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Abstract—The rapid evolution of compute-intensive programs
from bio-signal to image-, and video-processing has moti-
vated moving toward Coarse Grained Reconfigurable Architec-
tures (CGRAs), having high parallelism capability with post-
fabrication datapath versatility. To enhance energy-efficiency of
such error-resilient applications, State-of-the-Art (SoA) CGRAs
exploit approximation techniques, while maintaining an accept-
able accuracy for the final Quality of Result (QoR). However, such
CGRAs suffer from overheads of utilizing separate Add/Mul/Div
units. We propose GREEN as an energy-efficient CGRA, which
enables synergistic effects of a chain of approximation and
optimization techniques in various levels of abstraction, from
application-, to architecture-, to circuit-level, in a cross-layer
hierarchy. Enabling this, GREEN offers different levels of energy-
accuracy trade-offs through the flexibility of its small Processing
Elements (PEs), each of which can support various functionalities
and precision-adaptability in a Single Instruction, Multiple Data
(SIMD) or Multiple Instruction, Multiple Data (MIMD) manner.

Experimental results obtained with Synopsys Design Com-
piler and Cadence Innovus at 45 nm CMOS technology node
demonstrate the efficiency of the proposed SISD/SIMD/MIMD
CGRA over the accurate and SoA counterparts. In particular, the
MIMD mode of GREEN enables up to 6.6× higher throughput
while dissipating 21% less energy than the accurate counterpart.
Moreover, the end-to-end evaluation of GREEN variants on eight
single- and multi-kernel applications from classification, bio-
signal (ECG/EEG), and image/video processing domains demon-
strates significant performance improvement, compared to the
accurate CGRA. In particular, GREEN-MIMD not only speed-
ups the ECG QRS detection by 49% and consumes 43% less area
and 66% less energy than the accurate CGRA, but also maintains
the heartbeat detection accuracy at 100%. GREEN implementa-
tions is available at https://cfaed.tu-dresden.de/pd-downloads.

Index Terms—SIMD/MIMD, Approximate Computing, CGRA,
Bio-signal, ECG/EEG, Classification, Unmanned Air Vehicles,
High Throughput, Energy-Efficiency, Edge Computing.

I. INTRODUCTION

Coarse-Grained Reconfigurable Arrays (CGRAs) strike a
balance between flexibility and energy-efficiency (see Fig. 1)
through word-level reconfigurability, making them viable ac-
celeration platforms for executing a broad range of tasks at the
edge. CGRAs are already commercialized in Samsung Galaxy
[1], Intel datacenter processors [2, 3], IBM’s RaPiD which
is an approximate CGRA for the acceleration of Artificial
Intelligence (AI) tasks [4], Wave DPU (a data-flow processing
unit for deep neural networks) [5] or persuaded the major
Field Programmable Gate Array (FPGA) vendors to coarsen
the granularity of their chips [6], [7]. Endowed to their post
fabrication data-path versatility, CGRAs have also recently
gained momentum for bio-signal processing (commercialized
in e.g., Samsung Galaxy smartphones/smartwatches [1, 8]),
where adaptations with patient’s physiology is of high priority
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Fig. 1: Flexibility, performance, and energy-efficiency com-
parison between CGRA and other architectures [19]

[9, 10]. Proliferating use-cases of such Internet of Things (IoT)
nodes are 24/7 wearable health monitoring gadgets, as 47% of
cardiac diseases – the major cause of death globally – occurs
outside the hospitals [11]. In fact, wearable devices are deemed
as one of the fastest-growing industries and their instances
are projected to surpass one billion [12] and their market
value is expected to grow triple and worth over $54 billion by
2023 [13]. Moreover, the real time video streaming and image
processing are ubiquitous in various IoT services. In fact,
Cisco has reported that the share of video processing traffic
in the global internet traffic has already passed 82% and is
projected to increase in upcoming years [14, 15] and continues
to grow in the upcoming years [16, 17]. Therefore, to push
the real-time processing of such compute-intensive workloads
to severely resource-constrained 24/7 portable gadgets, higher
throughput should be achieved in stringent power-budget [18].

Beside benefiting from the architecture-level merits of
CGRAs, coping with the severe energy constraints of edge
nodes also entails application-level techniques that can reduce
the load of computations while satisfying an acceptable Qual-
ity of Service (QoS). In this context, SoAs have pronounced
the error-resiliency potential of a wide range of applications,
from image/video processing to classification and bio-signal
processing. In particular, cutting-edge studies have demon-
strated that 1) processing stage dissipates up to 70% of total
energy in wearable nodes [20]. 2) Bio-signals are permeated
with noise and redundancy, and their processing algorithms
exhibit high parallelism and approximation-amenability [21].
Hence, such computations can benefit greatly from an approx-
imate CGRA, that is adjustable with patient’s changing con-
dition/activity/physiology or application upgradability (which
usually outpace hardware updates). Nevertheless, few works
[21, 22] have shown notable gains by approximating kernels
of an ECG program. In fact, the implementation of these
works are either fully-customized, through an ASIC approach
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or fully-reconfigurable, at the bit-level granularity of FPGA.
To exploit the inherent error-resiliency of image, and

video-processing applications, several approximation tech-
niques have emerged which are further deployed on CGRAs
[23, 24]. However, these techniques suffer from two main
shortcomings: 1) CGRA-specific: inevitable routing-power and
die-area overhead, which stem from collecting accuracy-
configurable or separate adder/multiplier/divider units, with an
inter- or intra-PE heterogeneity [23, 25, 24]. In fact, studies
like [26, 27] and our analysis (will be be detailed later on, in
Fig. 2), demonstrate the longer latency and higher energy of
division operation compared to the multiplication, which can
confine the operating frequency of PEs. 2) General: ignoring
the fact that application-level optimizations will be poorly
reflected or even throttled in an non-optimized hardware (e.g.,
under-utilization of FPGA DSPs in precision scaling to low
bit-width). Particularly, the latter has raised the quest for
Cross-Layer Approximation, the goal of which is to unlock
the potential for approximation efficiently, across layers of
abstraction [28]. Although valuable studies ([29] and its ref-
erences) have attempted to enable this cohesive, cross-layer
hierarchy by leveraging circuit-level imprecise adder and/or
multiplier in tandem with application-level precision scaling,
their evaluations have been mainly limited to neural networks.
Moreover, such approaches have left architecture-level oppor-
tunities untouched.

The concept of SIMD has been recently exploited by e.g.,
Xilinx [30], Intel [31, 32], and IBM [4, 33], to 1) provide
support for precision-variability in a single unit, 2) harness the
data-level parallelism capability of applications and 3) reduce
the share of routing/control over logic. Such efforts, how-
ever, are hitherto restricted to addition/multiplication with a
common operand, or multiplier/divider [27, 22], customized
for an FPGA implementation. This highlights the demand
for an approximate SIMD ALU, that can also be utilized
for a variety of applications. Moreover, while addition and
multiplication are frequent functions in the above-mentioned
error-resilient workloads, prior works [23, 27, 26] and our
evaluations (detailed in Fig. 2) show that long latency and high
energy of division (2-8× of the same bit-width multiplication),
not only can confine the application speed, but also consume
considerable portion of ALU area/energy. These hurdles have
hitherto prevented offloading of division included kernels to
most of CGRA accelerators and relieving host processor from
context-switching on such occasional interrupts (which also
exacerbates processor/accelerator communication traffic).

To surmount the foregoing challenges, BioCare [34] has
been designed, as an area-, performance-, and energy-efficient
CGRA, evaluated on biomedical workloads. BioCare supports
multiple-functionality and precision-adaptability through the
flexibility of its PEs; each can perform addition, multiplication,
or division, on two data precisions (8- and 16-bit). Particularly,
featuring SIMD at intra- rather than conventional inter-PE
granularity (e.g., adopted in Morphosys architecture [35]) not
only yields higher throughput per area by mitigating the share
of global routing, but also provides accuracy-configurability
by switching precision at runtime. Such a light-weight SIMD
architecture can perfectly fit for multiplication-exhaustive

applications, while allowing better utilization of Processing
Elements (PEs) when division is also required.

