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Abstract—Federated learning enables decentralized model
training across multiple clients, preserving data privacy by not
sharing raw data with a central server while exploiting the variety
of data available across clients. Despite its advantages, challenges
such as frail privacy, non-independent and non-identical data
distributions among clients, and other issues remain unsolved.

This paper introduces FedWork, a flexible framework for
benchmarking federated learning methods. FedWork supports
various datasets, aggregation methods, and neural network ar-
chitectures. We also propose FedPoll, a novel aggregation method
that reduces communication overhead and enhances privacy.
FedPoll includes two variants: FedPoll-Nearest and FedPoll-
MaxMin. Our evaluations show that in non-i.i.d. environments,
FedPoll-MaxMin achieves 95% accuracy on the MNIST dataset
with partial client participation, outperforming FedAvg, FedAvg-
QSGD, FedProx and FedPoll-Nearest, which achieve around
40% with fluctuations. Despite a slight increase in computation
time, FedPoll-MaxMin demonstrates significant potential for
improving federated learning in challenging settings. Moreover, in
a more challenging federated learning scenario, FedPoll-MaxMin
achieved acceptable accuracy with ResNet18 on the CIFAR-
10 dataset, while FedAvg failed to converge, and SCAFFOLD
achieved lower accuracy with greater fluctuations.

Index Terms—Federated Learning, FedPoll, FedWork, Aggre-
gation, Robustness, Communication-Efficient

I. INTRODUCTION

In recent years, the proliferation of powerful, compact
computational units such as smartphones and various Internet
of Things (IoT) devices—including wearable healthcare mon-
itors, smart home systems, and security devices—has created
an ideal setting for edge computing and, particularly, edge AI.
These devices not only boast significant processing capabilities
but also feature a broad array of sensors that generate vast
amounts of data. Given the relentless advancements in artificial
intelligence, leveraging these developments to improve quality
of life has become essential. Consequently, implementing AI
on edge devices is no longer just an option but a necessity.
Furthermore, training AI models with diverse and extensive
datasets is critical for enhancing the models’ accuracy and
reliability. This robust hardware infrastructure enables the
local training of models using readily accessible data.

However, models trained on local datasets often perform
optimally only within their specific environments. Accessing
a broader range of data poses substantial challenges. A typical
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solution involves transferring data to centralized servers, which
can enhance processing capabilities and accelerate model
training. Despite the benefits of increased data diversity, this
method raises significant privacy concerns due to the potential
for data leakage and misuse during transfer.

To mitigate these challenges, federated learning presents a
viable solution. In this model, a central server coordinates
the training process but does not access raw data directly.
Instead, each participant trains a model on their local dataset
and transmits the trained model, not the raw data, back to the
server. This approach safeguards privacy and facilitates access
to diverse datasets. Consequently, the globally aggregated
model, which combines insights from all participant models,
is robust and effective across varied local datasets, even those
it has not previously encountered.

The concept of federated learning was first introduced
by Google in 2016 [16]. Although it resolves many issues,
federated learning still faces significant challenges such as
communication overhead, hardware diversity, data variability,
and privacy and security risks [11], [15]. Communication
overhead, a critical concern, stems from the need to syn-
chronize large volumes of model data between the server
and clients at the end of each training round. This process
can lead to network congestion, particularly over unstable or
constrained network connections like WiFi. Hardware diversity
further complicates matters, as differences in storage capacity,
processor capabilities, and network connections (e.g., WiFi,
5G, 4G) affect the efficiency of participants in the federated
learning process. Disparities in hardware and network can
lead to inconsistencies in model training and even sudden dis-
connections [9]. Additionally, statistical heterogeneity, which
arises from variations within datasets, remains an inherent
challenge that must be managed.

Privacy and security remain paramount in federated learn-
ing. Although this approach obviates the need to transmit raw
data to a central server, it is still possible to infer sensitive
user information from the models sent to the server [22].
Furthermore, the system is vulnerable to various types of
attacks. Data Poisoning, for instance, involves manipulating
the trained local model, while Model Poisoning targets the
integrity of client data, both of which are potent threats posed
by malicious entities [15].

