start_moving: time = 1s, // .. further parameters ...// {

2 input robo_next_position_checked: Position;

3 output interface_world_data: WorldData;

4 timer t(timer_start_moving , timer_initiate_movin_period);

5 state arm: {= XArmAPI *=};

6
7 reaction(startup) {=

8 // startup reaction code

9
10 this ->arm = new XArmAPI(host);

11 // .. //

12 arm ->set_mode (1); // setting servo -joint control mode

13 arm ->set_state (0); // setting moving state

14 =}

15
16 reaction(t) -> interface_world_data {=

17 // data fetch reaction code

18
19 fp32 pose [6] = {0}; fp32 angles [7] = {0}; fp32 velocities [7] = {0}; fp32 effort [7] = {0};

20 arm ->get_position(pose);

21 arm ->get_joint_states(angles , velocities , effort);

22 WorldData data = WorldData data{

23 get_elapsed_physical_time (),

24 std::vector <double >(std::begin(pose), std::end(pose)),

25 // .. asngles , velocities and effort is passed accordingly //

26 };

27 interface_world_data.set(data);

28 =}

29
30
31 reaction(robo_next_position_checked) {=

32 // set position reaction code

33
34 Position position_next_position = *robo_next_position_checked.get();

35
36 fp32 arr_next_position [6] = {

37 position_next_position.X_,

38 position_next_position.Y_,

39 position_next_position.Z_,

40 default_roll ,

41 default_pitch ,

42 default_yaw };

43
44 int error_code = arm ->set_servo_cartesian(arr_next_position);

45
46 if (error_code != 0) {

47 std::cout << "Error occured while calling set_servo_cartesian" << std::endl;

48 }

49 =}

Figure 5: The XArm Interface reactor code

The third reaction receives the control output. With the positional control com-
mands provided, this reaction calls set position() on the XArmAPI. This reaction
is logically instantaneous to reaction 2, since that there are no delays in the reac-
tor network. For every data fetch reaction, a corresponding set position reaction
follows. Fetching data at a high frequency here allows precise control and smooth
movement.

3.2 Motion Planning Network

The Motion Planning Network performs real-time motion planning. It produces the
intermediate positions along the path to the target taking the current positional
data of the robot into consideration. It also traces the taken path and applies
sanity checks at runtime. Each time positional data is fetched and transmitted to
the network, it responds through the interface reactor displayed in Figure 6. The

11

XArm Interface

Interface

Sanity CheckerPlanner

Velocity

Instructor

LPH

Decoder

CSV WorldData

Moderator

current position

world Data

last position

target

next position

v

CSV Data Traffic

target

from
camera

Figure 6: Lingua franca Motion Planning reactor network

response is the next intermediate position the robot is instructed to move to within
this cycle and is transmitted via the XArm Interface reactor to the robot.

Data exchange within the Motion Planning Network mainly involves objects from
the Position class, which serves as a basic container for Cartesian coordinates (x, y,
and z) representing positions and the roll, pitch, and yaw of the end-effector. Define
p⃗c[n] as the current position of the robot’s end-effector at the point n in logical time.
Let p⃗la[n] = p⃗c[n−1] denote the current position object from the previous iteration,
represented as ’last position’ in Figure 6. Furthermore, p⃗t[n] refers to the overall
target target position, symbolized as ’target position’ in the diagram. Let p⃗n[n]
refer the next position in cartesian space on the path to the overall target position
the robot will take on within the next cycle.

The Motion Planning Network consists of many reactors. The XArm Interface
reactor just introduced is shown at the right hand side of Figure 6. Once the data
is fetched and stored in an WorlData object, it is sent to the ’Interface’ reactor.
This interface does not implement any logic and as the name implies: It is the
interface to the reactor network and allows connecting the network to a test reactor

12

or a simulation1. The ’CSV WorldData’ reactor serves as data tracing network
component. In the reactor the data is written to a .csv file for later analysis.
The ’Moderator’ reactor validates robot data output. As not all data within the
WorldData object is relevant for the path planning cluster, the ’Decoder’ specifically

retrieves the Position object p⃗c[n] and sends p⃗c[n] to several different reactors. The
’Last Position Holder’ (LPH) contains p⃗la[n] as a state variable. When its input port
is set with p⃗c[n], its send p⃗la[n] to the ’Planner’. After that, the LPH overwrites
its state variable p⃗la[n] with the recent p⃗c[n]. The ’Instructor’ reactor stores the
current overall target position. In my application, the target is determined through
the interpretation of camera image data, as described in Section 3.5. Once the
input port of the instructor is set with p⃗c[n], it transmits the target position to the
Planner. The ’Velocity’ reactor coordinates the velocity of the robot, a proportional
velocity controller here turned out to be working well in our use case, but one
could consider applying more sophisticated controllers. The Planner takes the p⃗c[n],
p⃗la[n], p⃗t[n] and the designated velocity v[n] as input and calculates p⃗n[n]. The
’Sanity Checker’ receives the p⃗c[n] and p⃗n[n] and verifies p⃗n[n]. It checks whether
the planned movement adheres to the safety bounds. If it detects malfunctioning
behavior like too fast deceleration, it will initiate a emergency stop. The robot
will then execute a maneuver of deceleration just following its current direction
and deceleration. In the default case of no emergency stop, the sanity checker just
passes the next position to the interface which forwards it to the XArm control box.

The Planner plays a central role, as it performs the calculation of the control output.
With the input of p⃗c, p⃗la, p⃗t and the current velocity v[n], it determines the Position

object p⃗n[n] referring to the position the robot will take on within the next control
cycle.

3.3 Trajectory Planning

Figure 7: Planner

Our main goal is to determine a smooth path.
Smooth means that only little acceleration is applied
or from one iteration to another, the difference of the
velocity vectors is only marginal. The force apply-
ing to the robot increases with the acceleration, the
robot performs. Let amax[m/s2] denote the maxi-
mum acceleration.

Let r⃗(n) denote the position vector dependent on
time which shows the robots head’s location in space
at a given point n in logical time. The origin of
the coordinate system is where the robot is securely
mounted to the table. Let T denote the constant period at which the XArm Inter-
face reactor retrieves positional data from the robot. The velocity in the discrete-

1Alongside my work on the robot, a simulation of the robot was implemented, compare [20].

13

p⃗la[n]

p⃗c[n]

p⃗lo[n]

p⃗t[n]

p⃗n[n]

v⃗[n] ∗ T

v⃗[n+ 1] ∗ T
v⃗′[n+ 1] ∗ T

d⃗t[n]

o⃗[n]

v⃗[n]

v⃗[n+ 1]

o⃗[n+ 1]
o⃗[n+ 1]

(1) (2)

Figure 8: (1): Calculation of the next position on the path to the target, (2): Set
of possible next positions

time domain is defined as the difference quotient: v⃗[n] = r⃗[n]−r⃗[n−1]
T

at a discrete

time step n, whereas acceleration is expressed as a⃗[n] = v⃗[n]−v⃗[n−1]
T

.

The robots state of motion can be represented by T and the tuple of the position
objects p⃗la[n], p⃗c[n], p⃗t[n] represented in Figure 8. With the state defined, the plan-
ner is able to determine p⃗n[n]. The calculation of p⃗n[n] will be discussed in the
following. It is assumed that while traveling between p⃗la and p⃗c the speed of the
robots head remains constant. The arithmetic distance between those two point in
the experiments with the robot was set to < 1mm.

The planner has three input ports, referring to the three position objects just men-
tioned. Let v⃗[n] = p⃗c[n]−p⃗la[n]

T
be the current velocity vector. The robot might change

speed and direction within the next cycle, therefore v⃗[n + 1] = p⃗n[n]−p⃗c[n]
T

might be
different to v⃗[n].