In this article, we propose GREEN, which expands the
function-versatility and precision-adaptability of BioCare. In
fact, GREEN enables cross-layer approximation through the
flexibility of its PEs; each can concurrently perform addition,
multiplication, and division, on different data parts (4, 8-, or
16-bit data precision). This conjoins instruction- and data-level
parallelism (ILP/DLP) into a light-weight realization of MIMD
[36]. It should be noted that all CGRAs belong to MIMD
model, according to Flynn’s taxonomy [19]. GREEN has even
taken a step further & enabled multi-functionality with varied
precision within each PE. In fact, while SIMD mode can
perfectly fit for acceleration of similar operations with varied
precision e.g., convolutions, MIMD allows better utilization of
PEs when simultaneous computations of varied operations is
of interest [36]. Prevalent examples that can benefit from this
light-weight SIMD/MIMD architecture are Neural Networks
(NN), image, video, and bio-signal processing applications,
as all have division along with addition and multiplication
operations, in different precision. The need of such architecture
has also been cited in recent industry-academia collaborations
for emerging frontiers of AI acceleration [37]. In short, we
make the following novel technical research contributions:
• Expanding the function-versatility and precision-adaptability

of SIMD PEs in BioCare (16/8 bit) to also support MIMD
mode in GREEN for 16/8/4-bit precision.

• Expanding the architecture by adding the global memory
and also measuring the reconfiguration time and energy for
the end-to-end evaluation of multi-kernel applications on the
proposed CGRA.

• Applying an application-level sensitivity analysis to gauge
the error-resiliency of kernels to inexact multiplica-
tion/division and precision scaling. This is followed by
applying a greedy heuristic to tune the precision of kernels
in multi-kernel applications.

• Expanding the evaluated applications to eight single- and
multi-kernel case studies from different domains: classifica-
tion, bio-signal (ECG/EEG), image-, and video-processing.
We open-source the implementations for

GREEN SISD/SIMD/MIMD CGRA at https://cfaed.tu-
dresden.de/pd-downloads, to springboard future research for
reconfigurable and approximate computing communities.

II. RELATED WORK

Herein, we present a brief survey of accurate/approximate
SIMD/MIMD CGRAs and pinpoint SoAs in Table I.

State-of-the-art energy-efficient CGRAs: many domain-
specific CGRAs have targeted energy-efficiency, which are
designed by specialization of their architecture for a range of
applications. RAP [41] and BrainWave [42, 43] are customized
for the acceleration of bio-signal processing kernels by extend-
ing/modifying the architecture of Blocks SIMD CGRA [44].
While Blocks has a homogeneous structure, RAP includes
heterogeneous PEs, each supporting 24-bit fixed-point accurate
multiplication, division, and CORDIC operations. ASAP [40]
enables precision-variability for 16- and 32-bit fixed- and
floating-point (FP) numbers, only by discarding/zero-padding
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TABLE I: Summary of SoA studies in the literature from the perspectives of approximation and parallelization
SIMD/
MIMD

1 Approximate
Add/Mul/Div

Optimization/
Approx. Layer

Description of Work Platform
Performance
Improvement

Accuracy

✗/ ✗ ✓/ ✓/ ✓ Circuit Power-gate configurable Add/Mul [25, 24, 38] & Div [23] in PEs CGRA {Delay, Energy} + PSNR 26, SSIM 0.9

✗/ ✗ ✓/ ✓/ ✗ Circ. / Appl. Quantization with inexact Muls in NN ([29] and its references) ASIC Energy ++ Classific. loss < 10%

✗/ ✗ ✓/ ✓/ ✗ Circ. / Appl. Inexact Add/Mul in ECG analysis (fixed precision kernels) [21] ASIC {Area, Energy} ++ PSNR 11, QRS 100

✗/ ✗ ✗/ ✓/ ✗ Circuit Converting Mul to serial bit-wise AND operations via SC [39] CGRA {Area, Energy} + QoR loss <10%

✗/ ✗ ✓/ ✓/ ✗ Circ. / Appl. Prec. variability in fixed/FP by zero-padding mantissa bits [40] CGRA { Perf.
Watt ,

Perf.
Area }++ QoR loss <5%

✗/ ✓ Accurate ✗ Process bio-signals by multi-datapath PEs (ALU+Reg+Mux) [9, 10] CGRA {Energy, Tput} + -

✓/ ✗ ✗/ ✓/ ✓ Circ. / Arch. First hybrid Mul/Div (LUT-based, customized for FPGAs) [27] FPGA {Energy, Tput} + ARE 0.8%, PSNR 45

✓/ ✗ Accurate ✗ Combine 2 Muls with a common operand in FPGA DSPs [31, 30] ASIC {Delay, Energy} + -

✓/✓ ✗/ ✓/ ✓
Circ. / Arch.
/Application

A SISD/SIMD/MIMD CGRA architecture that supports a chain of
approximations (precision scaling on top of inexact multiplication

and division operations), in a cross-layer hierarchy
CGRA

{Area, Delay}+
{Energy,
Tput} ++

PSNR 28, QRS 100,
Vector-Detect. 90%,
Root Mean Square
Error (RMSE) 10%

1Ability to support sub-word parallelism: same instruction on different data (SIMD) and different instructions on different data (MIMD)

certain mantissa bits. Beside customized PEs, other domain-
specific customization in these CGRAs is applied by e.g.,
refining the network topology (adding diagonal links) and
deciding the size of the data memory.

SIMD/MIMD CGRAs: Targeting a high accuracy, compu-
tations can be carried out in 32- or 16-bit integer, in both bio-
signal and image processing applications [45]. Nevertheless,
bounding the precision to 16- or 8-bit is reported to be satis-
factory in SoA studies [46, 26]. HEAL-WEAR [10], i-DSPs
[9], Blocks [44], and PRECISION [47] have been employed
for accurate computations while TRANSPIRE [48] supports
precision conversion among FP numbers. RaPiD is an approx-
imate CGRA, commercialized by IBM for the acceleration of
AI tasks [4, 33], in which 8-way PEs and Special Function
Units (SFUs) are capable of performing multiply-accumulate
(MAC) operations on sub-INT and FP numbers, respectively.
Overall, to enable ILP and DLP execution models, these
SIMD/MIMD architectures are characterized by their high
area-footprint [49, 50], stemming from separate datapaths in
each of their constituent PEs.

Approximate CGRAs: literature studies in this cutting-
edge track are limited to power-gating heterogeneous PEs
(each PE has separate and/or different inexact types of
adder/multiplier/divider that are adopted from literature) or re-
placing accurate multiplier/divider with approximate ones. X-
CGRA [24, 25], PX-CGRA [38], and GP-CGRA [23] integrate
approximate adders, multipliers, and dividers into their hetero-
geneous PEs to trade energy consumption with the accuracy of
the final output. The heterogeneous architecture of GP-CGRA
consists of a 2D array of approximate and accurate tiles. The
work has adopted a set of approximate adders and multipliers
from the literature. The accurate divider is also adopted
from OpenCores [51] and further approximated based on the
application requirements at design time. Based on the given
quality constraints, various feasible CGRA configurations are
generated through an iterative-process by approximating an
operation in the application’s Data flow Graph (DFG) and
verifying whether the accuracy constraint is met. In the final
configuration which has the lowest power among the feasible
ones, each CGRA tile is assigned with a specific functional
unit, which only supports one precision mode (selected at
design time). Switching to accurate configuration is enabled at
run-time via power-gating the approximate tiles. X-CGRA is

composed of Quality Scalable PEs, each of which consists of
accuracy-configurable approximate Carry-Look-Ahead (CLA)
adder and Dadda multiplier. Each QSPE supports four accu-
racy modes for the pair of adder and multiplier, i.e., each
can be accurate or inexact. As only one approximate mode is
supported for all the adders (and one for all the multipliers) of
the whole CGRA, such required approximation level should
be determined at design time. In X-CGRA work, assigning
the quality level of each adder and multiplier node in the
DFG representation of the application is solved via the Integer
Linear Programming (ILP) approach which is rather a time-
consuming heuristic. In another trend, the recent work of [39]
exploits Stochastic Computing (SC) to convert multiplication
to simple bit-wise AND operation. However, such serial-based
processing of the bit-streams results in significant latency-
overhead. To amortize the area- and/or the latency-overhead of
the aforementioned functional units, authors in [27, 52] have
narrowed their focus toward enabling approximate SIMD mul-
tiplier/divider. However, designing approximate SIMD/MIMD
PEs for harnessing the DLP/ILP capabilities of error-resilient
programs is still unexplored.