To counteract the challenge of statistical heterogene-



ity—stemming from the diverse and non-i.i.d. nature of dis-
tributed private local datasets—various strategies have been
developed. One notable method is FedProx, introduced by Li et
al. [10]. This technique incorporates an additional penalty term
into the loss function during the local training phase at each
node. This penalty reflects the divergence between the local
model and the globally aggregated model. Thus, during train-
ing, clients strive to minimize not only their individual model’s
error but also the disparity between their model and the global
standard. This dual optimization helps align the local updates
more closely with the global model, improving overall system
coherence and effectiveness. In addition, Karimireddy et al.
[7] proposed a method called SCAFFOLD to address variance
among clients in federated learning. This approach mitigates
client drift during local updates by using control variates,
which correct the misalignment between local and global
models. SCAFFOLD leverages similarities in client data,
resulting in more consistent updates and faster convergence.
Consequently, fewer communication rounds are needed to
achieve convergence, enhancing the efficiency of the federated
learning process. However, it requires updating global control
variates by sending the client control variates model along with
the client model at each round. This necessity effectively and
approximately doubles the amount of data exchanged between
clients and the server per round, as the control variates model
has the same shape as the client model.

To reduce communication overhead, numerous strategies
have been developed for efficiently transferring models or
gradients. Konečný et al. [8] detailed primary methods for
decreasing model size during synchronization. They explored
two general strategies: Structured updates, which involve
sending structurally simplified models from clients to the
server, and Sketched updates, which entail sending compressed
models. Striking a balance between accuracy and reduced
communication size is a constant trade-off. Reisizadeh et al.
[18] introduced a technique where only the quantized gradients
of trained models from a subset of clients are sent periodically,
rather than at the end of each training round. WANG et al.
[20] proposed a method named CMFL that aims to reduce
communication demands by transmitting only those gradients
where the frequency of sign changes between the current and
previous gradients exceeds a specific threshold. This selective
transmission significantly lowers the communication load.

A prominent approach in enhancing communication effi-
ciency in federated learning is through Sketched updates, espe-
cially via quantization methods. Various types of quantization,
such as Uniform Quantization and Probabilistic Quantization
[8], are employed to streamline data transmission [21]. A
recent notable quantization technique, QSGD, was introduced
by Alistarh et al. [1]. In QSGD, gradients are quantized using
randomized rounding to discrete values. Unlike deterministic
methods, which round gradients to the nearest discrete level,
QSGD uses randomized rounding, assigning each gradient
component to one of several predefined levels. This random-
ization mitigates quantization error and potentially enhances
the convergence properties of SGD, particularly where tradi-
tional quantization might introduce bias.

The importance of privacy and security in federated learning

has consistently been a focal point. Liu et al. [13] conducted a
comprehensive survey on privacy-preserving strategies during
the aggregation stage of federated learning. Their findings
highlight several key techniques for maintaining privacy: One-
time Pad, which utilizes a random key at the beginning of
communications; Homomorphic Encryption, enabling arith-
metic operations like averaging on encrypted models without
decryption; Secure Multi-Party Computation, which allows
multiple parties to collaboratively compute on their private
data while preserving confidentiality and without disclosing
individual inputs; Differential Privacy, which involves adding
noise to the model so that the outcomes of operations such as
averaging remain unchanged; Blockchain, incorporating smart
contracts and cryptocurrency benefits into federated learning;
and Trusted Execution Environments, secure areas within main
processors like ARM-TrustZone that protect sensitive data and
code in an isolated and trusted space.

Additionally, Lyu et al. [14] have provided an extensive sur-
vey on recent threats to federated learning, including potential
attacks and defensive measures. Geyer et al. [5] introduced
methodologies for incorporating Gaussian noise at the client
level, a technique that bolsters privacy while preserving the
accuracy of the model.

In this paper, we introduce a lightweight federated learning
framework designed for research purposes, named FedWork.
Additionally, we propose a novel aggregation method called
FedPoll, specifically developed to enhance communication
efficiency while improving security and privacy within the
federated learning process.

Section II is dedicated to discussing proposed federated
learning frameworks. In this section, we introduce several
existing frameworks, unveil FedWork, outline its key features,
and depict its architecture. Section III provides a comprehen-
sive overview of FedPoll, our innovative aggregation method.
This section delves into the federated learning procedure,
with a specific focus on the aggregation step, and provides
a detailed explanation of the FedPoll method. Additionally,
we introduce two specific approaches within this concept and
detail the FedPoll algorithm. Finally, in Section IV, we present
comparative analyses of FedPoll, illustrated through various
figures.