When the robot changes speed or direction, the acceleration vector follows as:
a⃗[n + 1] = v⃗[n+1]−v⃗[n]

T
. The force applying to the joints robot is proportional to

the arithmetic length of this acceleration vector. Therefore we must ensure that
the new instruction sent to the robot is according to our sanity bounds and is not
overloading the robot with too much acceleration.

14

The objective is to determine o⃗[n]. If so, we can add o⃗[n] to v⃗′[n+1]∗T to determine
v⃗[n+1] ∗ T compare (1) of Figure 8. Subsequently, v⃗[n+1] ∗ T is added to p⃗c[n] to
get p⃗n[n] which is the control output.

Let p⃗lo[n] be the position the robot would move to if we were to not apply any

direction or velocity changes, p⃗lo[n] = p⃗c[n] + v⃗[n] ∗ T . Let d⃗t[n] = p⃗t[n] - p⃗lo[n]
be the difference vector between the overall target position p⃗t[n] and p⃗lo[n]. By

normalizing d⃗t[n], we get d̂t[n] having the length 1[m]. Furthermore we define
a′ = amax ∗ T 2[1/m]. Note that a′ does not have a unit. We then choose o⃗[n] as
o⃗[n] = d̂t[n] ∗ a′. Here a′ serves as a scaling constant for the offset vector o⃗[n].
The scaling constant a′ contains a larger value, when T is smaller and vice versa.
Intuitively speaking, the higher the frequency, the shorter the offset vector should
be to avoid sudden velocity changing. We choose the next position p⃗n[n] as follows:

p⃗n[n] = p⃗c[n] + v⃗′[n+ 1] ∗ T + o⃗[n](1)

= p⃗c[n] + (p⃗lo[n]− p⃗c[n]) + o⃗[n](2)

= p⃗lo[n] + o⃗[n](3)

By choosing p⃗n[n] like this, we ensure, that |⃗a[n+ 1]| <= al.

v⃗[n+ 1] =
p⃗n[n]− p⃗c[n]

T
=

p⃗lo[n] + o⃗[n]− p⃗c[n]

T
(4)

v⃗[n] =
p⃗lo[n]− p⃗c[n]

T
(5)

It should be noted that: p⃗lo[n] = p⃗c[n] + v⃗[n] ∗ T = 2p⃗c[n] − p⃗la[n] and therefore
follows:

a⃗[n+ 1] =
v⃗[n+ 1]− v⃗[n]

T
(6)

=
(p⃗lo[n]− p⃗c[n]) + a′ ∗ d̂t[n]− p⃗c[n] + p⃗lo[n]

T 2
(7)

=
(p⃗c[n] + p⃗c[n]− p⃗lo[n]− p⃗c[n]) + a′ ∗ d̂t[n]− p⃗c[n] + p⃗lo[n]

T 2
(8)

=
a′ ∗ d̂t[n]

T 2
(9)

(10)

If follows:

|a
′ ∗ d̂t[n]
T 2

| <= amax(11)

This vector has the length amax per Definition and adheres to the specified con-
straints. In fact all vectors that lie within the indicated sphere in Figure 8 satisfy

15

this condition and could Therefore be chosen as the next intermediate target. Most
often, intermediate targets are selected on the sphere’s edge to maximize range
of motion and quickly approach the goal. However, for deceleration and velocity
control, points inside the sphere might be chosen instead.

As shown in (1) of Figure 8 and discussed earlier, we construct the difference vec-

tor between p⃗lo[n] and p⃗t[n] to determine d⃗t[n], o⃗[n] and subsequently p⃗n[n]. Lets
pretend the end-effector of the robot in Figure 8 missed the target and needs to
turn around. In this scenario, the approach just introduced produces a sharp cor-
rection. Lets now pretend that the robot is near the target and moves directly in
the targets direction. An alternative approach for choosing p⃗n[n] like in Equation 3
could involve constructing the difference vector between p⃗c[n] and p⃗t[n] instead of
p⃗lo[n] and p⃗t[n] to determine o⃗[n]. In the latter scenario, this approach yields better
results as the robot moves to the overall target position. Further improvements of
the control could incorporate elements of both approaches, dynamically choosing
between both.

3.4 Velocity Control

The velocity control sets the velocity of the robot. To set the speed within the next
cycle of motion, we scale the offset vector that is added to p⃗c[n] while still adhering
to the force constraints. This subsequent scaling operation also is performed by the
Planner reactor. When p⃗n[n] is determined as in Equation 3, it always lies in the
edge of the sphere, maximizing direction and speed change. In case of approaching
the target, deceleration has to be applied. In Figure 9 we suppose that we are near
to the target p⃗t[n]. According to equation 3, the next intermediate target sent to
the robot would be p⃗n[n]. But in this scenario we want to reduce the speed. Let
s⃗max[n] = p⃗n[n]− p⃗c[n]. This is the offset vector to p⃗c[n] and can be scaled according
to a minimum and maximum scaling limit as shown in Figure 9. Let vmin[n] be the
lower speed limit and vmax[n] be the upper speed limit for the robots end-effector
within the next cycle of motion. |s⃗min[n]| = |v⃗min[n]|∗T and |s⃗max[n]| = |v⃗max[n]|∗T
are then the minimum and maximum distances traveled within the next cycle. Let
p⃗min[n] denote the position to which the robot arm will move within the next cycle at
minimum speed. Let p⃗max[n] denote the position to which it will move at maximum
speed, both are displayed in Figure 9. In the same figure it is evident that s⃗min[n],
o⃗[n] and v⃗′[n+ 1] ∗ T form a triangle in the cartesian space. The triangle is well
defined as long as |o⃗[n]| < |v⃗′[n + 1] ∗ T |. The objective is to determine |s⃗min[n]|
and to scale s⃗max[n] accordingly.

Let a = |o⃗[n]|, b = |s⃗min[n]| and c = |v⃗′[n + 1] ∗ T |. We can calculate the angle α
= ∠pmin[n]− p⃗c[n]− p⃗lo[n]. With the law of sines we obtain two possible triangles:
The triangle between the points p⃗c[n], p⃗lo[n] and pmin[n], enclosing the angle γ and
on the other hand the triangle between the points p⃗c[n], p⃗lo[n] and pmax[n], enclosing
the angle γ′. The aim is to determine |s⃗min[n]|, so between the two options, the

16

p⃗la[n]

p⃗c[n]

p⃗lo[n]

p⃗n[n]

v⃗[n] ∗ T

v⃗′[n+ 1] ∗ T

pmin[n]

pmax[n]

pt[n]

o⃗[n]

α

β

γ

γ′

s⃗min[n]

s⃗max[n]

Figure 9: Determination of |o⃗min[n]|

correct one is the former where the calculated γ is an obtuse angle. To determine
γ, γ′ is calculated beforehand. It follows:

γ′ = arcsin

(
sin(α) · c

a

)
(12)

γ = π − γ′(13)

β = π − γ − α′(14)

b = |o⃗min| =
a · sin(β)
sin(α)

(15)

The entire procedure of calculating |s⃗min| is presented in Algorithm 1. If |s⃗max| >

17

mv, with mv being the maximum distance the robot head is able to move forward
within each cycle at maximum speed, then s⃗max is trimmed to prevent the robot
from achieving to much speed. As shown in 7, the Planner receives as input a
target speed from the Velocity reactor. With the scaling interval now provided, the
Planner sets the speed of the robot within the next cycle.

Algorithm 1 Calculation of |s⃗min|
if |v⃗′[n+ 1] ∗ T | < |o⃗n| then

Return 0
else if linearDependent(v⃗′[n+ 1] ∗ T, o⃗n) then

Return |v⃗′[n+ 1]| − |o⃗n|
else

let a← |o⃗[n]|
let α← ∠pmin − p⃗c[n]− nl[n]
let c← |v⃗′[n+ 1] ∗ T |
let γ ← π − arcsin

(
sin(α)·c

a

)
let β ← π − γ − α
let b← b = |s⃗min| = a·sin(β)

sin(α)

end if
Return b

Besides the positional end-effector data, the roll, pitch, and yaw has to be smoothly
adjusted as the current and target position orientations might differ. For our use
case proportional control was used, incrementally adjusting the current configura-
tion towards the target orientation.

