
Online Peak Power and Maximum Temperature Management in Multi-Core
Mixed-Criticality Embedded Systems

1st Behnaz Ranjbar , 2nd Tuan D. A. Nguyen, 3rd Alireza Ejlali , 4th Akash Kumar
1,2,4Chair for Processor Design, Technical University of Dresden, Dresden, Germany

1,3Embedded System Research Laboratory (ESRLab.), Sharif University of Technology, Tehran, Iran
1branjbar@ce.sharif.edu,2,4{tuan duy anh.nguyen1,akash.kumar}@tu-dresden.de,3ejlali@sharif.edu

Abstract—In this work, we address peak power and max-
imum temperature in multi-core Mixed-Criticality (MC) sys-
tems. In these systems, a rise in peak power consumption may
generate more heat beyond the cooling capacity. Additionally,
the reliability and timeliness of MC systems may be affected
due to excessive temperature. Therefore, managing peak power
consumption has become imperative in multi-core MC systems.
In this regard, we propose an online peak power management
heuristic for multi-core MC systems. This heuristic reduces the
peak power consumption of the system as much as possible
during runtime by exploiting dynamic slack and Dynamic
Voltage and Frequency Scaling (DVFS). Specifically, our ap-
proach examines multiple tasks ahead to determine the most
appropriate one for slack assignment instead of just one task
as in the literature. The selection is based on the impact of the
tasks on peak power and temperature of the system. The DVFS
is then applied to that task to reduce the system peak power
and maximum temperature. Further, a re-mapping technique
is proposed to further improve the results. Our experimental
results show that our heuristic achieves up to 18.2% reduction
in system peak power consumption and 8.1% reduction in
maximum temperature compared to an existing method. The
inherent energy consumption is also reduced by up to 50%.

Keywords-Mixed-Criticality System; Multi-Core System; Dy-
namic Slacks; Peak Power Consumption; Run-Time Phase;

I. INTRODUCTION

In most of the safety-critical real-time applications (in
medical, flight control, etc. devices), tasks are classified
into multiple criticality levels in order to maintain the
predictability of the applications under different unexpected
behaviors. The classification is done based on the function-
ality of the tasks with respect to how important they are
to the application [1], [2]. These tasks have to be analyzed
at design-time to obtain their Worst-Case Execution Time
(WCET) [1]. After that, proper mapping and scheduling
strategies are derived to satisfy the real-time constraints and
to optimize the processor capacity usage [3]. The WCET
of tasks are not considered as a robust metric and tasks
can exceed their WCET due to unexpected behavior or
internal defects [1], [4]. Such scenarios and unpredictability
cannot be tolerated in safety-critical real-time applications.
Therefore, Mixed-Criticality (MC) systems are designed to
tackle this issue to avoid catastrophic consequences. In these
systems, High-Criticality (HC) tasks are then analyzed with
different assumptions, pessimistic and optimistic, in order
to obtain two WCETs for them. For these MC tasks, if the
execution time of at least one HC task exceeds its optimistic
WCET, i.e., the system switches from low-criticality (LO)
mode to high-criticality (HI) mode, all HC tasks continue
their execution with their pessimistic WCET.

MC systems are getting more complicated due to the
growth in number of tasks, therefore multi-core platforms

This work is supported in part by the German Research Foundation
(DFG) within the Cluster of Excellence Center for Advancing Electronics
Dresden (cfaed) at the Technische Universitaet at Dresden.

are utilized to execute the tasks in parallel, thereby improv-
ing the systems performance [4]. As the degree of freedom
(in terms of availability of the cores) increases, it is not
trivial to guarantee the real-time constraints while managing
the system peak power. Systems with high peak power are
more likely to generate unexpected heat that is beyond the
intended cooling capacity [5]. These systems will be more
susceptible to failures and instability [5]. In other words, the
reliability, lifetime, and timeliness of these systems will be
undesirably affected [6]. As a result, minimizing peak power
in multi-core MC systems is a major issue that should be
addressed.

There are research works that propose methods to reduce
the average power consumption in MC systems with only
independent tasks [4], [7]–[10]. Most of them apply the
Dynamic Voltage and Frequency Scaling (DVFS) technique
at design time. Thus, they may miss the opportunity to re-
duce the power further at runtime when the tasks may finish
sooner than their WCET. Furthermore, in these methods,
when the system switches from LO to HI mode, the Low-
Criticality (LC) tasks are dropped completely to guarantee
the correct execution of the HC tasks to meet their deadlines.
For some applications e.g., mission-critical applications [11],
completely dropping the LC tasks reduces the quality of
service (QoS) of the system which could have been avoided
[12]. On the other hand, [5], [6], [13], [14] also try to reduce
peak power at design time but they are only for hard real-
time systems without MC.