Precision-tuning strategies for multi-kernel applica-
tions: as the pioneer of bio-signal processing approximation,
XBioSip has presented an approximation strategy for multi-
kernel applications and evaluated it on Pan-Tompkins algo-
rithm for heart-beat detection. In XBioSip, the precision of
all kernels is uniformly tuned to 16-bit, but each kernel uses
a different level of approximation (via truncation of LSBs)
for its addition and multiplication operations. These levels are
determined through an aggressive approach, i.e., kernels are
approximated as much as possible, in their appearance order.
Therefore, this approach did not consider the significance of
kernels in terms of their contribution into the gained perfor-
mance versus quality loss, when approximation is applied.
Other works in this field have mostly focused on layer-wise
quantization of Neural Networks (NNs) [53, 54, 55, 29]. In
their adopted strategies, ranking the layers for quantization is
mainly determined by their robustness to precision scaling.
In other words, their proposed saliency metric is fluctuations
in the final Quality of Result (∆QoR). However, considering
merely ∆QoR, neglects the significance order of layers on
the end-to-end gained performance, or in general, the relation
between performance gain and QoR loss. Tackling this short-
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coming, Plasticine methodology [22] has proposed ∆Performance
∆QoR

as the saliency metric and then proposed a greedy heuristic for
precision-tuning of multi-kernel applications, which has shown
better results over SoAs and provides near-optimal solutions.
Considering the lower complexity and usually better run-time
of greedy heuristics over multi objective strategies such as
Genetic Algorithms, we exploit the sensitivity analysis and
heuristic proposed in Plasticine [22] for precision-tuning of
applications in this article.

III. PRELIMINARIES AND BACKGROUND

Mitchell’s Multiplication and Division Algorithms: as shown
in Eq. 1 and Eq. 2, Mitchell’s algorithms perform imprecise
multiplication and division in the logarithmic representation
of numbers. Consider the binary representation for N -bit
unsigned input A, which can be written as Eq. 3, where k
(the exponent) indicates the position of the leading one. The
rest of the bits (starting from position k−1 to 0) are considered
as the fractional part and fall in the range of 0 ≤ x < 1 [56].

P = A×B Approx.−−−−→
Log

L̃ogP = L̃ogA+L̃ogB
Approx.−−−−→
Anti-Log

P̃ = 2L̃ogP (1)

D=A÷B Approx.−−−−→
Log

L̃ogD = L̃ogA− L̃ogB
Approx.−−−−→
Anti-Log

D̃ = 2L̃ogD (2)

A=2k+

k−1∑
i=0

2ibi=2k(1+x)
e.g.−−→58 = 25(1+0.11010)2, 18=24(1+0.001)2

(3)
In the linear approximation of log function, log2(1 + x) is

approximated to x when 0 ≤ x < 1 [57]. Therefore, the
approximate log of input A is obtained by concatenation of
integer part (the exponent k) and fractional part (the rest of
the bits, starting from position k-1 to 0), as shown in Eq. 4:

log2(A)≃k+x→ log2(58)≃(101.11010)2, log2(18)≃(100.001)2 (4)

After applying the same step on the second input to get its
approximate log, the summation (subtraction) of two parts is
obtained in Eq. 5 (Eq. 6).

L̃og2(P̃ )=(k1 + k2)+(x1 + x2) →Ks=(1001)2, Xs=(0.1111)2 (5)

L̃og2(D̃) = (k1 − k2) + (x1 − x2) → Ks = (1)2, Xs = (0.1011)2 (6)

Finally, by applying the anti-log (which mathematically is
a shift operation), binary representation of the approximate
product (quotient) are derived by Eq. 7 (Eq. 8):

P̃=

{
2k1+k2 (1 + x1 + x2), x1 + x2 < 1

2k1+k2+1(x1 + x2), x1 + x2 ≥ 1
→ P̃ = 992, Pacc = 1044 (7)

D̃=

{
2k1−k2−1(2 + x1 − x2), x1 − x2 < 0
2k1−k2 (1 + x1 − x2), x1 − x2 ≥ 0

→D̃=(11)2=Dacc =3 (8)

Performing Log and anti-log is obtained by using variable
bit-width barrel-shifters. The amount of bits to be shifted – for
extracting the fractional parts – depends on the design of the
multiplier or divider. For example, when operation precision
is 16-bit, maximum bits to be shifted for the input and output
barrel-shifters are 15 and 31, respectively, in multiplication
mode, as the summation of error-correction terms sometimes
results in an overflow: integer part1 + integer part2 +
overflow = 15 + 15 + 1 = 31. During the shifting, extra
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Fig. 2: Comparing area, delay, and energy of 8-, 16-, and
32-bit addition, multiplication, and division operations, when
implemented in an ASIC approach.

Fig. 3: The cumulative energy of ALU operations in bio-signal
and image processing applications (16-bit Precision)

zeros are inserted to the right-side of the fractional parts for
proper alignment and keeping the bit-width constant (i.e. 4-
, 8-, or 16-bit depending on the operating-precision mode).
Further implementation details can be found in [46, 26].

IV. GREEN: A SIMD/MIMD CGRA FOR
ENERGY-EFFICIENT PROCESSING AT THE EDGE

To design the GREEN CGRA which enables runtime
accuracy-energy trade-off, we have targeted approximation and
optimization techniques at three layers of abstraction: inex-
act multiplication and division (circuit-level) [27], utilizing
SIMD/MIMD opportunities (architecture-level), and precision
scaling (application-level) [22]. The reason behind adopting
precision scaling is three-fold: first, not only it reduces the
load of computation, but also the end-to-end latency of the
application will be shortened, due to the reduction in the prop-
agation delay of individual operations (in cases that a lower
precision can be employed for all kernels of an application).
Second, precision scaling perfectly aligns with the structure
of SIMD/MIMD modes (when needed) and can further reduce
the memory footprint and its associated data movement energy.
Third, as shown by multiple studies on the same applications,
neglecting the LSBs due to the precision-scaling will not
significantly affect the output QoR [21, 26, 22].

A. Performance Metrics of ALU Operations and ALU Energy
Breakdown in Single- and Multi-kernel Applications

Fig. 2 shows area, delay, and energy metrics for differ-
ent operations (addition, multiplication, division) of different
operand sizes (8-, 16-, and 32-bit). As demonstrated in this
figure, all the performance metrics in multiplier and divider
are exponentially larger than of an adder having the same size
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Fig. 5: The SISD/SIMD/MIMD structure of GREEN ALU
(based on ASIC-modified multiplier-divider of SIMDive [27])

(similar observations have been partly concluded in studies
like [26, 57]). This motivates the use of approximate multiplier
and divider at circuit-level.

