BitSys: Bitwise Systolic Array Architecture for Multi-precision Quantized Hardware Accelerators

Yuhao Liu^{1,3} (D, Student Member, IEEE, Salim Ullah² (D, Akash Kumar^{2,3} (D, Senior Member, IEEE)

¹Dresden University of Technology, Germany ²Ruhr University Bochum, Germany

³Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI Dresden/Leipzig), Germany

Email: {yuhao.liu1, salim.ullah}@tu-dresden.de, akash.kumar@rub.de

I. EXTENDED ABSTRACT

Ouantized Neural Networks (ONN) have been widely applied in hardware accelerator designs for edge. Because lower precision in quantization leads to higher accuracy loss, the mixed-precision scheme has been explored by using different precision in different layers to trade off resource consumption and inference accuracy. Because regular multiplier designs do not support the reconfiguration for multi-precision, we explored a runtime reconfigurable multi-precision bitwise systolic array design, BitSys, for mixed-precision multiplication in QNN accelerators. The popular design in previous works, such as [1], divides the inputs of multipliers as two parts for four sub-multipliers and preset left shifting, achieving the reconfigurable multiplication by disabling two of the submultipliers. Our design is inspired by the Bitshifter architecture from the works of Liu et al. [2, 1]. We convert the $n \times n$ -bit multiplication as $A \times B = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{i+j} a_i b_j$. As shown in Figure 1, partial products P_{i+j} is the sum of subpartial products $a_i b_j$ with left shifting value, i + j. The subpartial product masks select the desired $a_i b_j$ to configure the multi-channel according to the precision. One mask square represents one channel. Therefore, we can implement a bitwise systolic array as Figure 2 (left). The sub-partial product computation and mask are fused in one LUT primitive as one processing element in Figure 2 (right up). The sums of elements, considered the sign-bits, in the diagonal with the same left shifting value shown in Figure 2 (left) are the inputs, D_k , of the output-generate pipeline of Figure 2 (right down). Systolic array sequentially generates the D_k , and the final multi-precision output is the sum of all D_k . We implemented our BitSys multiplier as a systolic array for mixed-precision QNN acceleration. The comparison with the works of Liu et al. [1] is shown in Table I. Our systolic array accelerator consumes more hardware resources than the three single-layer accelerator instances of Liu et al. [1]. However, because of

TABLE I: Comparison of Resource Consumption and Latency

Design	Precision	LUT	FF	BRAM	Frequency	Latency/ μs		
Vivado IP [1]	8/8/8/8 1/2/4/8	24090	22175	135	150MHz	137.654 131.059		
Bitshifiter [1] Multiplier Tree [1]	1/2/4/8 1/2/4/8	42952 37020	22486 22500	138 138	125MHz 100MHz	56.658 69.27		
BitSys	1/2/4/8	44468	64176	139.5	250MHz	36.741		