In summary, the described trajectory planning and velocity control methods enable
the XArm 7 robotic arm to move smoothly and precisely with random position input
and varying velocities. By calculating the next intermediate end-effector position
and ensuring it adheres to acceleration constraints, the robot avoids sudden changes
in velocity that could lead to instability or excessive forces on its components. Ad-
ditionally, the velocity control mechanism allows for appropriate speed adjustments.
It ensures that the robot can decelerate when approaching the target to avoid over-
shooting and can accelerate when more distance needs to be covered. This results
in consistent and reliable movement for randomized input. It demonstrates the ef-
fectiveness of the proposed setup for achieving smooth and precise robotic motion.
Incorporating additional data input and control logic in future work might enhance
the systems capabilities. Now with the movement control working, we integrate a
camera into the system.

18

Figure 10: Camera, target processing

3.5 Perception

Robotic systems have become an integral part of modern technology. A key com-
ponent of advanced robotic systems is their ability to perceive and interact with
the environment. Image processing is an important aspect of robotic perception,
enabling robots to understand and interpret visual information.

Within the demo built in this thesis, the robotic arm has to trace a target object.
The purpose of the camera is to determine the current cartesian position of the
detected object through image processing and image interpretation. An Intel RE-
ALSENSE depth camera D435i was used, featuring depth by combining image data

19

from two sensors to calculate depth information[8].

In stereo vision, binocular disparity is a key concept for reconstructing a scene’s
three-dimensional structure from two images. It refers to the difference in the loca-
tion of similar features within two stereo images seen by two sensors. First, by using
image rectification, both images are rotated. Once rectification is complete, dispar-
ities occur solely in the horizontal plane. This step is unnecessary if the cameras
are accurately aligned horizontally. After rectification, the left and right images
are scanned for corresponding features, which is referred to as the correspondence
problem[23]. By triangulation, the distance of an object at a pixel to the camera is
determined[5].

For localizing yellow objects, a simple image processing algorithm was used. The
algorithm analyzes each pixel of a fetched frame, searches for the largest cluster
of yellow pixels and calculates its centroid. The depth analysis provided by the
camera enables determining the position of the object with respect to the camera.

The camera position and its rotation in space is constantly changing as the end-
effector changes its position. The cameras rotation in space can be described by
roll, pitch, and yaw. Roll is a counterclockwise rotation of α about the x-axis, while
pitch and yaw are rotations about the y-axis and z-axis, respectively[22]. These
rotations can be described by matrices:

(16)

Rz(α) =

cosα − sinα 0
sinα cosα 0
0 0 1

 Ry(β) =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 Rx(γ) =

1 0 0
0 cos γ − sin γ
0 sin γ cos γ

Each rotation is a simple extension of the 2D rotation matrix. A single rotation
matrix can be formed by multiplying the yaw, pitch and roll rotation matrices. The
combined rotation matrix R yields:

R = Ryaw(α) ·Rpitch(β) ·Rroll(γ)

(17)

R =

cos(α) cos(β) cos(α) sin(β) sin(γ)− sin(α) cos(γ) cos(α) sin(β) cos(γ) + sin(α) sin(γ)
sin(α) cos(β) sin(α) sin(β) sin(γ) + cos(α) cos(γ) sin(α) sin(β) cos(γ)− cos(α) sin(γ)
− sin(β) cos(β) sin(γ) cos(β) cos(γ)

 .

It is important to note that R performs the roll first, then the pitch and finally
the yaw. Changing the order would yield a different rotation matrix as matrix
multiplication generally is not commutative.

20

To add the new network component, the reactors shown in Figure 10 were connected
with the reactor network of Figure 6. The output port of the ’Validation’ reactor
in Figure 10 is connected to the ’Controller’ reactor in Figure 6 and overwrites
periodically the controllers current target.

Figure 11: Roll,
pitch, and yaw of the
end-effector

The ’Camera’ reactor in Figure 10 serves as the interface to
the camera and periodically fetches color and depth images.
Its startup reaction initializes the camera and starts the im-
age pipeline. Reaction 1 performs the image processing and
transmits the position of the localized object to the ’Coord-
Transform’ reactor. The transmitted cartesian position sent
as an Object of type Vector is still in the reference system

of the camera. The sent Vector is encapsulated within an

Optional object to handle scenarios where the camera fails to

localize an object. If the Camera reactor sends a valid Vector

object, the CoordTransform reactor applies coordinate trans-
formation and forwards the localized object’s position in the
robot’s reference system to the ’HandlingInterface’ reactor,
an empty Optional object otherwise. This reactor, depending
on the system’s state, triggers a handling routine by communicating with the ap-
propriate reactor. When an object is detected, it transmits to the ’TargetHandling’
reactor. If no object is detected, it invokes the ’NoTargetHandling’ reactor. Cur-
rently, if no object is assigned, the NoTargetHandling reactor commands the robot
to stay in its current position. Alternatively, based on the application’s objective,
other commands, such as returning to a default waiting position, are imaginable.
If on the other hand an object is determined by the camera, the TargetHandling
reactor reacts. As for now the objective of the robotic system is to trace a yellow
object (a lemon), the TargetHandling reactor ensures that the robot keeps a certain
distance to the detected object by adding an offset vector. The interface passes the
output of the handling routine to the Validation reactor. Given the limited range of
motion for the robot, the Validation reactor ensures that the commands received by
the camera adhere to specific motion constraints of the robot. The ’Initialization’
reactor allows the robot to take on a default position before initiating movement.
If we would want to change the applications, enhancing the robot’s behavior would
be simple thanks to the modular nature of Lingua Franca. This would likely only
include adding network logic and linking it to the TargetHandling reactor and the
NoTargetHandling reactor.

With the camera system in place, the robotic demo is complete and traces objects.
To explore its strengths and weaknesses, we will first discuss how the implementa-
tion of the demo could have been executed using ROS2.

21

3.6 Robot Control Design in ROS2

3.6.1 Creating the URDF file

Creating a virtual twin for the XArm7 is the first step in the process of classically
constructing a robot control application. In the ROS2 control framework .stl and

.dae files describe robots. The .stl files are coarse meshes used for fast collision

checking, .dae files are used for visualization purposes. Blender is an open source 3D
modeling software capable of processing both file types, the construction of a virtual
twin can be performed using Blender. By convention, each .stl file expresses the
position of its vertices in its own reference frame. Hence, a linear transformation
(rotation and translation) has to be applied between each link to define the robot’s
full geometry when incorporating multiple .stl files to construct a robot[7].

1 hardware_interface.read();

2 //.. export of hardware data

3 controller.update ();

4 //.. export of controller data

5 hardware_interface.update ();

Figure 12: ROS2 main control loop

3.6.2 Construction

The hardware interface and joint controller play important roles in the main robot
control loop, which coordinates both. Figure 12 provides an overview over the con-
trol flow: The hardware interface.read() method fetches data from the hardware,

the controller.update() method calculates the respective control output and the

hardware interface.update() method writes the control data to the joints. The three
methods are executed on a real-time thread and therefor must obey real-time con-
straints. To develop an application for the XArm7, implementing both a hardware
interface and a controller is mandatory[7]. Figure 13 illustrates the potential ROS2
control flow for the demo application developed in this thesis.