In this paper, we propose a heuristic to manage peak
power consumption in MC systems during runtime. In order
to achieve this, we exploit dynamic slacks, the gap between
tasks’ actual completion time and their WCET, along with
DVFS. There are two phases in our approach: At design
time, the static mapping and scheduling tables of the tasks
at LO and HI modes are obtained from [12]. In this case, the
number of LC tasks that have to be dropped in the HI mode
is minimized; which has a positive effect on the system QoS.
After that, at runtime, we propose an approach that examines
multiple tasks in the future (look-ahead) to select the most
appropriate one to assign the currently available dynamic
slack to. The selection is based on the impact of the tasks on
the power and temperature of the system which is quantified
by a weighted multi-objective cost function. The voltage
level of the core that runs the task is decreased accordingly
using DVFS. The effects of the number of future tasks
evaluated in the look-ahead approach are carefully studied
and analyzed in this work. Additionally, besides exploiting
the dynamic slacks, we propose a task re-mapping technique
at runtime to further improve the system temperature profile.

In summary, the main contributions of this work are:
• An online peak power and maximum temperature manage-

ment in multi-core MC systems while respecting deadline
requirements of tasks in both LO and HI modes.

• A multi-task look-ahead approach to make sure that dy-

Table I: Summary of State-of-the-Art Approaches

Single/Multi-Core Peak Power Average Power Temperature DVFS (online/offline) MC Tasks DAG Model
[4], [7]–[10] Single/Multi-Core × X × offline X ×

[15] Single-Core × X X offline X ×
[5], [6] Multi-Core X × × × × ×

[13] Multi-Core X × × × × X
[14] Multi-Core X X × offline × X

[16]–[21] Single/Multi-Core × X X offline × X
[22], [23] Multi-Core × X × online × X

Our Method Multi-Core X X X online X X

namic slacks are assigned to the tasks that have the most
impact on the system.

• An online task re-mapping technique that also tries to
exploit dynamic slacks to remap the tasks to other cores
which can lower the system temperature.
We ran simulations with HOTSPOT [24] and MEET

[25] to compare our method with state-of-the-art methods.
Experiments in Section V show that our method provides
significant peak power reduction, peak temperature reduction
and average energy consumption up to 18.2%, 8.1% and
50%, respectively, compared to recent previous works.

The rest of the paper is organized as follows. In Section
II, we review related works. In Section III, we introduce the
models. The problem and our method in detail are presented
in Section IV. Finally, we analyze and conclude experiments
in Sections V and VI respectively.

II. RELATED WORKS

Many previous works in the context of MC systems
have just focused on proposing techniques in the field of
task scheduling and mapping. Since our focus is on online
power and thermal management, we only consider the works
presented for MC or non-MC systems with the similar scope.

Generally, the related works on power and thermal man-
agement for real-time systems can be classified based on
the assumed platform, single or multi-core, MC or non-MC
systems. Table I summarizes the recent works with different
target optimization objectives of peak power, average power
or maximum temperature. As can be seen, some of the works
present methods to minimize average power in MC systems
which are single or multi-core [4], [7]–[10]. In general,
they only optimize the average power in the LO mode.
When the system switches to the HI mode, all HC tasks are
executed with the highest frequency; and all LC tasks are
dropped. As a result, in the HI mode, with higher frequency,
the peak power consumption of the system may increase
significantly. In addition, the other papers consider thermal
management in MC systems (second column) [15], [26].
However, the presented method in [26], CONTREX, focuses
on methodology to analyze the MC systems rather than
proposing any mapping and scheduling algorithm. Some
studies concentrate on peak power management in multi-
core systems at design time (row 3-5). They only consider
hard real-time tasks with one criticality level which are
not practical for MC tasks. It should be mentioned that
authors in [13] work on the dependent task model in which
the execution of some tasks are postponed to manage the
simultaneous peak power consumption. It is not suitable for
MC tasks, especially in the HI mode.