II. FEDWORK

The expanding landscape of federated learning has high-
lighted the need for frameworks that can effectively assess and
analyze different methodologies. Several open-source feder-
ated learning frameworks, designed to cater to research needs,
are currently available. Notable examples include TensorFlow
Federated (TFF) by Google [3], PySyft [19], Federated AI
Technology Enabler (FATE) [12], LEAF (A Benchmark for
Federated Settings) [4], OpenFL (Open Federated Learning)
[17], Flower (A Friendly Federated Learning Framework) [2],
and FedML [6].

Each of these frameworks serves a unique purpose: TFF
enhances the scalability of TensorFlow applications; PySyft
focuses on privacy and security; FATE is tailored for federated
AI ecosystems with robust security features; LEAF functions
as a benchmarking tool for federated algorithms; OpenFL



facilitates secure and collaborative learning across different
entities; FedML offers a comprehensive platform that supports
a wide range of algorithms for researchers and developers;
and Flower provides a user-friendly, scalable, and framework-
agnostic platform that is compatible with various machine
learning libraries. Among these, Flower, FedML, and LEAF
originate from academic initiatives, while the rest are industry
developments.

In this paper, we introduce FedWork, our newly devel-
oped framework designed to assess and evaluate the Fed-
Poll method. During our exploration of federated learning,
we recognized the necessity for an ultra-lightweight, highly
configurable framework. FedWork, which is under 1MB in
size, meets this need by offering exceptional flexibility and
extensibility. It facilitates rapid implementation and compara-
tive analysis of various strategies or ideas, and it supports the
creation of customizable reports. Developed as an open-source
tool, FedWork is specifically designed for benchmarking and
comparison, employing PyTorch as its foundational machine
learning library.

In FedWork, the entirety of the assessment functionalities
is configured through an XML file. This configuration encom-
passes dataset settings (including type and specifics), server
and virtual client settings (detailing participating clients),
comparison methods along with their specific configurations,
and the configurations for output figures.

FedWork includes a TCP network layer that is responsible
for managing packet framing and queuing, efficiently handling
the transmission and reception of large packets in segmented
chunks.

Additionally, FedWork features a unique client negotiation
mechanism. Each client is added to a client pool, and at the
start of each federated round, the federated learning method
determines the participation of clients based on predefined
criteria.

Prior to initiating the learning process, FedWork generates
datasets as specified in the XML file, designed in a non-i.i.d
manner. ”Non-i.i.d” refers to datasets that are not ”independent
and identically distributed,” a common scenario in federated
learning where each participant maintains a distinct, private
dataset. This configuration introduces complexities such as
data overlap, class imbalance, statistical heterogeneity, label
distribution skew, and feature distribution skew.

The dataset generator in FedWork can create datasets with
specified non-i.i.d. levels, expressed as percentages, while also
allowing for heterogeneous dataset sizes. This parameter con-
trols how much the label distributions deviate from uniformity.
A higher non-i.i.d. level leads to more variability in the class
distribution among clients. Figure 1 demonstrates this using
the MNIST dataset across a range of non-i.i.d. levels.

FedWork is equipped with several pre-implemented fed-
erated learning methods, including FedAvg, FedProx, Fed-
PAQ, Quantized FedAvg, and FedPoll, which we will explore
in detail in the following section. Adding a new federated
learning method to the framework is simplified through a
modular design. Developers can easily integrate new methods
by defining a class that inherits from a parent class and
implementing its abstract functions, such as aggregate, start

training, and select clients to train.
The framework also supports a variety of pre-implemented

neural network architectures, such as FeedForwardNet1 (two
layers), FeedForwardNet2 (three layers), and ResNet18. Each
architecture is encapsulated within a class, with configuration
variables dynamically assigned based on the settings in the
main XML configuration file prior to the assessment process.
Introducing a new neural network architecture involves creat-
ing a class file for the neural network, allowing for seamless
expansion.