In addition, we have also measured the energy consumption
of different ALU operations (based on their distribution), in
eight single- and multi-kernel applications and the results
are illustrated in Fig. 3. The case-study applications cover
tasks from pre-processing (band-pass FIR filter for noise re-
moval), to feature extraction (Fast Fourier Transform, Discrete
Wavelet Transform, and approximate entropy), and classifica-
tion (K-Means). These multi-kernel applications are ubiquitous
in classification, bio-signal (ECG/EEG), image-, and video-
processing domains. For example, Pan-Tompkins algorithm
not only is the atomic task in heart diseases diagnosis or brain
epilepsy and sleep apnea, but also employed in biometric au-
thentication. The results shown in Fig. 3 exhibit that although
division is less frequent, it still consumes substantial portion
of ALU energy in approximatable kernels of the applications.

The aforementioned observations and different resiliency
of application kernels to precision scaling and inexact mul-
tiplication and division operations (see Sec. VI-B) demon-

strates the need for an architecture that supports differ-
ent accuracy levels at runtime (application-level optimization
through precision-scaling). This is achievable by the proposed
GREEN SIMD/MIMD CGRA, discussed in the following. En-
abling such accuracy-energy and accuracy-performance trade-
offs on-the-fly also contributes to extending the battery life-
time and the real-time processing in IoT edge devices.

B. The Structure of Proposed SIMD/MIMD CGRA

GREEN CGRA, depicted in Fig. 4, features a systolic
array structure containing homogeneous PEs, each of which
encompasses an ALU that can be configured to SISD, SIMD,
or MIMD mode.

Structure of PEs: each ALU is mainly assembled by a
shifter, Leading-One Detector (LOD) to determine the position
of the leading one in the binary representation of the input,
adder, and two’s complement unit to handle signed numbers
or subtraction operation which is used also in the division
operation. We kept the structure of addition/subtraction unit
accurate, for two reasons. First, addition-subtraction unit not
only requires smaller area, but also consumes less energy
versus multiplication and division (see figures 2 and 3).
Second, according to the experiments conducted in recent
studies [58, 22] and our sensitivity analysis (see Sec. VI.
B), on different applications from matrix multiplication based,
image, and bio-signal processing domains, the approximation
of addition operation can result in higher QoR fluctuations
than when multiplication is approximated.

For multiplication and division (implemented using the
above-mentioned ALU components), we have designed a
customized SIMD multiplier-divider based on SIMDive [27],
the rationale behind which is three-fold: 1 the error-reduction
approach proposed in SIMDive is adjustable and independent
from operand-size. Plus, the errors are nearly-unbiased (cen-
tered nearly symmetrical around zero), therefore, can nullify
each others in successive kernels having mainly Add/Mul
operations (unbiased-error has shown to play a pivotal role in
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approximation of consecutive kernels having an aggregation-
based structure [59, 60, 54]). Such a low-error feature also
enables exploiting a chain of approximation techniques, i.e.,
precision scaling on top of approximate multiplication and
division. 2 Our ASIC-customized multiplier-divider imple-
mentation, even in SIMD mode is significantly better than their
accurate counterparts, in terms of area, latency, and energy.
Such a resource-efficient unit bodes well for the design of a
SIMD ALU, especially as the latency of approximate division
is reduced, even less than of a same-size multiplier (see
Table III). 3 The flexibility provided by the multiplication-
division hybrid mode enables on-the-fly switching between
two functionalities without the need for reconfiguration while
facilitating a resource-efficient implementation for an ALU.
Our additional modification over SIMDive lies in reducing
the error-coefficients for multiplication mode (from 64 to 32)
and specializing its LUT-customized structure for an ASIC
implementation, to be utilized in a SIMD/MIMD CGRA.

In the proposed GREEN ALU (shown in Fig. 5), the inte-
gration of multiplication and division together with addition
and shift operation has enabled three advantages: 1 , this
integration has prevented the overhead of collecting individual
units separately, and hence, reduced the area footprint and
energy of the ALU. 2 As mentioned previously, division
acts as the speed-bottleneck operation in ALU. Therefore,
integrating the multiplier and divider units not only has
substantially circumvented the long latency of division to
the latency of the same-size multiplier, but also significantly
reduced the critical path delay of ALU (especially for 16-bit
precision). Such an integration is also highly desirable for e.g.,
high-performance or RISC-V processors employing 32/64-bit
integer and single/double-precision floating-point operations.
3 The proposed ALU supports an approximate SIMD division
by decomposing a larger one into smaller instances (which is
not mathematically practical in accurate mode). Enabling sub-
word level parallelism via modifying the SISD, to also provide
support for SIMD/MIMD modes, is achieved by configuring
the carry chain (for Add/Sub units), LOD units, multiplexers
associated with small ROMs, and output barrel-shifters to
provide support from 16-bit SISD for parallable 4/8-bit modes.

Table II presents the supported ALU opcodes in
GREEN that supports on-the-fly alteration of operations’
precision and functionalities in SISD/SIMD/MIMD modes.
The light, medium, and dark green present the functions that
will be used in SISD, SIMD, and MIMD mode, respectively.
The presented 16 opcodes are selected, based on the most
frequent SISD/SIMD/MIMD functionalities that are required
in the eight case study applications. In fact, the selection has
been done considering both the results of the error-resiliency
sensitivity analysis (to obtain the lowest bit-width precision for
each of the kernels’ operations) and profiling the sequence of
operations in the computational kernels. Nonetheless, opcodes
can be customized/expanded depending on the requirements
of the target application, especially considering that 10-bit
immediate field (rather than 16-bit in the current version)
suffices accommodation of the largest filter-coefficients in the
case study applications. PEs also include small ROMs for
the constant error-reduction coefficients for multiplication and

TABLE II: Supported SISD, SIMD, and MIMD opcodes in
GREEN CGRA

Function Opcode Function Opcode
ADD32 0000 DIV8 DIV8 1000
MUL16 0001 DIV4 DIV4 DIV4 DIV4 1001
DIV16 0010 ADD8 MUL4 MUL4 MUL4 1010

ADD16 ADD16 0011 ADD8 ADD8 DIV8 1011
ADD16 ADD8 ADD8 0100 ADD8 MUL8 DIV4 1100

ADD8 ADD8 ADD8 ADD8 0101 ADD8 MUL4 DIV8 1101
MUL8 MUL8 0110 MUL8 DIV4 DIV4 1110

MUL4 MUL4 MUL4 MUL4 0111 ADD16 MUL8 1111

division (the constant coefficients are directly obtained from
our previous study [27] and are applicable to different sizes
of multiplication/division). To minimize the size of this ROM
and its associated multiplexer that selects the coefficient, we
stored half of the multiplication coefficients, as swapping
the operands does not affect SIMDive multiplication error.
Selection of the appropriate coefficient is carried through the
multiplexers illustrated in Fig. 4 (32-to-1 for multiplication
and 64-to-1 for division), based on the three MSBs of the
fractional parts of the given input operands [27]. In case of
4 or 8-bit SIMD/MIMD modes (see Fig. 5), the appropriate
coefficients are selected via separate multiplexers and added
to each of the 4/8-bit ALUs. Finally, the intermediate result
of a PE is stored in its local registers and can be accessed for
the next operation.

Modifications to enable sub-word parallelism at run-
time: enabling the 16-bit SISD ALU to also provide support
for 8-/4-bit SIMD/MIMD modes (shown in Fig. 5) is achieved
by modifying each sub-modules, separately: the LODs and
barrel-shifters are implemented with a modular approach based
on 4-bit LODs. Together with extra circuitry (including a
multiplexer which is controlled by the SISD/SIMD/MIMD
signal), they can operate at 8- and 16-bit at run-time as
well. Extra cascading logic is also used to concatenate the
fractional parts when precision is 8- or 16-bit. On the other
hand, the adders became configurable to 4-, 8-, and 16-bit by
inserting multiplexers at proper locations along the carry chain
(see Fig. 5). As mentioned previously, the error-coefficients
are applicable to different sizes of multiplication/division,
therefore, marginal modification were required for the ROMs,
so that they can be accessed by multiple ports (in case of
sub-word parallelism).