The previous works in the context of energy or thermal
management that use DVFS by considering the dependent
task model are shown in Table I (row 6-9). Some of
these have used the online DVFS to reduce the energy or
temperature [21]–[23]. In [21], a look-up table for each task

is generated in the offline phase which contains the optimum
voltage and frequency settings for each core for every
possible runtime condition, task execution time and core
temperature measurement. The memory overhead incurred in
generating these tables may not be desirable, especially for
multi-core systems with many tasks and cores. In addition,
Kang et al. [22] propose an algorithm which uses DVS
to minimize energy without concerning about the tasks’
deadlines; which is not suitable for MC systems. Zhu et
al. [23] suggest a run-time energy management technique
that uses reclaimable slack for the immediately ready task
to decrease average power. Their results show that the power
can be reduced; however, the possibilities of looking further
ahead into the future execution of the following tasks to have
better results are not explored.

In this work, we study online peak power and maximum
temperature management for dependent MC tasks that are
executed on a multi-core processor, which is not considered
in existing MC works.

III. MODELS AND MEASUREMENT METHODS

A. Task Model
We consider real-time applications consisting of depen-

dent periodic MC tasks, such that, each task τi is represented
as {ζi, CLO

i , CHI
i , di, Sui, P ri} [12], [27]. We consider

dual-criticality system where each MC task can be either
high-critical (ζi = HC) or low-critical (ζi = LC). Further,
each task τi has a deadline di. The successors and pre-
decessors of each task are determined by Sui and Pri,
respectively. A task can be executed after all its predecessor
tasks have finished their execution. Each MC task has
different WCETs, CLO

i (optimistic) and CHI
i (pessimistic)

that for each LC task CLO
i = CHI

i and also, for each
HC task CLO

i ≤ CHI
i . The criticality levels of tasks in a

graph are determined similarly to [12], [27]. If a task is a
predecessor of an HC task, then it is considered as an HC
task. In addition, all tasks have a common period P which
is the period of the task graph.

In general, MC systems have two modes of operation:
LO and HI. Initially, the system starts in the LO mode in
which all LC and HC tasks should be executed correctly
before their deadlines. When the execution time of at least
one HC task exceeds its CLO

i due to unexpected conditions,
the system switches to the HI mode. In this case, all HC
tasks are executed with their CHI

i . In the dependent MC
task model, the system switches back safely to the LO mode
at the end of each period [12], [27].

B. Hardware Architecture Model
We consider a multi-core processor comprising of m cores

{C1, C2, ..., Cm}. We assume that the system is DVFS-
enabled and the cores can operate at multiple voltage (V)
and frequency (I) levels. Furthermore, each core is equipped
with a thermal sensor to measure the temperature.

T2

T1 T5

T8

T3

T4

T7

T1

T2

T3

T4

T5

T6

T7

Ci
LO

Ci
HI Powi

30 30 0.39

60 80 0.38

20 50 0.82

20 20 0.52

30 30 0.64

60 60 0.38

20 20 0.41

200

T6

T8 20 20 0.72

(a) A Task Graph

Core 1

Core 2 T7

T3T1

T6

T2 T4

T8

P
o

w
e

r
(W

)

Time

Time1.54W

1.1W

0.79W

T5

(b) System Power Trace at Run-
Time without Using DVFS

Core 1

Core 2 T7

T3
T1

T6

T2 T4

T8

P
o
w

e
r

(W
)

Time

Time

0.86W

T5

(c) System Power Trace by using
DVFS and Considering 1 Task-LA

Core 1

Core 2 T7

T3
T1

T6

T2 T4

T8

P
o

w
e

r
(W

)

Time

Time

0.79W

T5

(d) System Power Trace by using
DVFS and Considering 2 Tasks-
LA

Figure 1: A Motivational example for a real-life application and scenarios with different number of tasks look-ahead.

C. Power Model

The total power consumption of a core is composed of
static (Ps), dynamic (Pd) and independent power consump-
tion (Pind) [9], [10]. Pind refers to the power related to
the memory and I/O activities. As mentioned in Section
III-B, each core can operate at different V-f levels so that,
its total power consumption is given by Eq. (1). In this
equation, Isub and CL are the sub-threshold leakage current
and load capacitance, respectively. In this paper, we focus
on decreasing Pd.

P (V, f) = Ps + Pd + Pind = IsubV +CLV
2f + Pind (1)

in which: (ρ is the scaling factor),

fmin ≤ f = ρ×fmax ≤ fmax, Vmin ≤ V = ρ×Vmax ≤ Vmax

IV. PROPOSED METHOD

In this section, we first formulate the problem, have an
example to motivate our goal and then propose the solution.