3.6.3 Hardware Interface

In ROS2, hardware system components are integrated via user defined driver plu-
gins. Those plugin classes conform to the HardWareInterface . The interface de-

mands the implementation 5 public methods: on init() , export state interfaces() ,

export command interfaces() , read() and write() [18]. Every iteration of the ROS2

main control loop, read() is called on all hardware components implementing the

HardWareInterface . The read() method receives the latest joint data and maps it

to variables of class command interface which hold a pointer to the joint data and

22

Figure 13: ROS2 node network, showcasing data exchange via topics, parameters
and shared pointers

specify interface name and type, command interface intuitively speaking are regis-
ters storing the current joint data. To stick to the application built within this
thesis, arm->get joint states() introduced in line 21 in Figure 5 is called in read()

to fetch joint data from the robot. Implementing the on init() function requires

the instantiation of an object of type XArmAPI as in line 10 in Figure 5 to initi-

ate the communication to the robot. The methods export state interfaces() and

export command interfaces() are used to share the pointer to the current joint data

with the main control flow. Opposed to read() , the write() method operates on

the hardware. It assumes that after the execution of update() in the main control

flow, the command interface data fields are overwritten by the controller. Depen-

dent on the control mode used, the write() method hence could call the method

arm->vc set joint velocity() on the robot.

3.6.4 Writing a Controller

ROS2 provides a wide range of controllers. Controllers conform to the
ControllerInterface in ROS2 and are similarly as the HardwareInterface loaded

as plugins and modified using specific ROS2 parameters passed within a .yaml

parameter file. Controllers exist in a finite set of states: unconfigured , inactive ,

active and finalized . During transition between these states, transition methods
are called. When a controller is started, it is loaded into the memory, but is not
yet initialized with the necessary parameters and configurations, the controller is
in state unconfigured . It currently cannot perform any operations. After a config-

uration and a transition to inactive , the controller is fully operational, besides not

controlling the hardware. When in active state and controlling the actuators, if

the controller is shutdown, it transmits to state finalized . In this state, it is ready
to be cleaned up or reinitialized by transition to unconfigured. These states allow

23

controller management at runtime.

3.6.5 Controller Implementation

The controller plugin is an object of a class that inherits from
controller interface::ControllerInterface . Nine methods are to be imple-

mented. Six of them are transition callbacks like on configure() or on activate() .
In the following, the most meaningful methods will be discussed. The methods
command interface configuration and state interface configuration define which
interfaces the controller need in order to operate. If a requested interface is not
provided by the hardware, the controller fails. The method on configure() is called

when the controller transitions to configured . It sets up the subscription to the

’joint trajectory’ topic. The method on activate() , called when the controller is

activated, grants the controller access to the command interface and state interface

data fields of the hardware. Claimed command interface data fields are released in

the method on deactivate() . The update() method is regularly executed by the
real-time control loop. The controller reads from its interfaces and calculates the
control output. The output is written to the command interfaces, which will in
turn control the hardware. The cooperation between the hardware interface and
the controller enables accurate joint velocity control[17].

1 int main(int argc , char **argv)

2 {

3 rclcpp ::init(argc , argv);

4 auto node = std:: make_shared <TrajectoryPlanner >();

5 rclcpp ::spin(node);

6 rclcpp :: shutdown ();

7 return 0;

8 }

Figure 14: TrajectoryPlanner main method

3.6.6 Further Network Nodes

We assume, that both the Robot Controller and the Hardware Interface are oper-
ational within the network shown in Figure 13. To expand the network, a node
executing the planning operation has to be created. Server service nodes are ex-
ecutable cmake targets, .cpp files having a main method as shown in Figure 14.
They are added as executables into the project via the projects CMakeLists.txt.
The spin() method shown in the same Figure is a key method of the ROS2 node’s
lifecycle, it essentially keeps it running and allows processing incoming messages and
the execution of callbacks. Server service nodes can be used for computational pur-
poses. For our case, the ’Trajectory Planner’ would be to subscribed to the ’target
position’ topic published by a camera node and to the ’joint states’ topic referring

24

to the current state of the robot. The Trajectory Planner generates joint trajecto-
ries. Once the subscription callback from the ’target position’ topic is executed, the
inverse kinematics for the target end-effector position is determined. Computing
the corresponding inverse kinematics using for example the KDL(Kinemtatics and
Dynamics Library) is imaginable. The KDL library is able to generate the robot’s
kinematic tree from the URDF and creates an inverse kinematics velocity solver
for the given end-effector position and its roll, pitch, and yaw. Given the current
state published via the ’joint states’ topic and the target state, the planner node
would plan a trajectory by for example linear interpolation. If velocities for the
start position and end position are given, cubic interpolation can be used. In our
example the joint trajectory would consist of joint velocity configurations mapped
to time stamps[19].

The ’Joint State Broadcaster’ is a publisher node and receives joint data via shared
pointer and publishes to the topic ’joint states’. Both the Trajectory Planner and
the ’Robot State Publisher’ are subscribed to this topic. The Robot State Publisher
publishes required data for the visualization, generated from the URDF file and the
joint states. It also manages the URDF representation of the robot and passes it
to the ’Controller Manager’ and to the Trajectory Planner.

To complete the networks, an additional node accessing camera data feeds processed
camera data into the network. Similar to Figure 14, an object of the customly
created class RealSensePublisher is instantiated and streams color and depths frames
allowing image processing as described in 3.5 while spinning. Each time an image
pair is processed, a target position is published to the ’target position’ topic.

3.6.7 Summary

The implementation of the robot application with ROS2 started with the creation
of a URDF file, constructing the robot’s virtual twin. This enables control and
simulation. The integration of the hardware is achieved through a user defined
class inheriting from the ROS2 HardwareInterface . Controllers adhering to the

ControllerInterface allow joint control and demonstrate, how the ROS2 control
loop internally works. To integrate a visualization of the virtual twin, the robot
state publisher preprocesses joint data. To allow interaction to the environment, a
node that processes camera input and a trajectory planner are implemented. As
shown, ROS2 allows for clear and fast application development. A developer using
ROS2 can profit from a wide range of additional frameworks to control robots.

25

4 Evaluation

Figure 15: Planner

Several challenges while building the
application were encountered, but many
aspects also went very smoothly. Learn-
ing Lingua Franca is straightforward.
The documentation is sufficient to fast
get an overview and provided the min-
imalistic language design, the learning
curve is steep. Once a large program is
built, keeping the project structured is
manageable. Modularization, factoriza-
tion and the interpretation of the code
is enhanced. Compared to C++, Lin-
gua Franca benefits from the flexibility
of cmake just as Cpp does. Implement-
ing and design in Lingua Franca is faster
than it is in C++. With the visualiza-
tion tool, recent changes can be checked
for consistency and correctness, aiding
in development. When different devel-
opers concurrently work on the same
Lingua Franca network, merge conflicts
primarily occur in the reactor side of the program. In Lingua Franca, it’s a good
practice to let LF coordinate the code and implement the rest of the logic in exter-
nal files. Therefore, reactor code remains short and manageable. Resolving merge
conflicts in LF files was not labor-intensive.

Alongside the construction of the robot application demo, a simulation of the robot
was built. We designed the reactor network to also connect to a simulation[20]. The
simulation is integrated within the LF program and can be activated via connecting
it with the Motion Planning Network through the Interface reactor shown in Figure
6. This allows integration testing.

The robot moved smoothly and consistently when run at speeds around 0.5[m/s].
The system reacts fast to input. By adjusting parameters like velocity and amax

the robot performs fast movement, but a maximum velocity is reached quickly. The
deceleration distance increases quadratically with speed. The higher the deceler-
ation or acceleration, the higher the force. At higher speeds and increased amax,
the table and the robots head started to totter as the robot stopped and started
abruptly. The control loops can be improved, but the physical properties of the
XArm determine the maximum velocity and the precision at high speed. As the
robot is mounted to the table, longer acceleration trajectories are not possible.
When controlled at high speeds, either the mounting or the robot might break.

26

The current setup sometimes runs into problems as the self collision checking by the
robot interrupts the program execution. Recall that the controller only determines
the next intermediate position of the end-effector during a trajectory. At certain
joint configurations, if it sends a control output that cannot be executed with the
current joint configuration, the robot halts. A tighter integration with the robotic
arm or shifting inverse kinematics externally while using direct joint control instead
of position control can solve this problem.