Local and global memories: In the GREEN architecture
two memory types are used. The local memories are dual
ported register files and the global memory is constructed out
of dual ported SRAM units. The size of global memory is 12
kByte and it is sufficient for e.g., 30-second batch of 16-bit
ECG samples, acquired at a sampling frequency of 200 Hz
(30 sec × 200 Hz × 16

8 Byte = 12 KiB). Each bank in the
global data memory, can be individually powered off, on, or
placed into retention mode until the next processing interval.
Multi-banking feature also allows performing simultaneous
operations with various functionalities and precision, needed
for SIMD/MIMD modes. Currently, the GREEN CGRA loads
data from global memory and stores it in the local register files,
and the design of a Direct Memory Access (DMA) Controller
is envisioned for future versions of GREEN.

Network structure: The interconnect pattern in
GREEN CGRA is a 2D mesh. As CGRAs have a variation
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Fig. 6: Kernel structure of K-Means application

of interconnect structures depending on application-domain
use-case, we have augmented the network with diagonal
and 2-hop links (between first and third rows) which enable
energy-efficient processing of bio-signals [61]. Although
the addition of these links has increased the interconnection
area/power, ultimately the Instruction Per Cycle (IPC) and
execution time/energy of the total application has improved:
prolonged schedules are avoided when PEs are not used as
routing nodes. Similar observations on the benefit of using
diagonal links are also drawn in [62, 63, 64].

V. APPLICATION-LEVEL SENSITIVITY ANALYSIS

The recent studies of [22, 54] on multi-kernel applications
have shown that the significance order of kernels might
differ w.r.t the error-resiliency and the gains in each of
the performance metrics, when approximated by the same
techniques (or in general, the relation between end-to-end
∆Performance-gain and ∆QoR).

Therefore, to efficiently adjust the approximation knobs in
the eight case study applications, herein we apply the sensi-
tivity analysis proposed in [22]. In fact, this is a prerequisite
to tune the precision of different kernels that will be mapped
on the SIMD/MIMD GREEN CGRA. Via this early-analysis,
we explore the effect of inexact multiplication-division and
precision scaling on the end-to-end accuracy and performance
metrics of the applications. Moreover, we also estimate the
minimum required number of PEs for individual kernels.
Minimizing the number of PEs can also positively contribute
to reducing the overhead of reconfiguration/data movement
between consecutive kernels by e.g., concurrently executing
two kernels on the same CGRA.

We have modified the sensitivity analysis of [22] from three
perspectives: 1) for this manuscript, the synthesis flow and
performance measurements are changed from the LUT- to
the ASIC-based implementation. 2) we have also targeted a
resource-efficient mapping, customized for an ASIC imple-
mentation (e.g., efficient mapping of FFT on CGRA [65]). 3)
we have further expanded the depth of the sensitivity analysis
and approximation heuristic by also considering the precision
of 4-bit in our Design Space Exploration (DSE).
Application partitioning and mapping: the source-code of
JPEG and K-Means applications are adopted from AxBench
[66], Pan-Tompkins algorithm from XBioSip [21], and Harris
Corner Detection (HCD) is developed from scratch. Before
mapping, the basic implementation of JPEG and K-Means
applications are further optimized for a resource-efficient
implementation by e.g., transforming 2D-DCT computations
to the butterfly-based 1D-DCT approach [66, 67]. It should
be noted that the non-critical portions of each application
(e.g., not related to memory or loop index calculation) are
extracted for the approximations. Afterwards, the applications
are partitioned into various computational kernels (excluding

instructions that are not implementable by the CGRA). Then,
through an in-house C++ script, as shown in Fig. 8, each
of the constituent kernels are converted into a Data-Flow
Graph (DFG) to be mapped on the CGRA. In the DFG
generating phase, we did not apply any optimization technique
except loop-transformation (loop-unrolling and flattening the
nested loops) and partial prediction (in which both oper-
ations of a conditional statement are assigned to different
nodes/PEs). Afterwards, though profiling the output, common
simple operations and/or SIMD/MIMD possible operations
without data-dependency were grouped together considering
both the architecture of the given SIMD/MIMD ALU and
the sensitivity-analysis results that reveals whether the kernel
can be approximated to a lower bit-width precision (this is
discussed in the following). Finally, the DFGs are mapped
onto the CGRA based on the widely-used list scheduling
algorithm (also adopted by HLS-based mapping approaches
in the literature [68]), which traverses the kernels’ DFG nodes
with a resource-aware approach [69]. Dijkstra’s algorithm [70]
has been employed to find the shortest path for the mapping
(binding) of operations with data-dependency that cannot be
directly mapped to neighbouring nodes.
Observations from sensitivity analysis: results are demon-
strated in Fig. 7 (the experimental setup are detailed in Section
VI). Among the eight case study applications, four are multi-
kernel (K-Means classification, Pan-Tompkins heartbeat QRS
detection, JPEG Compression, and Harris Corner Detection).
For the sake of brevity, the structure of K-Means is illustrated
in Fig. 6 and readers can refer to [18] for more details on the
structure of other multi-kernel applications. It should be noted
that for the Euclidean distance kernel, used in the K-means
application, we have employed the widely-used approximation
method of Baptista [71] which is more straightforward and
resource-efficient than general strategies for the approximation
of square root function [72, 73, 74]. A summary of the
sensitivity analysis results are discussed herein:

• Substituting accurate multiplier-divider with SIMDive: de-
ploying SIMDive multiplier-divider in the kernels has
marginally affected the QoR in most of the applications. For
example, as shown in Fig. 7, the PSNR of 16-bit SIMDive
based Pan-Tompkins applications is 42.3 and the QRS detec-
tion is maintained at 100%. Such a good PSNR is endowed
to the near-zero biased error of SIMDive units (which can
cancel out each other) when exploited in the aggregation-
based structure (i.e., mostly addition/multiplication oper-
ations) of the kernels [22]. Based on this observation,
we have been able to exploit a homogeneous structure of
PEs, all utilizing the SIMDive units (rather than collecting
separate versions of accurate multiplier and divider, which
is adopted by other approximate CGRA works in the liter-
ature [24, 25, 38, 23]). In contrast, the approximation of
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& ∆QoR, after approximation. (b) A detailed example on the sensitivity of individual kernels (K-Means application).

the addition functions can adversely affect the accuracy,
especially when applied in kernels such as differentiator
or moving average window in Pan-Tompkins algorithm or
corner response calculation in Harris Corner Detection. This
observation justifies our previous statement in Section IV.
B that considering the small contribution of adder in the
total area/energy of PE (see Fig. 2 and Fig. 3), it is better to
preserve the addition function accurate and instead focused
on an adaptable precision scaling strategy.

• Down-scaling precision from 16- to 8-, and 4-bit: analyzing
real-world ECG and EEG signals from MIT-BIH and CHB-
MIT databases [75] shows that the samples are unevenly
distributed in the range of 16-bit: 94.8% of ECG and 92.2%
of EEG input samples can be trimmed to be fitted into 8-bit,
respectively, without affecting final QoR significantly, when
passed through the calculations. In fact, even the uniform 8-
bit precision with accurate operations provides nearly 100%
heartbeat QRS detection. Moreover, the fluctuations in the
image PSNR and the number of detected corners/correct
vectors in Harris Corner Detection, after down-scaling the
precision to 8-bit, were also less than 1% and 7%, respec-
tively. However, setting the uniform precision of 4-bit for
all kernels, have resulted in noticeable accuracy drop for
some applications, especially the ones included more than
one division operation. For example, as shown in Fig. 7, the
QRS detection ratio is drastically dropped to ∼ 24% in Pan-
Tompkins algorithm or RMSE in K-Means application goes
beyond 16%. Such observations demonstrate that a mixed-
precision strategy is better suited for approximation of multi-
kernel applications.