8 bits x 8 bits Multi-Precision Multiplication																										
D	$a_i b_i (i = 0 \rightarrow 7, i = 0 \rightarrow 7)$									left bitshift																
P_{i+j} $u_i b_j$ $(i = 0 =$						→ /,	7, J = 0 → 7)							1bit	1	2bi	t	4b	it	8b	it	su	m			
P_0	Τ	a ₀ i	b 0														0		0		0		0		C)
P_1		a_1 i	b 0	$a_0 b$	b_1												1		1		1		1		1	L
P_2		a_0	7 2	$a_1 b$	b ₁	a_2	b ₀										0+2		2		2		2		2	2
P_3	$a_3b_0 \ a_2b_1 \ a_1b_2 \ a_0b_3$						3	. 1							1+2		3		3		3		3	3		
P4	$a_4b_0 \ a_3b_1 \ a_2b_2 \ a_1b_3$							$_{3} a_{4}$	$l_4 D_0$							0+4		0+4		4		4		4		
P5 D	$a_5 b_0 a_4 b_1 a_3 b_2 a_2 b_3$							3 <i>u</i> ₁	D4 b	<i>a</i> ₀	D5		a_0b_6			0+6		2+4		5		5			2	
P1	$a_{5}b_{0}$ $a_{5}b_{1}$ $a_{4}b_{2}$ $a_{3}b_{3}$						$3 u_2$	b_4 h.	<i>a</i>	b5	u(1+6					3+4 7			7		7	,			
P _P		a-1	20	nel	21	a=1	52 ba	a ₄ b	3 03	b₄ h⊧	a.	he	a	h7	u	007	0+8		0+8	B	0+	8	8		ŝ	2
P_9		a-1	22	ast	52	a.5	53 5₄	a ₄ b	5 a2	$a_{3}b_{5} = a_{2}b_{6} = a_{1}b_{7}$							1+8		1+8 1+8			8	9		ğ	
P_{10}		a-1	3	$a_6 l$	b_4	a5	b ₅	a_4b_1	6 a3	b_7		/					0 +10		2+8	B	2+	8	10		1	0
P ₁₁		a ₇ 1	54	$a_6 l$	5	a5	5 ₆	a4b	7								1+10		3+8	B	3+	8	11	.	1	1
P ₁₂		a ₇ 1	b ₅	$a_6 l$	b_6	a ₅	5 ₇	-									0+12	C)+1	2	4+	8	12		1	2
P 13		a7Ì	6	$a_6 b$	b 7												1+12	1	+1	2	5+	8	13	-	1	3
P ₁₄		a ₇ i	b ₇														0+14	2	2+1	2	6+	8	14	ł.	1	4
1 bit Cub Davidal Deaduate Maale 2 bit Cub Davidal Deaduate Maale 4 bit Cub Davidal Deaduate Maale														ck												
1	a.,	a.	a=	<i>a</i> .	a.	a	a.	<i>a</i> ₀	-	a.,	a	a.	<i>a</i> .	a.	<i>a</i> 2	<i>a</i> 1	a	-	a.,	a	. a.	<i>a</i> .	a2	a	a1	a
b ₂ 1	1	0	0	0	0	0	0	0	b7	1	1	0	0	0	0	0	0	b ₂	1	1	1	1	0	0	0	0
b ₆ (D	1	0	0	0	0	0	0	b_6	1	1	0	0	0	0	0	0	b_6	1	1	1	1	0	0	0	0
b5 0	D	0	1	0	0	0	0	0	b_5	0	0	1	1	0	0	0	0	b_5	1	1	1	1	0	0	0	0
b4 0	D	0	0	1	0	0	0	0	b_4	0	0	1	1	0	0	0	0	b_4	1	1	1	1	0	0	0	0
b3 0	D	0	0	0	1	0	0	0	b_3	0	0	0	0	1	1	0	0	b_3	0	0	0	0	1	1	1	1
b ₂	D	0	0	0	0	1	0	0	b_2	0	0	0	0	1	1	0	0	b_2	0	0	0	0	1	1	1	1
b1 0	D	0	0	0	0	0	1	0	b_1	0	0	0	0	0	0	1	1	b_1	0	0	0	0	1	1	1	1
b_0	D	0	0	0	0	0	0	1	b_0	0	0	0	0	0	0	1	1	b_0	0	0	0	0	1	1	1	1
-			4	-	-		~					• •		1.									1			
F	1	g.	I	•	Ir	ee	S	tru	ctu	e	0	tΝ	Λl	ilt	1-]	pre	ecisio	on	l	40	ccu	ım	nul	at	or	
	_			÷±	<u>-1</u> -	- +	-Ŀ	<u>-1-</u>	<u>+-</u> -	1	5														- 1	
		a ₇	H	7	8	9	• 10	• 11 •	12 • 13	• 14	÷	•	in_0	÷		_	-:					L.	UT6	_2	1	
		a ₆	-	6	7	- 8	• 9	• 10 •	11 - 12	• 13	1	•	in_1	\pm		÷	LU				MUX				↔	result
		a.		5	6	7	- 8	9	10 - 11	• 12	4	• P	attern	÷		1L					1					
ē			- i		÷		÷.		1		÷.	in_C	valid	Ť	Ľ	_	LU								✦	_valid
Log	-	°4	1	4		6	4	L ⁸ L	9 10		1	+ m_i	_vano	ι.											-1	
ata		a ₃		3	4	5	6	• 7 •	8 9	• 10	÷	+														
6		a ₂	H	2	3	• 4	- 5	- 6 -	7 - 8	- 9	÷.	۲,	+ *	*	CUT	+ Add	+ Add +	CUT	- ^	56 + -	Add	cut		8 +	Add 4	
		а,	1	. T.	2	+ 3	+ 4	5	6 7	• 8	÷	ort •		c.e 14		** 13	ee 12		0	e 1	ee 90		~	9	< e\$	
				+	+	+	E.		1.1			. 1		Ť.		1	1				1				1	
		a0.	L	4		Ľ	12		1	L,	1	-						_				_				
												Г		idd 🔸	сит	Add	Add ->	CUT	+ A4	5d -	Add	CUT	→ Ad	d 🔶	Add	сит
				2	۵	5	ت ا	Ъ,	م م	ک ا				et		ec2	ec]			4	23			6	**7	
				_	_							1		t.			1				+		- 1		1	

Fig. 2: Tree Structure of Multi-precision Accumulator

our bitwise processing design, *BitSys* instance can support 250MHz clock frequency because of the low critical path delay of our multiplier and achieves 188.5-274.7% speed-up in the evaluation of one four-layer 1/2/4/8-bit mixed-precision quantized MLP. Furthermore, our design does not change the input/out width when configuring to different precision, which can be easily integrated into existing accelerator designs.

REFERENCES

- Yuhao Liu et al. "High Flexibility Designs of Quantized Runtime Reconfigurable Multi-Precision Multipliers". In: *IEEE Embedded Systems Letters* (2023), pp. 1–1.
- [2] Negar Neda et al. "Multi-Precision Deep Neural Network Acceleration on FPGAs". In: 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE. 2022, pp. 454–459.