A. Problem Statement

We target peak power consumption and maximum tem-
perature issues in a multi-core MC system. Although there
are works that try to manage or minimize the power
consumption of MC systems as previously discussed in
Section II, they do not consider the instantaneous peak power
consumption in both HI and LO modes. In this regard, we
propose a heuristic to manage peak power consumption and
maximum temperature in both HI and LO modes of MC
systems. The energy consumption, as an inherent effect,
is also reduced. In order to achieve the goal, the most
common approach is to exploit the dynamic slack resulted at
runtime (due to the difference in the tasks’ actual execution
time and their WCET) to apply DVFS to the cores. In this
case, the operating V-f level of each core can be changed
based on the available dynamic slack to reduce peak power
consumption. Nevertheless, the crucial research questions
are (1) how to select the most appropriate tasks to assign
the dynamic slack to; (2) if it is possible to re-map the
tasks to other cores for better thermal control, where and
when the tasks should be re-mapped to; (3) the algorithm
execution time should be predictable and be as light-weight
as possible to avoid interference with the actual tasks; and
(4) the cost function used to select the task should not only
be simple for calculation, but also sufficiently good to cover
various metrics (peak power and temperature) and predict
the possible impact of the task to the system in the near
future. Our work presented here tries to address those.

B. Motivational Example
In this section, we are going to give a motivational

example to clarify the problem and our solution in Fig.
1. As shown in Fig. 1a, the task graph is composed of
eight tasks mapped on two cores. This graph represents a
real-life application called Unmanned Air Vehicle control
[12]. In this graph, the HC tasks are shown in light orange.
We obtain the task mapping and scheduling table using the
algorithm presented in [12]. In this example, we suppose
that the system is only in the LO mode. It does not switch
to the HI mode during runtime. Fig. 1b shows the system
power trace at runtime without power management. In this
example, we assume that the tasks consume their maximum
power continuously during their executions. As shown in this
figure, since the tasks may finish earlier than their WCET,
the incurred slack can be exploited to assign to the following
tasks to reduce the peak power consumption. In Fig. 1c,
these dynamic slacks are used for the immediately ready
tasks (one task look ahead) to decrease the V-f level of its
corresponding core. Some power reduction can be observed.
However, in some cases, the immediate task that follows
may consume much less power than the other tasks after
that. Therefore, it is better to reserve that slack to the task
after that if it is possible. In literature, there are some works
that target such approach such as [22], but they target only
the energy consumption; the tasks’ deadlines are ignored.
As shown in Fig. 1d, if we select the task by looking two
tasks ahead, more peak power reduction can be achieved as
compared to Fig. 1c. In addition, we have 48.7%, 20.12%
and 7.94% reduction in peak power, energy consumption
and peak temperature compared to Fig. 1b.

C. Our Method
The goal of our proposed method is to manage the

peak power consumption and maximum temperature of MC
systems during runtime (see Eq. 2) in both criticality modes
while guaranteeing tasks’ deadlines (Eq. 3). In Eq. 3, for
each mode, the execution time of each task i on the core j
and at the V-f level l should not exceed the task deadline.

∀ timeslot→ optimize(
∑

j∈Cores

Pj & Tmax) (2)

Ci

fjl
≤ di →

{
Ci = CLO

i if mode = LO
Ci = CHI

i if mode = HI
(3)

It is worth noting that the proposed method takes ad-
vantages of the run-time phase hence it is not possible to
use any optimization method such as ILP (Integer Linear
Programming) due to its long execution time. Thus, we
develop a heuristic-based method as shown in Fig. 2. Details
of the approach are provided below.

Design-Time Phase Run-Time Phase

M
a
p
.
a
n
d
 S

c
h
e
d
.
T

ab
le

G
e
n
e
ra

to
r

fo
r

b
o
th

 L
O

a
n
d
 H

I
m

o
d

es

Multi-core
Processor

Criticality Mode

Changing Control Unit

Scheduler Unit

Look-Ahead Unit

U
p
d

a
te

V
-F

 le
v

e
ls

Run-time Management Unit
335

325

315

305

V-F levels

Temperature sensors

Task Graph

...

MEET Sim.
Power Trace

HOTSPOT Sim.

.....

Figure 2: Overview of our proposed method.