For benchmarking and monitoring performance, FedWork
employs a profiler service that measures the duration between
two code points or tracks changes in specific variables. The
framework inherently records many essential parameters, and
extending its monitoring capabilities to include additional
parameters is straightforward through method extensions.

Additionally, FedWork incorporates a robust logger service
that offers multiple levels of logging and supports various
output types, such as files and network logs, configurable
through the XML file.

A. Architecture

FedWork is designed for flexibility while maintaining a
straightforward structure.

The architecture of FedWork revolves around a core module
that interprets the XML configuration file and orchestrates
subsequent processes. Initially, this core engages a non-i.i.d
dataset generator to construct the required datasets according
to the predefined specifications. These specifications include
the type of dataset (e.g., CIFAR10, MNIST, FashionMNIST),
the level of non-i.i.d dispersion, size heterogeneity, and other
relevant parameters. The datasets thus generated are stored as
discrete files.

Following dataset generation, the architecture simulates
virtual clients (representing federated learning nodes) on the
server machine. The core then proceeds to assemble the
necessary federated learning methods and constructs the neural
network architecture based on the specifications detailed in the
XML file, such as the number of nodes in hidden layers.

The federated learning process is initiated and continues
through the specified rounds of the method, with performance
and operation data being systematically captured and stored by
the profiler service. This process is replicated for all methods
delineated in the configuration file, with each method’s profiler
producing a detailed report.

Ultimately, the core compiles benchmarks and generates
comprehensive reports as outlined in the configuration file,
which are presented in figure formats. The structural compo-
nents of FedWork are depicted in Figure 2. You can access
this framework here: https://github.com/hamidrm/FedWork.

III. FEDPOLL

In this section, we introduce a novel aggregation method
called FedPoll, which utilizes a polling mechanism among
clients to select appropriate values for each corresponding
element in the global model. This method not only reduces
the size of communication data, thereby decreasing commu-
nication overhead, but it also enhances privacy and security.
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Fig. 1: Visualizing the impact of non-i.i.d. levels on data distribution and sample size across clients in FedWork (0%, 20%,
40% on the first row; 60%, 80%, and 100% on the second row, from left to right)
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Fig. 2: Blocks of the FedWork Framework

We will discuss the specific mechanisms of FedPoll and
propose two approaches based on the polling process. The
implementation of this method within the FedWork framework
and the evaluation results will be presented in the following
section.

A. Main Idea

FedPoll aggregates client models based on their choices
rather than directly using the raw model data. A significant
challenge in federated learning is the communication overhead
and the volume of data that must be transmitted from clients
to the server. FedPoll addresses this by transmitting pointers
to choices instead of the actual model values, significantly
reducing the data size and making it configurable.

Moreover, the non-i.i.d nature of client datasets in federated
learning often hampers the convergence of the global model.
The FedPoll method demonstrates notable improvements in
mitigating this issue. Additionally, as previously discussed,
client privacy is at risk in conventional federated learning
setups. By using pointers rather than actual data values,
FedPoll enhances both the security and privacy of client data.

In federated learning, the overarching goal is to minimize a
sum of non-convex neural network objectives across various
clients. Assuming each client has an equal sample size, the
optimization problem can be typically formulated as:

min
θ
f(θ), f(θ) :=

1

N

N∑
i=1

Fi(θ) (1)

This formulation seeks the optimal parameter set, θ, which
best fits the global model. Each local objective, Fi, for node
i is defined as the expected value of the loss function over its
local sample distribution:

Fi(θ) := Eξ∼Di
[L(θ, ξ)] (2)

In the equation above, ξ represents a local dataset sample
from a distribution Di, which typically adheres to an unknown
distribution due to the non-i.i.d nature of the data. L denotes
the loss function utilized by the client.

In FedAvg and similar federated learning methodologies,
the process typically begins with the server initializing the
global model. This iterative process involves several steps until
specific criteria are satisfied, summarized as follows:

1) Global Model Distribution: The server sends the global
model to all participating clients.

2) Model Initialization: Clients initialize their models
using the received global model.

3) Local Training: Clients train on their local datasets
for a predetermined number of epochs using a specific
optimizer.

4) Model Submission: Clients send their trained models
(or the gradients) back to the server.



5) Model Aggregation: The server aggregates the received
models, typically using averaging or another method.