CPU and RAM usage were measured over multiple test runs during multiple hours.
In terms of RAM: even after longer test runs, the LF binary process did not sig-
nificantly jitter in terms of RAM usage, the mean RAM usage always remained at
around 1% of the total systems RAM capacity, see Figure 15. If a reaction fin-
ished, all data initialized is cleared, only the produced reactor output remains in
the system. The system reacts to the current real time input and does not relay
on large state data. This concretely indicates that the LF coordination network
implemented within this thesis does not encounter memory leak problems, due to
clear interface and lifecycle management. This implies stability over long periods
of time. This is advantageous, as the target language Cpp is known for speed, but
large programs can suffer from memory leaks.

In terms of CPU usage, jitter was encountered. During program execution, the
image processing did in situations delay the system. When moving the target
object close to the camera, recognition and clustering took to long as in proportion
to the picture, the quantity of recognized pixels grow. This caused delays in the
Lingua Franca execution flow and delayed control output and the robot performed
sudden stops. Further improvements on the project might explore, whether this
problem can be solved with the usage of the built-in feature ’enclaves’: Reactions
on the same ’level’ determined by the LF dependency analysis can be executed
concurrently. The current LF scheduler implementation only schedules the next
level of reactions when the current level of execution is finished. This architecture
can in practice cause independent reactions to block the execution of each other.
This negatively impacts the performance. To handle this issue, LF provides the
experimental feature enclaves. Each enclave has an own scheduler, reactions of
different enclaves can advance their logical time independently[27]. Camera image
processing is completely independent from the control network, partitioning both
control flows into independent enclaves could solve this problem. Besides that,
the remaining Lingua Franca network did not significantly produce jittering CPU
utilization, as can be seen in Figure 15.

Race conditions can generally occur in robotic systems with multiple components
that share data access. In LF, access to state variables is mutually exclusive and
reactions bearing different timestamps are executed in order. Even tho introduc-
ing race conditions in Lingua Franca code is possible through passing pointers in
messages, the documentation provides good guidelines to avoid them. During the

27

development and execution of the LF program, no problems with race conditions
appeared.

Overall, Lingua Francas consistency in reaction time, CPU and RAM usage can
enhance real-times applications’ safety and predictability. The visualization tool
also supports development and version control, providing a clear schema of the
code. Lingua Franca allows developers to build robust, concurrent applications.
This makes Lingua Franca an interesting choice in robotics.

The previous section focused on evaluating how well the Lingua Franca control logic
operates the robot. The applied metrics, however, assume that the code is largely
free of errors, a state that must first be achieved. While developing complex software
systems, a developer can profit of good troubleshooting language features. Even
if reproducable, finding bugs in bigger projects can become difficult. As Lingua
Franca does not yet provide much debugging tooling, the following sections will
discuss in detail the debugging process underwent to pin down errors during the
development of the demo.

4.1 Debugging

Figure 16: A normal trajectory, but the robot stops at a certain point and reaccel-
erates

28

Bugs are inevitable in software development. Finding them is often hard due to the
growing complexity of codebases. Errors and bugs can arise from various sources
like coding errors or design flaws. Often times, bugs are non-repeatable. Lingua
Franca encourages the programmer to build modular and transparent code with
clear defined interfaces. Therefore it might prevent errors. The bug that will be
illustrated is robot specific, but the trouble shooting procedure can be generalized.

In Figure 16, the trajectory of the robot in the cartesian space, each point represent-
ing an intermediate position on the way to the overall target position. At a certain
point however, it stops. This is non-desired behavior. The exact moment when
the robot halts and then reaccelerates is detailed in Table 1. At entry 3491, the
robot was moving at its maximum constant speed. However, entries CP(3512) and
CP(3521) are identical, indicating that the robot indeed had stopped and then reac-
celerated. When observing the robot’s movement in real-time, it suddenly stopped
before regaining control over its speed. This is the kind of behavior that is danger-
ous for the robots joints, especially when moving at max speed. Various reasons
could cause the bug, the robot itself, malfunctioning logic in the Planner or Velocity
Controller or Lingua Franca.

logical time p⃗la x p⃗la y p⃗la z p⃗c x p⃗c y p⃗c z

3491 464.429932 -84.667854 199.990799 463.813354 -85.530075 199.990829,
3502 465.046509 -83.805634 199.990768 464.429932 -84.667854 199.990799,
3512 465.046509 -83.805634 199.990768 465.046509 -83.805634 199.990768,
3521 465.081421 -83.756836 199.990768 465.046509 -83.805634 199.990768,

Table 1: Current position X,Y,Z — Last Position X,Y,Z

Collecting data is quite easy in Lingua Franca. By adding connections to a data
handling reactor, data can be pushed into a log file. A similar reactor is shown in
Figure 17. This reactor currently only logs p⃗c[n] and p⃗la[n]. To extend data logging
in the network, this reactor has to be adjusted as well as its connections to the rest
of the network. Additional data from the inputs can be integrated by introducing
new lines of code analogous to the existing retrieval(c.f. ?? line 7) and insertion(c.f.
line 13-17) operations. This expansion is straightforward and does not necessitate
extensive modifications.

It would be possible to automate this process. Let I be a specialized reactor pro-
vided by LF, that only needs to be connected to the network, but is not imple-
mentable by the programmer. In our example, we define only one input port for I,
but multiple are conceivable. Let x, y be the objects, that are fed into the input
ports of I. The purpose of I is to store data, for example in a .csv file2 automat-
ically without having the programmer thinking about it. Future improvements of
the Lingua Franca compiler could involve the generation of the code in the reaction

2different file types are possible and supposedly preferable

29

¸

1
2 reaction(csv_last_position , csv_current_position , // .. extend)

3 {=

4
5 std::vector <std::string > data;

6
7 auto last_position_as_vector = (*csv_last_position.get()).get().to_vector ();

8 auto current_position_as_vector = (*csv_current_position.get()).get().to_vector ();

9
10 // .. extend

11
12 vectors.insert(data.end(),

13 (*last_position_as_vector.begin(),

14 (*last_position_as_vector.end());

15
16 vectors.insert(data.end(),

17 (*current_position_as_vector.begin(),

18 (*current_position_as_vector.end());

19
20 // .. extend

21
22 Instruction_Collector ins_coll = Instruction_Collector{

23 get_elapsed_physical_time (),

24 data

25 };

26 ins_coll.write_instructions_to_csv(instructions_path);

27
28 =}

Figure 17: Reaction code of CSVDataTraffic

body in Figure 17 by itself and could automate the process of collecting data from
the network. In this scenario, both x and y would need to implement an interface
that includes the methods to vector() and to header() , respectively[11].

Another debugging approach can be Printf-Debugging which sometimes can become
disorganized in classical programs. Printf-Debugging can be done in Lingua Franca
elegantly by implementing a small printing reactor that just transfers data and
prints it to the console. Once such a reactor is implemented it can be placed
between any reactor. Consulting the visualization tool is sufficient to quickly get
an overview of where printing is taking place and what is being printed. Such a print
reactor could also be provided by a future Lingua Franca compiler enforcing only
that the printed objects implement to string() . Within the graphical visualization
tool, manually placing the printing reactor within the graphic could be intuitive.

Debugging is not only about tracing data. It is also about testing the system. The
unit that assumably could cause the robots halting in the context of the encoun-
tered bug is the ’Planner’ reactor P introduced in Figure 3.2 that encapsulates
the logic that performs the positional control. At one iteration, the Planner re-
ceives via input ports a tuple (p⃗la[n], p⃗c[n], p⃗t[n]) of three objects of type Position
and v[n], denoting the designated velocity determined by the Velocity reactor. Let
S3502 = (p⃗la[3502], p⃗c[3502], p⃗t[3502], v[n3502]) be input tuple of the Planner at logi-
cal timestamp 3502. The behavior of P is deterministic and does not contain state
variables. The second reactor within the Motion Planning Network impacting mo-
tion control is the ’Sanity Checker’ reactor shown in 3.2. Its purpose is to execute
an emergency stop if malicious behavior from the Planner is detected. In order to

30

properly test the Planner and the Sanity Checker, a second main reactor for testing
purposes which is highlighted in Figure 18 was built.