• Kernels/operations contribute differently to the QoR changes
and the gains in different performance metrics: as can be
observed in Fig. 7, applying approximation may result in
different orders for ∆performance gain and ∆QoR. For
example, as can be seen in K-means case study, when
area improvement is the goal, the approximation of ‘color

TABLE III: Circuit-level metrics of 16-bit adder and multiplier
and 8-bit divider (normalized to the accurate versions)

ARE1 PRE2 EB3 Area Power Delay Energy

Accurate
Acc Add (16-bit) - - - 1 1 1 1
Acc Mul (16-bit) - - - 1 1 1 1
Acc Div (8-bit)4 - - - 0.6 1.13 1.28 1.44

GREEN
Acc Add (16-bit) - - - 1 1 1 1
SIMDive Mul/Div

64-coeff. (16-bit) [27]
0.8/0.7 6.9/5.2 -0.04/-0.01 0.51 0.48 0.71 0.35

XBioSip
[21]

AppAdd5 (2-16) 0.01-30 100 -0.01-6.9 0.52 0.48 0.7 0.35
AppMultV15 (2-16) 0.01-61 100 0.03-60 0.54 0.53 0.63 0.37

X-CGRA
[24]

RAP-CLA W6 0.2 100 0.2 1.16 1.18 0.87 1.03
Dadda DQ42C4 8.1 51 8.1 0.66 0.62 0.69 0.43

GP-CGRA
[23]

Add Design 4 0.3 100 0.01 0.57 0.45 0.66 0.35
Mul Version Lit 3.4 22 3.4 0.8 0.9 0.88 0.79

1Average of Absolute Relative Error, 2Peak Relative Error, 3Error Bias (all

error metrics are presented in percentage), 4Normalized to 16-bit multiplier.
5AppMultV1 adder, used in XBioSip approach, is aggressively approximated.

conversion’ is more beneficial, while ‘cluster centroid con-
struction’ is more error-resilient to approximation. In fact,
the importance order of kernels may differ, even for different
performance metrics. Such observations are also corrobo-
rated for other applications, when approximated by different
approximation techniques e.g., LSB truncation of addition
and multiplication functions [21, 22].

VI. RESULTS AND DISCUSSION

A. Experimental Setup, Circuit- & Architecture-Level Results

Architectural parameters: We have assessed the collective
performance metrics for different array sizes of GREEN, in all
SISD, SIMD, and MIMD modes with 16-bit (subword of 8-
and 4-bits) inputs. GREEN is evaluated against approximate
16-bit X-CGRA [24] and GP-CGRA [23]. The divider size
has been adjusted for 8-bit for these CGRAs. This decision
is adopted based on the reason that division is not only the
most area- and energy-consuming ALU operation (recalling
Fig. 2), but also it is the most sensitive operation w.r.t the
changes in applications’ QoR (see Fig. 7). In fact, our analy-
sis delineates that some division-included kernels/applications
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undergo noticeable QoR drop when the precision of division
is set to 4-bit (see Fig. 7). After setting the precision of
division to 8-bit, we have analysed approximate adder and
multiplier candidates in each X-CGRA and GP-CGRA works
and selected those structures with lowest resource×error bias
(note, in X-CGRA and GP-CGRA studies, inexact adders and
multipliers with different approximation approaches have been
examined). It should be mentioned that the approximations
of selected adders and multipliers are also set to the level
that the 100% QRS detection is maintained for heartbeat
detection application. This is achieved by focusing more on
approximating the multiplier units, as they are less QoR-
sensitive and more energy-hungry than adders. In addition,
we have evaluated XBioSip approximation approach [21] by
implementing it in CGRA with a minimal-overhead for making
2-16 LSBs in adder/multiplier configurable (in order to support
different LSB-truncation variations for different kernels). We
kept the same routing structure in all CGRAs and refrained
from utilizing specialized scheduling/mapping optimizations.

Experimental Setup: Fig. 8 illustrates the design- and
approximation methodology in GREEN CGRA. The archi-
tectures are coded from scratch in HDL Verilog, synthesised
with Nangate 45-nm technology library using Synopsis Design
Compiler. All the memories are also implemented by commer-
cial 40-nm technology that can be taped out [44, 76]. RTL
simulations are performed on the post-synthesis net-lists to
obtain the activity files and afterwards, the net-lists combined
with the activity files are input to the Cadence Innovus for
placement/routing. Critical path delay and power estimations
are then obtained by simulating the post placed-and-routed
net-list at the typical corners. In parallel, the accuracy of ap-
proximation approaches has been assessed in both circuit-level
(peak and average of absolute relative error and error-bias)
and application-level (PSNR, SSIM, RMSE, QRS detection
percentage, number of correct vectors, and standard deviation
error) through Python and MATLAB simulations.

Circuit-Level Results (individual adders, multipliers,
and dividers): Table III summarizes circuit-level characteris-
tics of inexact adders, multipliers, and dividers and provides
insights for the selection of SIMDive [27] which bodes well
for design of an ALU to be utilized in the GREEN CGRA.
Following inferences are highlighted in results:

• Table III shows that the SIMDive multiplier/divider achieves
the lowest error-bias while yielding higher performance
improvement. Specifically, the latency of divider is reduced
to less than of an accurate multiplier of the same size.
This justifies that SIMDive hybrid multiplier/divider suits
for an approximate ALU design. It is also worth underlining
that although our application-level analysis exhibits that
even 4-coefficient version of SIMDive provides 100% QRS
detection accuracy, but we have used the more accurate,
64-coefficient version, to create opportunity for employing
the adaptable greedy precision-scaling strategy of [22] for
multi-kernel applications.

• The circuit-level results also demonstrate that the Mitchell-
based designs are more suited than accurate or modular-
based competitors for an SIMD ALU design as: 1) an

TABLE IV: Architecture-level metrics of GREEN and baseline
CGRAs at post-synthesis phase

Area1

(µm2

×103)

Power2

(mW)

Chain
Latency

(ns)

Peak
Throughput

(GOPS)

Energy
(pJ)

Area
(µm2

×103)

Power
(mW)

Chain
Latency

(ns)

Peak
Throughput

(GOPS)

Energy
(pJ)

PE 2×2
Accurate 4.7 0.23 9.8 0.1 2.35 17.1 0.83 19.3 0.39 8.4

G
R

E
E

N SISD 3.4 0.2 4.9 0.2 1.16 11.5 0.72 10.8 0.74 4.4
SIMD 4.8 0.25 5.7 0.18 – 0.723 1.43 17.4 0.9 11.3 0.7 – 2.8 5.7
MIMD 5.2 0.27 5.9 0.17 – 0.68 1.6 18.9 0.97 12.3 0.65 – 2.6 6.7

XBioSip 6.7 0.31 15.8 0.07 4.91 25.4 1.12 32.8 0.24 18.7
X-CGRA 4.2 0.21 7.9 0.12 1.83 14.7 0.77 17.8 0.47 6.9

GP-CGRA 4.6 0.22 8.5 0.11 2.07 16.6 0.8 18.3 0.44 7.6
4×4 8×8

Accurate 71 3.5 39.4 1.59 33.7 279 14.2 79.2 6.27 141

G
R

E
E

N SISD 49 3.1 21.9 2.94 16.5 206 12.2 44.8 11.4 68
SIMD 73 3.7 23.6 2.7 – 10.8 22.3 302 15.3 47.2 10.8 – 43.3 91
MIMD 78 4 25.7 2.4 – 9.9 27 320 16.4 55 9.3 – 37 113

XBioSip 104 4.6 67.4 0.95 78.9 423 18.9 154 3.5 364
X-CGRA 61 3.2 36.1 1.72 28.7 245 13 72.5 7.2 118

GP-CGRA 70 3.4 37.7 1.67 30.2 267 13.8 75.8 6.9 129

1Reports are for the logic, excluding the share for global memories and routing.
2Synthesis of all CGRAs are performed with area-opt goal at 300 MHz frequency.
3Peak throughput of SIMD/MIMD can be up to 4× (when operands are 4-bit).
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Fig. 8: Overall design and approximation methodology in the
GREEN CGRA.