6) Convergence Check: The server evaluates whether the
predefined criteria have been met. If not, the iteration
cycle repeats.

Each iteration of these steps is considered a round, which
repeats upon the completion of the previous iteration or after
a specified time interval.

Within this ecosystem, each client trains its model using an
optimizer such as Stochastic Gradient Descent (SGD) over a
designated number of epochs. The optimization, particularly
when applied to mini-batches of data, is known as mini-SGD.
The optimization formula for training the model using SGD
is expressed as:

θjt+1 = θjt − η∇f(θjt ) (3)

where θjt+1 and θjt are the model parameters at times t+1 and
t respectively, η is the learning rate, and∇f(θjt ) is the gradient
of the loss function with respect to the model parameters at
time t.

After training for a designated number of epochs, the clients
send their trained models to the server. The aggregation step,
crucial for updating the global model, involves combining all
the clients’ models. In FedAvg, which is the foundational
method in federated learning, the global model is updated by
averaging the trained models received from the clients in each
round. The mathematical formulation for updating the global
model in FedAvg is given by:

θGt+1 =
1

m

N∑
j=1

njθj (4)

Here, θGt+1 represents the global model parameters at time t+
1, while θj denotes the trained model received from the j-
th client after a certain number of epochs. The symbol m
represents the total number of data points across all clients,
N is the number of clients, and nj is the number of data points
held by the j-th client.

In FedPoll, the process initiates with the server setting up a
global model and distributing it to the clients. Each client then
optimizes this model based on their local dataset and sends the
trained model back to the server. In the initial round, the server
uses an averaging technique similar to FedAvg to compute the
first version of the global model. In subsequent rounds, the
server introduces a new method where it provides multiple
suitable random values C for each model element. The clients
select from these values based on their optimized models. Both
clients and server synchronize using the same random set for
each round and for each network layer, with synchronization
in the first round facilitated through the sharing of an initial
seed.

Additionally, the server sends the global model along with
the appropriate radius for each layer in each round (figure
5). This radius determines the maximum allowable deviation
between the newly trained model values and the previous ones
across all clients for each network layer. The significance and
impact of this radius will be discussed in detail in the following
section. In this method, clients do not send the gradients of
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Fig. 3: FedPoll Round Process

their trained models. Instead, they send the selected indices of
values from the random set. This selection is conducted using
the function g(C, i, θjt+1), where j is the index of the client.
If this function returns true, the i-th index of the random set
C will be chosen. The set of selected indices, V , is then sent
to the server. The server aggregates the clients’ models using
a function h to compute the global model θGt+1. In this paper,
we propose two approaches for the g and h functions, which
will be discussed in the following sections.

Additionally, FedPoll presents a common random set that
divides the probable boundary of the gradient changes of
clients in each round into K segments. These values are
random, and clients select one based on their trained model.
This aspect of FedPoll employs a specific type of quantization.

Clients attempt to represent their trained model using one of
the random values, selecting the most appropriate one (Figure
4). The random set of candidate values, C(i), adheres to a
uniform distribution. In the next section, we will discuss this

Fig. 4: Random points with current optimum value for client
i and global optimum value

method in more detail.

B. Principles
According to the FedPoll method, the difference between

the newly trained model and the prior trained model for each
parameter in each client model at the end of the round is



bounded by the value r. Additionally, the new gradient can be
expressed by adding the value Ct[Vj ] to a specific error value
ejt for the j-th client, compensating for the difference between
the actual gradient value and Ct[Vj ]. Thus, we can establish
some primary assumptions as follows:

|θjt+1 − θ
j
t | ≤ r

j
t+1

η∇f(θjt ) =Ct[Vj ] + ejt
(5)

Regarding (3), we can rewrite (5) as:

θjt − θ
j
t+1 = Ct[Vj ] + ejt (6)

|Ct[Vj ] + ejt | ≤ r
j
t+1 (7)

We assume C ∼ U(−r, r) as the candidate set, which is pop-
ulated with random values. In a non-i.i.d. federated learning
ecosystem (which closely mirrors real-world conditions), θjt+1,
the model obtained after e epochs of training by the j-th client
on its local dataset, follows an undetectable and unknown
distribution. This is due to the completely unpredictable nature
of the local datasets, which cannot be associated with any
standard type of distribution.