Figure 18: Testing reactor

The ’PathPlanningTester’ PT mocks the robot. It holds two states, Si and a list p =
[p⃗c[0], p⃗c[1], p⃗c[2], ..., p⃗c[i − 1]] referring to the trajectory calculated by the Planner.
Each iteration, Si is passed to the Planner which determines p⃗n[i]. The state of PT is
updated, Si+1 = (p⃗la[i+1]← p⃗c[i], p⃗c[+1]← p⃗n[i+1], p⃗t[i+1] = p⃗t[i], v[i+1]). Once a
trajectory is finished, p is passed to the ’CSVPath’ reactor and another trajectory is
being initiated. Every path is stored in log files and can be analyzed afterwards. The
purpose of this second main reactor is to see how the trajectory planning system
works under different inputs on multiple different paths and starting conditions.
Conceptually, the test inputs are designed to emulate a robot movement represented
by Si at a random position and speed with a random target independent of the
preceding robot movement. To assess the reliability of my motion planning units, it
was tested with both the configuration that presumably caused the error, but also
with generated random inputs to analyze the behavior of the two reactors.

This debugging process is hardly generalizable beyond robotic applications. It is
comparable to classical unit testing classes in object oriented programming. It
demonstrates, that unit testing in Lingua Franca is manageable, even though build-
ing the whole test setup was labor-intensive. Overall, testing the outsourced logic
with classical test frameworks might be faster than constructing a second main
reactor for testing purposes.

OMNeT++ is a simulation framework designed for modeling computer networks
and network protocols. Generally, networks are tested. Just as in Lingua Franca
the developer defines network components, message types and the network setup. In
addition to that, in .ini files, the developer defines simulation setups with different
parameter configurations. For the simulation, OMNeT++ features a graphical user
interface that visualizes the network traffic, providing users with real-time insights
into network operations. This interface allows users to control the simulation. One
can either advance to the specific logical time points or pause to analyze the net-
work’s current state allowing deep insights in the network behavior[25]. A similar
framework could be useful for Lingua Franca. As LF networks are designed to per-
form controlling in cyber-physical systems, if tested in a similar framework, mocking
actuators and sensors with reactors will be necessary. For example, generating a
reactor mocking a sensor through parsing a .csv file defining sensor output mapped

31

to timestamps is imaginable. Future work can explore whether such a framework
can be built around Lingua Franca automatizing simulations combined with reactor
generation to mock sensors and actuators.

In the end, the bug was caused by the robot itself. When fetching data with a
frequency f > 100Hz, we surpass the updating rate of the control box’s data
registers and sometimes read the same value twice. This is a problem, as the
Planner reactor assumes the robot stops since p⃗c[n] == p⃗la[n]. Therefor it falsely
initiates an acceleration process. The network performs the calculation of control
output on compromised input. To recover from this, a ’Moderator’ Reactor placed
between the interface reactor and the decoder reactor was implemented, as shown
in Figure 6, that analyses the data and in the error case transmits polished data
into the network. This solution is not ideal as it ’predicts’ movement, but it turned
out to work fairly well. Improvements here could consist of a adjustment of the
planner reactor. Currently, only p⃗la[n] and p⃗c[n] are taken into consideration. An
improved planner could incorporate state information from the traveled path. The
current planner relies on the correctness of the fetched data from the robot. As a
sudden stop could on the other mean a collision, the Moderator reactor also handles
collision.

To further understand the strengths and weaknesses of Lingua Franca, it is beneficial
to compare it with ROS 2 (Robot Operating System 2), which has established itself
as a standard in the field of robotics. In the upcoming sections, the introduced ROS
2 will be compared with Lingua Franca in the context of robotic applications.

4.2 Comparison

Ease of development: ROS 2 provides a large set of tools, such as rviz for visualiza-
tion, gazebo for simulation, and rqt for graphical interfaces. This allows prototyp-
ing and testing. The ROS ecosystem includes many libraries, such as the controller
ros2 control package, but also KDL or MoveIt! for motion planning, inverse kine-
matics and collision checking[14]. ROS 2 is well documented. On youtube many
guides can help diving into robot control. Troubleshooting, setup and usage is de-
scribed on the official ROS wiki and ROS 2 documentation. A large community on
various forums provide help. ROS 2 is an open-source framework. Maintenance and
development is provided by developers and companies like Bosh or the Fraunhofer
institute[3]. This large ecosystem plays a significant part in its success. Integrat-
ing sensors and actuators is easy as ROS 2 supports standardized messages and
interfaces. ROS 2 is continuously evolving. Developers are actively contributing.

Lingua Franca is well documented, learning the language is easy if the developer
already knows Cpp or different target languages. Learning LF from scratch is
easier than learning ROS from scratch, as understanding the basic Lingua Franca
structure is straightforward as it is modular and provides the network visualization.
Setting up a basic environment in Lingua Franca is clear, the idea of designing

32

networks instead of class structures is convenient. Incorporating libraries like KDL
or MoveIt! in Lingua Franca is as simple, as it is in ROS 2, as both use cmake.
But including controllers like specified in the ros2 control package requires a more
complex interface matching. ROS 2 hides much functionality from the user and
provides management via structured configuration files. As much functionality is
hidden from the developer, pinning down bugs sometimes is difficult. Here, the ROS’
2 documentation and guides provide help. Lingua Franca programs in contrast are
more centralized.

Building on existing robot tooling is more difficult in LF. A LF developer will
for example have to integrate URDF files and control mechanisms from scratch, if
simulation is to be built. When it comes to debugging and troubleshooting, in terms
of Lingua Franca and robotics, a developer can not profit from a large community,
at least not yet. Finding help and sharing knowledge is not established in Lingua
Franca in a robot application context.

Both Lingua Franca and ROS 2 are very modular. ROS is built around a modular
architecture where individual functionalities are encapsulated in nodes. Each node
performs a specific task and communicates with other nodes via topics, services, and
actions. This enables reuse across different projects. Lingua Franca provides similar
mechanisms, reactors performing tasks can be integrated into multiple systems if
the interfaces match. Both are self-contained, their software architecture approaches
focus on separation of functionality into many independent systems.

ROS 2 networks allow lifecycle management. This allows continuous integration
and deployment and enhanced resource management. In complex robotic networks,
different components for perception, navigation and manipulation can activate and
deactivate to conserve energy. Future work might explore on how to generalize
reactor state transition management and introduce semantics to the LF compiler.

4.2.1 Real-time Performance and Reliability

Developing a control system requires careful attention to real-time performance.
Precise timing, reproducability and concurrency play important roles. Lingua
Franca and ROS 2 are both frameworks designed to facilitate the development
of complex, distributed, and real-time systems. However, they take different ap-
proaches to resource management and real-time capabilities. The ROS 2 non-real-
time system architecture prevents it from guaranteeing fault tolerance, deadlines,
or process synchronization. ROS 2 requires significant resources. CPU, memory,
network bandwidth, threads and kernels are managed. Time constraints are hard
to meet. ROS 2, the latest version of ROS, has improved real-time capabilities with
the inclusion of the Data Distribution Service (DDS) middleware. However, most
of of the ROS 2 ecosystem is currently built around Linux. The upper limit of real-
time performance is determined by the operating system itself and improving the
real-time performance lies in optimizing the performance of the operating system.

33

Robot control systems written in ROS 2 are not reproducable. Reproducing errors
in testing environments is not possible. Ensuring reliability is more difficult and
usually achieved by using fast, redundant hardware. ROS 2 introduced the Quality
of Service (QoS) policies like deadlines and fault-tolerance. This allows fine-grained
control over the communication behavior and can potentially improve real-time ca-
pacities and enhance reliability. As many companies use ROS 2, it continuosly
undergoes testing and validation in real-world scenarios[16][2][12].