SIMD divider is only achievable in an approximate mode.
2) Considering the hierarchical-based structure of accu-
rate multipliers (2D array of half-adders/full-adders), the
resource footprint grows quadratic (x2) when the operand
size is doubled. This factor would be smaller (∼2.8) in the
SIMDive-based ALU: for instance, a double sized Add/Sub
is achieved by connecting two smaller instances. Moreover,
thanks to the 2D to 1D conversion through Mitchell’s
logarithmic multiplication, the Add/Sub unit, itself, is re-
used in the SIMDive multiplication-division unit.

Architecture-Level Results (the whole CGRA): Table IV
details the architecture-level metrics of different CGRAs at
post-synthesis phase. Please note, recalling Table II, the SISD,
SIMD, and MIMD versions of GREEN CGRA support 3, 10,
and 16 customized ALU opcodes, respectively, and each vari-
ant renders different performance metrics. Afterwards, Fig. 9
demonstrates the area-breakdown and performance-efficiency
of all CGRAs, after placement and routing phase on the
Cadence Innovus. Finally, Fig. 10 illustrates the quantitative
relation among the values (that are presented in Table IV) and
compares the performance-efficiency of different CGRAs at
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Fig. 9: Area breakdown of CGRAs after place-and-route
(excluding the global memory)
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Fig. 10: Performance efficiency of CGRAs at architecture-level
(for relative comparison, efficiency is translated as the inverse
of resource consumption)

architecture-level. The following inferences are highlighted in
the architecture-level results, the results are presented exclud-
ing the external memories.:

• GREEN outperforms other CGRAs at architecture-level: as
indicated in Table IV and Fig. 10, the SISD version of
GREEN is up to 32% smaller, 55% more energy-efficient,
and 49% faster than the accurate CGRA. Although aug-
menting SISD to SIMD and MIMD structures has increased
the complexity and therefore, resource consumption (e.g.,
46.4% and 55.3% area-overhead for SIMD, and MIMD
modes, respectively, in the 8×8 CGRA), the maximum
throughput is also significantly increased through SIMD and
MIMD modes (up to 3.8× and 3.25× for SIMD and MIMD,
respectively). Furthermore, the GREEN CGRA can enable
up to 6.7× higher throughput compared to the accurate
counterpart (when the PEs are configured to SIMD or
MIMD mode and operate at 4-bit precision).

• Table IV indicates that the XBioSip approximation approach
[21] for multi-kernel applications (enabling accuracy-
configurability of LSBs rather than precision-scaling of
kernels) is beneficial, only in a fully-customized ASIC im-
plementation. In contrast, the overhead for supporting such
LSB configurability in the PE-based template of a CGRA
is significant, as all FAs and 2×2 multipliers operating on
LSBs of up to 16-bit should support both accurate and
approximate modes. As such, this approach will be counter-
productive when realized in a homogeneous CGRA structure
(please note, it is out of the scope of this work to go into
design and evaluating heterogeneous CGRA structures).

• Although the results presented in Table IV and Fig. 10
demonstrate that GREEN SIMD has slightly better per-
formance than the MIMD version at architecture-level (as
having less complex PE due to supporting less opcodes, see
Table II), it will be shown that the MIMD mode renders
better performance at application-level (see Fig. 11). The
reason behind is that the MIMD allows concurrent execution
of more functions in the same PE and therefore, kernel
operations require less number of PEs to be implemented.

B. Application-Level Results

Precision tuning of kernels for mapping on SIMD/MIMD
CGRA: the sensitivity analysis has revealed that the ker-
nels/operations contribute differently in ∆performance gains
and ∆QoR. Therefore, to efficiently set the precision of
kernels/operations, the overall greedy strategy of [22] has been
adopted (the pseudo-code of which is presented in Algorithm
1), the goal of which is to maximize performance gains while
maintaining a user-defined accuracy threshold. The inputs of
heuristic are the user QoR constraint and the information
obtained from the sensitivity analysis, i.e., four lists L1 − L4

that are for approximating multiplication, division, or down-
scaling the precision of the kernel to either 8- or 4-bit. Each
list contains the end-to-end performance-gain and QoR-loss of
the entire application, when only that kernel is approximated
with the target technique and the rest are accurate. It should
be noted that the greedy heuristic is customized for this
article, by using the ∆Throughput

∆QoR as the deciding metric that
reflects the gained performance over a possible accuracy
loss. In fact, a higher throughput (gained by down-scaling
the precision) better reflects the performance gain in a pre-
fabricated SIMD/MIMD CGRA that is consisted of fixed-
area PEs. The methodology is as follows: first, all application
kernels, having accurate operations, are uniformly set to 16-
bit precision. Afterwards, the Saliency List is generated by
calculating the ∆Throughput

∆QoR for each pair of {kernel, technique}.
The lists are then merged and sorted in a descending order to
demonstrate the saliency order of techniques that resulted in
higher performance gain with less QoR loss (when considered
individually). Finally, the greedy heuristic is applied with
an iterative approach: in each iteration, the pair of {kernel,
technique} is selected that exists on top of the saliency list.
Recalling the sensitivity analysis, the primary-applied tech-
niques are replacing accurate multiplication and division with
SIMDive versions of the same bit-width precision, due to their
low error and high performance gain potentials (especially
for division operation). The generated configuration is then
evaluated on diverse samples to verify whether the end-to-
end user-defined QoR threshold is maintained. Whenever the
accuracy of the generated configuration crosses the threshold
(with up to 5% difference with the user-defined threshold),
the heuristic backtracks to the previous accuracy-satisfied
configuration and follows the search by appraising the next
candidate on top of the saliency-list.

For the QoR threshold of applications, in this manuscript we
have adhered to 100% QRS detection ratio for Pan-Tompkins
(and PSNR of 30 dB), 10% RMSE for K-Means, PSNR
of 28 dB for JPEG compression, and 90% correct vector

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3383349

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SLUB Dresden. Downloaded on April 17,2024 at 15:34:17 UTC from IEEE Xplore.  Restrictions apply. 



11

Algorithm 1: Greedy Approximation Heuristic for
Multi-Kernel Applications (customized from [22])

Input: L1: {E2E Tput GainPS, QoR-Loss} ∀ 8-bit Prec. Kernel
Input: L2: {E2E Tput GainPS, QoR-Loss} ∀ 4-bit Prec. Kernel
Input: User-QoR-Const, Kernel-List
Output: Kernels [Precision]

1 Saliency-List = Array [];

// Calc. throughput-gain of prec. scaling, on each kernel, individually

2 for i in Kernel-List do
// This kernel is scaled to 8-bit, others are 16-bit

3 Saliency-List ← L1[i] ) ∆Tput
∆QoR

(8);

// This kernel is scaled to 4-bit, others are 16-bit
4 Saliency-List ← L2[i] ) ∆Tput

∆QoR
(4);

5 end
6 Descending Sort (Saliency-List);

7 while (!timeout) do
8 for i in Saliency-List do

// Approximate in descending order of ∆Tput
∆QoR

9 ConfigApprox = Kernels [Saliency-Listi];

10 Output-QoR = Evaluate (ConfigApprox);

// Also explore temporary configs
11 if Output-QoR ≥ 0.95 × User-QoR-Const then
12 if Output-QoR ≥ User-QoR-Const then

// Update candidate configuration
13 Configtemp ← ConfigApprox;
14 end
15 i ← i+ 1
16 go to 10;
17 else
18 Break;
19 end
20 end
21 end

detection for Harris Corner Detection (that is reported to be
an acceptable confidence-level for object/movement tracking
[77]). It should be noted that, although the study of XBioSip
[21] has set the PSNR threshold of 19 dB (which also satisfies
QRS ratio of 100%), herein we adhere to a higher PSNR value,
i. e., 30 dB, to ensure an acceptable signal strength in the
output (in cases that the output signal is further used for other
processing, e.g., detecting the of type of the anomaly). For the
above-mentioned quality thresholds, the following precision-
configurations are found by the heuristic: [4-8-4-16-16] for
the Harris Corner Detection having five-kernels, [4-4-8-4-16]
for the five-kernel ECG Pan-Tompkins QRS detection, [4-
4-8-16] for the four-kernel K-Means, and [4-8-16] for the
three-kernel JPEG Compression. Accordingly, the adopted
SISD/SIMD/MIMD structure of kernels for the proposed
kernel configurations is detailed in Table V. It should be
noted that for packing the SIMD/MIMD operations inside the
precision reduced kernels, the dependency of multiplication
and/or division operations (referring to Fig. 6) has been taken
into account.