If the g function selects the nearest value to the actual gra-
dient θjt+1, C[Vj ] will also adhere to an unknown distribution.
This probabilistic environment presents a significant challenge
in modeling the changes in clients’ gradients.

The probability of choosing a suitable value can be deter-
mined by the following equation:

P (|η∇f(θjt )− Ct[Vj ]| < εm) = 1−
(

1− εm
r

)K
(8)

We know that if K, the number of random candidates, is
sufficiently large, we can assume ejt (where εm = maxj e

j
t )

can be made to approach zero. This is because, with an
increasing number of options for clients to choose from,
according to the role of the g function, the probability of
Ct[Vj ] approaching the actual gradient η∇f(θjt ) increases as
well.

We need to find an appropriate approximation for the
optimum value of r(l).

If we sum (6) across all clients, we get:

N∑
j=1

(θjt − θ
j
t+1) =

N∑
j=1

(Ct[Vj ] + ejt ) (9)

According to (4) and (3), we can rewrite (10) as:

θGt − θGt+1 =
1

N

N∑
j=1

(Ct[Vj ] + ejt ) (10)

|∆θGt+1| =
1

N

∣∣∣∣∣∣
N∑
j=1

(Ct[Vj ] + ejt )

∣∣∣∣∣∣ (11)

We also know that:

1

N

∣∣∣∣∣∣
N∑
j=1

(Ct[Vj ] + ejt )

∣∣∣∣∣∣ ≤ 1

N

N∑
j=1

∣∣∣Ct[Vj ] + ejt

∣∣∣ (12)

Thus, according to (7):

1

N

∣∣∣∣∣∣
N∑
j=1

(Ct[Vj ] + ejt )

∣∣∣∣∣∣ ≤ rjt+1 (13)

Finally, we can bound r for each parameter in the models via:

|∆θGt+1| ≤ r
j
t+1 (14)

We can find r as maxj r
j
t+1 across all clients. This gives us:

|∆θGt+1| ≤ r

Additionally, we can cluster a batch of parameters of the
layers in the neural networks to mitigate the number of r
parameters. Thus, the minimum possible value for r will be:

r(l) = |∆θGt (l)| (15)

We add a constant value ε to allow some drift for the next
round gradient changes:

r(l) = |∆θGt (l)|+ ε (16)

We will discuss the results of this approach in the next section.
We will present two different approaches for the FedPoll
functions in the following subsections.

FedPoll Nearest Based

This approach provides a straightforward method for de-
termining the functions g and h. The function g selects the
candidate that is closest to the actual value. The function h,
on the other hand, computes a simple average of the candidates
based on data from N clients. It takes into account the total
number of data points across all clients (m) and the number
of data points specific to client j (nj).

g(C, i, θt) : i == arg min
m
{|C[m]− θt|}

h(w) :
1

m

N∑
j=1

njwj

FedPoll Max-Min

In this approach, we select the first candidate that exceeds
the actual value, introducing a positive bias to the estimation.
First, we sort the candidates in ascending order on both the
client and server sides. The client then chooses the candidate
based on the first value in the sorted set C that is greater than
θt.

We define the function g such that it returns a Boolean
value indicating whether a given index i is the expected index
where the condition θt < Cm first holds in the sorted list of
candidates C. Specifically, the function is defined as:

g(C, i, θt) : i == arg min
m
{C[m] > θt}

In this approach, the h function does not use simple averaging.
Instead, it assesses each of the received indices from all clients.
Using the sorted set C and re-indexing it according to the new
indices, we find the minimum index across all clients that is
greater than zero, denoted as a. We also find the maximum



index across all clients that is less than N , denoted as b. Thus,
we can write h as follows:

h(w) :
Ca + Cb

2

In special cases where all clients select the index zero or N , we
use the minimum and maximum values within the candidates,
respectively.

With these definitions, we use the midrange, which is
the middle value between the maximum and the minimum
approximations represented by the clients. By aggregating
clients’ models using midrange instead of average, we choose
the middle value of optimal points for each model’s parameter
across all clients at each communication round. If clients use
IID data, we can estimate a Gaussian distribution across clients
for each model’s parameter. In this way, the expected value
of the average of the parameters approaches the mean value,
and after an appropriate number of rounds, we will have an
acceptable global optimum point.