Lingua Franca supports directly real-time constraints by allowing developers to
specify deadlines for invocations. LF is more focused on providing a concurrency
oriented model suitable for real-time systems. Enclaves and workers enable com-
plete concurrent deterministic behavior, controlled by the developer. LF excels in
predictability and reliability, as Lingua Franca is independent from threads handled
by the operating system. However, long reaction code execution times can delay
the execution flow. Deadline handling enables recovering here.

4.2.2 Scalability and Node Management

Complex robotic systems involving multiple nodes and subsystems are imaginable.
Contrary to ROS’ 1 AMQP (Advanced Message Queuing Protocol), ROS 2 uses
the network protocol Data Distribution Service (DDS). This communication mid-
dleware allows more efficient handling of large number of nodes and topics, as well
as a better managing of the underlying resources. DDS also supports many-to-many
communication patterns, this allows a more flexible and scalable organization of the
robots in the system. Another aspect is the ability to handle failures and recover
from them. DDS-based discovery and configuration improve the robustness of the
system by enhancing its reliability. To measure the performance of a network, the
framework irobot-ros provides tooling[10][2]. If multiple machines are configured
to support ROS 2 and are in the same LAN-network, they form one logical robot
application[6].

Lingua Franca promotes good scalability. Built-in deadlines allow micro-
management. When distributively executed, Lingua Franca does not loose its
advantage of determinism over ROS 2. Even though the network jitter is unpre-
dictable, given the same program network conditions, the programs output will not
change and errors are repeatable. Recent work on distributed embedded system
for autonomous driving has shown, that systems can profit from the extension with
Lingua Franca, while still preserving determinism and exceeded throughput[1][11].

34

5 Conclusion and Outlook

In this thesis we showed that with Lingua Franca the control of a complex real-
time robotic system is possible. Constructing a real-time control mechanism is
direct. Expanding the network with new components to integrate camera data is
transparent. When fully integrated, the system showed fast reaction times and
precise movement. Similarly to ROS 2’s node-based architecture, Lingua Franca’s
reactor-based approach allows for reusable, self-contained components. In addition,
it offers precise timing and concurrency controls through features like deadlines,
enclaves, and workers. They ensure deterministic behavior and robust performance.

While its modularity and understandability prevent bugs, debugging in Lingua
Franca remains unintuitive. Future development of the Lingua Franca can include
designing graphical interfaces and automating test reactor generation to facilitate
debugging.

For projects where real-time constraints and deterministic behavior are important,
Lingua Franca can excel, also showing promising performances for systems that
have to run over very long periods of time. In contrast, projects benefiting from a
vast ecosystem and a wide range of tools and libraries, ROS 2 remains a good choice.
The decision between Lingua Franca and established frameworks will depend on the
specific requirements and constraints of the robotic application.

Acknowledgments

I would like to thank Dr. Christian Menard, whose feedback and guidance have
been instrumental in the completion of this work. Your insights in Lingua Franca
and support have greatly enhanced the quality of this project.

I am also thankful to Prof. Calandra for the expert advice concerning robotics, this
accelerated the development of the application.

Special thanks to my father Steffen Mehnert, to Johannes Wünsche, to Leila Walter
and to Enya Vogel for proofreading my thesis and providing feedback.

Thank you for your contributions and support.

35

References

[1] Soroush Bateni et al. “Risk and Mitigation of Nondeterminism in Distributed
Cyber-Physical Systems”. In: Proceedings of the 21st ACM-IEEE Interna-
tional Conference on Formal Methods and Models for System Design. MEM-
OCODE ’23. Hamburg, Germany: Association for Computing Machinery,
2023, pp. 1–11. isbn: 9798400703188. doi: 10.1145/3610579.3613219. url:
https://doi.org/10.1145/3610579.3613219.

[2] Comparison of the scalability and performance of ROs1 and ROS2 in multi-
robot systems — linkedin.com. https : / / www . linkedin . com / pulse /

comparison - scalability - performance - ros1 - ros2 - systems - fouad -

anwar. [Accessed 03-07-2024].

[3] Current Members — ROS-Industrial — rosindustrial.org. https : / /

rosindustrial.org/current-members. [Accessed 03-07-2024].

[4] ros2 control Development team. Documentation/Getting started. vhttps://
control . ros . org / rolling / _images / components _ architecture . png.
[Accessed 30-06-2024].

[5] Digital Nuage. Disparity and Depth Estimation from Stereo Camera. [On-
line; accessed 27-June-2024]. 2024. url: https://www.digitalnuage.com/
disparity-and-depth-estimation-from-stereo-camera.

[6] ed. Multiple machines tutorials — roboticsbackend.com. https : / /

roboticsbackend.com/ros2-multiple-machines-including-raspberry-

pi/. [Accessed 03-07-2024].

[7] Example: Full tutorial with 6DOF. https://control.ros.org/master/
doc/ros2_control_demos/example_7/doc/userdoc.html. [Accessed 02-07-
2024].

[8] Getting Started with RealSense D455. https : / / www . mouser . de /

applications / getting - started - with - realsense - d455 / ? _ gl = 1 *

1q3fn2j * _ga * dW5kZWZpbmVk * _ga _ 15W4STQT4T * dW5kZWZpbmVk * _ga _

1KQLCYKRX3*dW5kZWZpbmVk. Accessed: 2024-06-26. 2024.

[9] How do we describe a robot. https : / / www . youtube . com / watch ? v =

CwdbsvcpOHM. [Accessed 30-06-2024].

[10] Irobot/github.com. https://github.com/irobot-ros/ros2-performance.
[Accessed 03-07-2024].

[11] Lingua Franca Tutorial, Part 6: Research Overview — youtube.com.
https : / / www . youtube . com / watch ? v = afJowM35YHg & list =

PL4zzL7roKtfXyKE3k8lOwPub9YEjulS4o&index=7&t=2877s. [Accessed 03-
07-2024].

36

https://doi.org/10.1145/3610579.3613219
https://doi.org/10.1145/3610579.3613219
https://www.linkedin.com/pulse/comparison-scalability-performance-ros1-ros2-systems-fouad-anwar
https://www.linkedin.com/pulse/comparison-scalability-performance-ros1-ros2-systems-fouad-anwar
https://www.linkedin.com/pulse/comparison-scalability-performance-ros1-ros2-systems-fouad-anwar
https://rosindustrial.org/current-members
https://rosindustrial.org/current-members
vhttps://control.ros.org/rolling/_images/components_architecture.png
vhttps://control.ros.org/rolling/_images/components_architecture.png
https://www.digitalnuage.com/disparity-and-depth-estimation-from-stereo-camera
https://www.digitalnuage.com/disparity-and-depth-estimation-from-stereo-camera
https://roboticsbackend.com/ros2-multiple-machines-including-raspberry-pi/
https://roboticsbackend.com/ros2-multiple-machines-including-raspberry-pi/
https://roboticsbackend.com/ros2-multiple-machines-including-raspberry-pi/
https://control.ros.org/master/doc/ros2_control_demos/example_7/doc/userdoc.html
https://control.ros.org/master/doc/ros2_control_demos/example_7/doc/userdoc.html
https://www.mouser.de/applications/getting-started-with-realsense-d455/?_gl=1*1q3fn2j*_ga*dW5kZWZpbmVk*_ga_15W4STQT4T*dW5kZWZpbmVk*_ga_1KQLCYKRX3*dW5kZWZpbmVk
https://www.mouser.de/applications/getting-started-with-realsense-d455/?_gl=1*1q3fn2j*_ga*dW5kZWZpbmVk*_ga_15W4STQT4T*dW5kZWZpbmVk*_ga_1KQLCYKRX3*dW5kZWZpbmVk
https://www.mouser.de/applications/getting-started-with-realsense-d455/?_gl=1*1q3fn2j*_ga*dW5kZWZpbmVk*_ga_15W4STQT4T*dW5kZWZpbmVk*_ga_1KQLCYKRX3*dW5kZWZpbmVk
https://www.mouser.de/applications/getting-started-with-realsense-d455/?_gl=1*1q3fn2j*_ga*dW5kZWZpbmVk*_ga_15W4STQT4T*dW5kZWZpbmVk*_ga_1KQLCYKRX3*dW5kZWZpbmVk
https://www.youtube.com/watch?v=CwdbsvcpOHM
https://www.youtube.com/watch?v=CwdbsvcpOHM
https://github.com/irobot-ros/ros2-performance
https://www.youtube.com/watch?v=afJowM35YHg&list=PL4zzL7roKtfXyKE3k8lOwPub9YEjulS4o&index=7&t=2877s
https://www.youtube.com/watch?v=afJowM35YHg&list=PL4zzL7roKtfXyKE3k8lOwPub9YEjulS4o&index=7&t=2877s