We have adopted the one-kernel-at-a-time strategy of [10],
suited for the processing of bio-signals, as these applications
have brief period of sampling followed by a relatively large

TABLE V: Kernels’ SISD/SIMD/MIMD structure in three
application, w.r.t the final approximate configuration

Harris Corner Detection Pan-Tompkins (ECG)
Kernel Name Configuration Kernel Name Configuration

RGB to Grayscale SIMD 4-bit Low-Pass Filter MIMD 4-bit
Gaussian Smoothing MIMD 8-bit High-Pass Filter SIMD 4-bit

Derivative Sobel MIMD 4-bit Differentiator MIMD 8-bit
Tensor & Score Response SISD 16-bit Squarer SIMD 4-bit

Normalization SISD 16-bit Moving Avg Filter SISD 16-bit

K-Means Clustering JPEG Compression
Kernel Name Configuration Kernel Name Configuration
RGB to YCbCr MIMD 4-bit RGB to YCbCr MIMD 4-bit

Cluster Cent. Const. SIMD 4-bit 2D-DCT MIMD 8-bit
Euclidean Distance Calc. SIMD 8-bit

Segmentation/Cluster
Cent. Re-Construction

SISD 16-bit
Quantization SISD 16-bit

idle interval. In this strategy, the output of intermediate ker-
nels are stored in the on-chip memory – which are directly
accessible by PEs – and fetched when PEs are configured to
implement the next kernel (an 8×8 array suffices mapping the
biggest sub-kernels of the case study applications).

Execution Time and Energy Measurements: to calculate
the end-to-end execution time of the applications, the widely-
used list scheduling algorithm has been adopted for traversing
the kernels’ DFG nodes with a resource-aware approach [69].
For energy measurements, we have followed the energy-model
and estimation approach of [76]. In this model, formulated in
Eq. 9, the energy of computation, memory, and kernel config-
uration (pre-stored in the memory) are calibrated separately:

Ememory = (Nload × Eload) + (Nstore × Estore)+

(Nnot−idle × Estatic) + (Nidle × Eidle)
(9)

Energy of computation: the static power of each CGRA
architecture is extracted from the Innovus reports. For the
dynamic power measurements, the RTL simulations were
performed on a random sequence of data on the post-synthesis
net-lists of the CGRA architectures to obtain the CGRA-
specific activity files. Energy of memory and kernel config-
uration: for this part, three terms are summed up (see Eq.
9), as described in the following: 1 Access energy: energy
of memory load and store, which are measured separately. 2
Static (memory-enabled): the static energy of memory in one
clock cycle is multiplied with the number of clock cycles that
the kernel is executing. 3 Static (memory-disabled): the idle
energy of memory in one clock cycle is multiplied with the
number of clock cycles that it is idle. It should be noted that
each of these numbers (for one clock cycle) are looked up
directly from the commercial manufacturer datasheets for the
40-nm technology node [76].
Application-Level Comparison of CGRAs: Fig. 11 compares
the performance metrics of different CGRAs at application-
level, through executing multi-kernel applications. Recalling
Table V, the SISD/SIMD/MIMD configuration of PEs for the
GREEN CGRA, are adjusted via the modified greedy approx-
imation strategy of [22] for multi-kernel applications. The
upper part of each bar (power, energy, or reconfiguration time)
in Fig. 11 exhibits the share for reconfiguration, while the
lower part represents the share of computation. The amount for
each of the performance metrics is normalized to its baseline
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Fig. 11: Application-level comparison of CGRAs, by running multi-kernel applications

counterpart, i.e., of the accurate CGRA. For example, the pair
of power values (1.4, 0.2) in the K-Means application in Fig.
11 demonstrates that the total power of XbioSip-based CGRA
is 1.6× of accurate CGRA, in which the shares of computation
and reconfiguration are 1.4× and 0.2×, respectively. Please
note that for the sake of visibility, the maximum value in the
y-axis of sub-figures are set to 1, as only the XbioSip-based
CGRA has lower performance than the accurate CGRA. The
following deductions are notable:

• GREEN offers substantial application-level savings, while
maintaining an acceptable QoR: although the architecture-
level gains of GP-CGRA and X-CGRA (from Table IV)
are also reflected at the application-level, ultimately the
SIMD/MIMD modes of GREEN enable the highest perfor-
mance gains by implementing multiple functions of reduced-
precision in a smaller number of PEs.

• As can be seen in the figures, the overhead of reconfigura-
tion time and energy not only depends on the application
structure, but also on the CGRA architecture. In fact,
for each of the applications, the SIMD/MIMD version of
GREEN CGRA requires lower reconfiguration time and
energy, as kernels are precision-reduced and less (groups
of) data needs to be communicated to/from the memory.
For example, such overheads are the lowest for the Pan-
Tompkins application, in which the average precision of
kernels are more reduced (kernel structure of [4-4-8-4-16])

and highest for the JPEG Compression, in which kernels are
less precision-reduced ([4-8-16]).

• Benefits of GREEN CGRA for edge computing: processing
at a lower precision has two advantages. First, it con-
tributes to the savings in the memory energy, both for
reconfiguration and data access. Second, the end-to-end
latency of the application is reduced, due to the shortened
propagation delay of precision-reduced individual opera-
tions (in application cases that all PEs are configured to
operate at 4- or 8-bit precision). This can improve the
clock frequency of the CGRA and hence, the execution
time of the application. In fact, improving the application
speed and energy is highly desirable for enabling real-time
processing at the edge (e.g., heart anomaly detection in
wearable 24/7 gadgets). Enabling such a shorter response
time and reduced energy consumption through processing
and storing data in the proximity of data is referred to
as Multi-access Edge Computing (MEC) [78]. MEC can
provide many advantages for battery-operated devices. From
energy and real-time processing perspectives, it enables pre-
processing and filtering or extraction of necessary features
at the edge (rather than transferring the whole sampled
data to the cloud). From data privacy perspective, private
information of users can be preserved at the edge, e.g., in
smart-health gadgets.

It is worth highlighting that the unutilized PEs of
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GREEN CGRA (when running the program in SIMD/MIMD
modes) can be power-gated, or leveraged for analysis of data
at a higher sampling rate or accommodation of more tasks.

VII. CONCLUSIONS AND FUTURE WORK

In this article, we proposed GREEN, which serves as a step-
ping stone for the energy-efficient processing of multi-kernel
applications at the edge. The proposed SIMD/MIMD CGRA
template benefits from high-throughput and energy-efficiency
of instruction- and data-level parallelism enabled by the light-
weight PEs, each of which supports different functionalities at
various data-width precision. In fact, each of PEs implements
a chain of approximations in a cross-layer hierarchy (precision
scaling on top of the inexact multiplication-division in a
hybrid functionality). The evaluation of GREEN MIMD on
applications from classification, bio-signal (ECG/EEG), and
image/video processing domains have demonstrated that not
only it enables up to 6.6× higher throughput than the accurate
CGRA, but also achieves up to 49% and 66% reduction in the
end-to-end application latency and energy, respectively (while
maintaining an acceptable QoR).
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