We propose using the midrange, which will achieve a global
optimum due to the model distribution. Although the midrange
will increase the variance over rounds, it will take more
rounds to reach a certain optimum value. However, we can
reduce communication overhead significantly. Additionally, by
using midrange instead of averaging, we pay more attention to
distinct clients (isolated islands) who have completely different
datasets in non-i.i.d environments (Figure 6).

Adopting midrange aggregation indeed shifts the objective
of federated learning from minimizing a loss function through
averaging to finding a central point between extremes.

For the r value, we use (16).

r0 r1 r2 r3 r4 r5 r6 r7

r4 r3 r0 r7 r5 r6 r1 r2

wi

Fig. 5: Choosing an appropriate index of sorted candidates,
denoted as Wi, represents the optimal model parameter. The
green random values are less than Wi. Consequently, the client
will use 6 as this parameter to send.

C. Algorithm
Regarding the FedPoll process, we can represent its al-

gorithm in Algorithm 1. This algorithm uses the g and h
functions discussed in the previous subsections.

IV. EVALUATIONS

All our evaluations were conducted using the FedWork
framework. We assessed the performance of our proposed
method, FedPoll, in comparison with FedProx, SCAFFOLD,
standard FedAvg, and quantized FedAvg. Each evaluation
involved 10 clients with a medium level of non-i.i.d. data
distribution (50% in FedWork). The neural network archi-
tecture used was a simple fully connected feed-forward lin-
ear network with one hidden layer (784x1024x10). In each

Local Optimum 1
Local Optimum 2
Local Optimum 3
Local Optimum 4
Midrange of Optimums
Average of Optimums

Fig. 6: Imaginary optimal values for four clients’ convex
functions and the server-calculated optimal point using the
Midrange and Average methods.

round, 5 randomly selected clients (out of the 10 available)
contributed to training the model over 3 epochs across 200
rounds. The results for loss and accuracy are shown in
Figures 7a and 7b. FedAvg, FedAvg-QSGD, FedProx, and
FedPoll-Nearest achieved approximately 40% accuracy with
significant fluctuations, while FedPoll-MaxMin reached 95%
and SCAFFOLD achieved 96%. In these evaluations, ε for
both FedPoll methods was set at 0.01 and K at 8, indicating a
need for 3-bits per parameter. FedAvg-QSGD was configured
for 7 levels of quantization, and µ for FedProx was set to 1.
The compression ratios for FedPoll-Nearest, FedPoll-MaxMin,
and FedAvg-QSGD were 10.6, 10.6, and 8, respectively. As
shown in Figure 7b, the computational overhead for FedPoll-
MaxMin was slightly higher than that of FedProx. However,
over 200 rounds, FedPoll-Nearest and SCAFFOLD required
more time than FedPoll-MaxMin. It is important to note that,
while FedPoll’s accuracy is 1% lower than SCAFFOLD’s,
FedPoll uses only 3 bits (index of the selected candidate) per
parameter compared to SCAFFOLD’s 64 bits (32 bits for the
model + 32 bits for control variates). In our next evaluation
(Figure 8), we tested these methods under more challenging
conditions using the CIFAR-10 dataset, which was distributed
among all clients with a moderate level of non-i.i.d. For this
evaluation, we employed the ResNet18 architecture. As before,
5 out of 10 clients contributed to training the model over 3
epochs per round, with K set to 8, indicating a need for 3
bits per parameter. The evaluation included FedPoll-MaxMin,
SCAFFOLD, and FedAvg.

The accuracy of the FedAvg method stagnated at its ini-
tial level, never exceeding 10% on the CIFAR-10 dataset,
which consists of 10 classes. In contrast, SCAFFOLD ini-
tially demonstrated a rapid increase in accuracy compared
to FedPoll-MaxMin but exhibited significant fluctuations and
showed less improvement after first 40 rounds, ultimately
reaching 72%. Meanwhile, FedPoll-MaxMin steadily im-
proved, achieving approximately 85% accuracy after 100
rounds with ε = 10−3.