[12] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. “Exploring the perfor-
mance of ROS2”. In: 2016 International Conference on Embedded Software
(EMSOFT). 2016, pp. 1–10. doi: 10.1145/2968478.2968502.

[13] Christian Menard et al. “High-performance Deterministic Concurrency Using
Lingua Franca”. In: ACM Trans. Archit. Code Optim. 20.4 (Oct. 2023). issn:
1544-3566. doi: 10.1145/3617687. url: https://doi.org/10.1145/
3617687.

[14] moveit.ros.org. https://moveit.ros.org/. [Accessed 03-07-2024].

[15] Nodes2014; ROS 2 Documentation: Iron documentation — docs.ros.org.
https://docs.ros.org/en/iron/Concepts/Basic/About-Nodes.html.
[Accessed 05-07-2024].

[16] Real time performance and optimization. https://cjme.springeropen.com/
articles/10.1186/s10033-023-00976-5. [Accessed 03-07-2024].

[17] ros2 control demos/example 7/controller at master · ros-
controls/ros2 control demos — github.com. https : / / github . com / ros -

controls/ros2_control_demos/tree/master/example_7/controller.
[Accessed 02-07-2024].

[18] ros2 control demos/example 7/hardware at master · ros-
controls/ros2 control demos — github.com. https : / / github . com / ros -

controls / ros2 _ control _ demos / tree / master / example _ 7 / hardware.
[Accessed 02-07-2024].

[19] ros2 control demos/example 7/reference generator/send trajectory.cpp at
master · ros-controls/ros2 control demos — github.com. https://github.
com / ros - controls / ros2 _ control _ demos / blob / master / example _ 7 /

reference_generator/send_trajectory.cpp. [Accessed 02-07-2024].

[20] Tassila Tanneberger and Benedict Mehnert. Title of the Repository. tud-
ccc/lf-mujoco. 2024. url: git@github.com:tud-ccc/lf-mujoco.git.

[21] uFactory. XArm User Manual. Version V2.0.0. Accessed: 2024-06-15. May
2023. url: https://www.ufactory.cc/wp-content/uploads/2023/05/
XArm-User-Manual-V2.0.0.pdf.

[22] Wikipedia. Aircraft principal axes — Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/w/index.php?title=Aircraft%20principal%

20axes&oldid=1213129487. [Online; accessed 17-June-2024]. 2024.

[23] Wikipedia. Binocular disparity — Wikipedia, The Free Encyclopedia. http:
//en.wikipedia.org/w/index.php?title=Binocular%20disparity&

oldid=1226361244. [Online; accessed 27-June-2024]. 2024.

[24] Wikipedia. Motion planning — Wikipedia, The Free Encyclopedia. http://
en.wikipedia.org/w/index.php?title=Motion%20planning&oldid=

1212639048. [Online; accessed 11-June-2024]. 2024.

37

https://doi.org/10.1145/2968478.2968502
https://doi.org/10.1145/3617687
https://doi.org/10.1145/3617687
https://doi.org/10.1145/3617687
https://moveit.ros.org/
https://docs.ros.org/en/iron/Concepts/Basic/About-Nodes.html
https://cjme.springeropen.com/articles/10.1186/s10033-023-00976-5
https://cjme.springeropen.com/articles/10.1186/s10033-023-00976-5
https://github.com/ros-controls/ros2_control_demos/tree/master/example_7/controller
https://github.com/ros-controls/ros2_control_demos/tree/master/example_7/controller
https://github.com/ros-controls/ros2_control_demos/tree/master/example_7/hardware
https://github.com/ros-controls/ros2_control_demos/tree/master/example_7/hardware
https://github.com/ros-controls/ros2_control_demos/blob/master/example_7/reference_generator/send_trajectory.cpp
https://github.com/ros-controls/ros2_control_demos/blob/master/example_7/reference_generator/send_trajectory.cpp
https://github.com/ros-controls/ros2_control_demos/blob/master/example_7/reference_generator/send_trajectory.cpp
git@github.com:tud-ccc/lf-mujoco.git
https://www.ufactory.cc/wp-content/uploads/2023/05/XArm-User-Manual-V2.0.0.pdf
https://www.ufactory.cc/wp-content/uploads/2023/05/XArm-User-Manual-V2.0.0.pdf
http://en.wikipedia.org/w/index.php?title=Aircraft%20principal%20axes&oldid=1213129487
http://en.wikipedia.org/w/index.php?title=Aircraft%20principal%20axes&oldid=1213129487
http://en.wikipedia.org/w/index.php?title=Binocular%20disparity&oldid=1226361244
http://en.wikipedia.org/w/index.php?title=Binocular%20disparity&oldid=1226361244
http://en.wikipedia.org/w/index.php?title=Binocular%20disparity&oldid=1226361244
http://en.wikipedia.org/w/index.php?title=Motion%20planning&oldid=1212639048
http://en.wikipedia.org/w/index.php?title=Motion%20planning&oldid=1212639048
http://en.wikipedia.org/w/index.php?title=Motion%20planning&oldid=1212639048

[25] Wikipedia. Omnetpp — Wikipedia, The Free Encyclopedia. https://de.
wikipedia.org/wiki/OMNeT%2B%2B. Accessed: 2024-06-17.

[26] Wikipedia. Robot kinematics — Wikipedia, The Free Encyclopedia. http:
//en.wikipedia.org/w/index.php?title=Robot%20kinematics&oldid=

1152657384. [Online; accessed 11-June-2024]. 2024.

[27] www2.eecs.berkeley.edu. https : / / www2 . eecs . berkeley . edu / Pubs /

TechRpts/2024/EECS-2024-131.pdf. [Accessed 03-07-2024].

38

https://de.wikipedia.org/wiki/OMNeT%2B%2B
https://de.wikipedia.org/wiki/OMNeT%2B%2B
http://en.wikipedia.org/w/index.php?title=Robot%20kinematics&oldid=1152657384
http://en.wikipedia.org/w/index.php?title=Robot%20kinematics&oldid=1152657384
http://en.wikipedia.org/w/index.php?title=Robot%20kinematics&oldid=1152657384
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-131.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-131.pdf

	Introduction
	Background
	Lingua Franca
	Robot Control
	XArm 7
	Lingua Franca Control
	ROS
	Resource Manager
	Controller Manager
	Controller
	Hardware Components
	Hardware Description in URDF

	Design and Implementation
	Interface to the Robot
	Motion Planning Network
	Trajectory Planning
	Velocity Control
	Perception
	Robot Control Design in ROS2
	Creating the URDF file
	Construction
	Hardware Interface
	Writing a Controller
	Controller Implementation
	Further Network Nodes
	Summary

	Evaluation
	Debugging
	Comparison
	Real-time Performance and Reliability
	Scalability and Node Management

	Conclusion and Outlook