Algorithm 1 FedPoll Algorithm

1: Server Variables: r[],FirstAggregation
2: procedure FEDPOLLSERVER(θG,∆θC [])
3: if FirstAggregation = True then
4: FirstAggregation← False
5: θG ← FEDAVG(ClientModels)
6: return θG
7: end if
8: for l in θG.Layers do
9: C ← empty list

10: for k = 1 to K do
11: R← RANDOMLIKE(∆θG[l],−r[l], r[l]) .

Generate R sets like ∆θG.Layers[l] within radius r[l]
12: Append R to C
13: end for
14: T ← apply ∆θC based on C
15: NewLayer ← HFUNCTION(T + θG.Layers[l])
16: r[l]← |NewLayer − l|+ ε
17: θG[l]← NewLayer
18: end for
19: end procedure

20: Client Variables: r[], e,FirstAggregation
21: procedure FEDPOLLCLIENT(θG)
22: θ ← θG
23: for epoch = 1 to e do
24: θ ← θ − η∆f(θ,X ,Y)
25: end for
26: ∆θ ← updates of the trained model
27: if FirstAggregation = True then
28: FirstAggregation← False
29: return ∆θ
30: end if
31: C ← empty list
32: for k = 1 to K do
33: R← RANDOMLIKE(∆θG[l],−r[l], r[l]) .

Generate R sets like ∆θG.Layers[l] within radius r[l]
34: Append R to C
35: end for
36: for index, parameter in ∆θ do
37: ∆θ[index] ← k where GFUNC-

TION(C[index], k,∆θ) is True
38: end for
39: return ∆θ
40: end procedure

Additionally, our experiments with varying ε values high-
lighted their substantial impact on the accuracy of FedPoll-
MaxMin. A very low ε value resulted in minimal and stagnant
accuracy. A larger ε value led to a slow but steady increase
in accuracy. Conversely, an even larger ε value caused greater
fluctuations in accuracy without yielding significant improve-
ments compared to other ε values.

V. CONCLUSION

We proposed a flexible and modular federated learning
framework called FedWork, which supports various datasets,
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Fig. 7: Methods Comparison

aggregation methods, and neural network architectures. This
lightweight and straightforward framework is designed for
benchmarking different approaches and ideas in the feder-
ated learning domain. The flexibility of FedWork is largely
attributed to its XML configuration file, which allows for
comprehensive settings adjustments in federated learning ex-
periments.

Additionally, we introduced a new aggregation method
called FedPoll, which functions similarly to a quantization
method in a non-uniform data distribution environment. Fed-
Poll reduces overhead and bottlenecks by decreasing the size
of data sent from low-resource clients to the server. Moreover,
by incorporating differential privacy features and avoiding the
transmission of values directly related to the trained model, it
enhances privacy and security. We proposed two approaches
within this strategy: FedPoll-Nearest and FedPoll-MaxMin.

Our experiments demonstrate that, in a non-i.i.d. environ-
ment with only a subset of clients participating, the stan-
dard FedAvg algorithm struggles to converge. In an ini-
tial evaluation with the non-i.i.d. MNIST dataset, employing
a convex architecture (a linear feedforward network with
one hidden layer) and partial client contributions, FedPoll-
MaxMin attained 95% accuracy, while SCAFFOLD reached
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Fig. 8: Evaluation on CIFAR10 and ResNet18

96%. FedAvg, FedAvg-QSGD, and FedPoll-Nearest, however,
only achieved around 40% accuracy with notable fluctuations.
Although FedPoll-MaxMin incurs slightly higher computation
time compared to FedAvg (but less than SCAFFOLD), its
performance highlights its potential for improving federated
learning outcomes in challenging environments.

In our second evaluation using ResNet18 with the CIFAR-
10 dataset, a non-convex optimization problem, SCAFFOLD
achieves approximately 72% accuracy, though with significant
fluctuations. In contrast, FedPoll-MaxMin delivers a more
stable accuracy of 85%.

It’s worth noting that FedPoll requires only an index (3 bits
in our evaluations) for each parameter, rather than transmitting
raw data. Conversely, SCAFFOLD needs a floating-point
number for client control variates in addition to a floating point
for each parameter. Moreover, the noisy nature of FedPoll’s
data and the lack of access to the shared seed during the
initial communication round make it difficult for a man-in-the-
middle attacker to infer the transmitted model. Additionally, a
malicious client would struggle to alter the global model due
to the bounded values of candidate parameters.
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