Design-time Phase: The input to the algorithm is a task
graph of which each task has two WCETs for LO and HI
modes, maximum power consumption during its execution
and the other parameters for the tasks explained in Section
III-A and the number of cores available on the system. The
power of the tasks can be obtained by MEET simulator
[25]. More information about the usage of this simulator is
given in Section V. Then, the static mapping and scheduling
tables in two LO and HI modes are created by the algorithm
presented in [12]. Researchers in this paper use the EDF
algorithm to schedule tasks in each table which is related
to the mode. Their goal is to execute more LC tasks in
the HI mode and to compute the probability of LC tasks
execution in this mode. Therefore, they try to present the
best mapping of tasks on cores and also preempt the tasks to
maximize the QoS by dropping as few LC tasks as possible.
Initially, the system operates in the LO mode according to
scheduling table of LO mode and if the system switches
to the HI mode, the HI mode scheduling table is used to
continue the execution of MC tasks till the end of the task
set period. Eventually, these tables and the info associated
with the tasks are then used at the run-time phase by our
algorithm to manage the system.

Run-time Phase: Our proposed method consists of sev-
eral function control units as shown in Fig. 2. The Scheduler
Unit is the main unit which is communicating with the
other units. Two main functions are supported in this unit:
1) Schedule the tasks according to the tables; 2) Change
the scheduling and mapping of the tasks according to our
proposed cost functions. When there is any free slack or
a task finishes its execution early, the Look-Ahead Unit
is executed. This unit is used to choose a subset of tasks
and select the most appropriate one among them. If an
appropriate task is not found, this unit will be called again
in the next slot should there is any slack. If a proper task is
selected, according to the core temperature and temperature
of other cores at the considered time slot, the Scheduler Unit
decides to re-map the task or not. After that, the obtained
V-f level for the core at that time slot is stored (i.e., when
the selected task will be executed). Due to the behavior of
MC systems, the system switches to the HI mode if the
execution of at least one task exceeds its defined CLO. It
should be checked by the Criticality Mode Changing Control
Unit presented in Fig.2. In this case, the system changes its
task scheduling according to HI scheduling table which is
generated at design-time [27]. The proposed cost functions
and the algorithm are described as follows.

1) Selecting the Appropriate Task to Assign Slack: In
Look-Ahead Unit, we consider an approach named look-
ahead in which our algorithm chooses k tasks after generated
dynamic slack and also mapped on the same core in which
the dynamic slack is generated. It should be mentioned that
finding the optimum value for k will be discussed in Section
V. Note, Eq. 4 is applied to a set of tasks that can release
early. This equation is the general cost function denoted as

CF which is computed for each task i. In this function,
Powi and Ei are the maximum instantaneous power and
maximum energy that a task consumes to execute during
its execution time. In addition, α and β are in the range of
[0,1]. Note that, due to this cost function, we expect that by
considering 〈α, β〉 = 〈0, 1〉, the system has less peak power
and more energy consumption as compared to considering
〈α, β〉 = 〈1, 0〉. Besides, energy reduction leads to significant
decreasing in chip temperature [8]. Thus, we should have
more temperature reduction by more energy saving. After
selecting the task to use a specified slack time and decrease
its V-f level, the start time, maximum power consumption
and its WCET (CLO

i or CHI
i) are changed based on the size

of generated slack time and its V-f level. As a result, start
time and the deadline of tasks which are executed between
the generated dynamic slack and selected task are changed
based on the amount of slack.

CFi = α× Ei + β × Powi (4)

2) Re-Mapping Technique: In order to manage the max-
imum temperature of the system and have better thermal
control, it is possible to re-map the selected task to the other
cores. Therefore, to decide about re-mapping the task and
selecting the appropriate core to remap, we use the following
cost function (Eq. 5). In this cost function, instead of using
actual core temperature, we try to predict their temperature
according to the accumulated energy. It is based on our
observation that, a core tends to have lower temperature
when its accumulated energy is less than the other cores.
However, the difference between accumulated energy of the
base core and the selected core should be large enough.
Therefore, we define a coefficient (Γ) which is equal to 0.9
in our experiments. In this equation, tf is the time when any
particular task is finished. Therefore, the proposed approach
may change mapping during runtime.

CFc = Γ×
tf∑
t=1

Ec(t) (5)

3) The Algorithm: The pseudo code of our proposed
algorithm is outlined in Algorithm 1. At first, the algorithm
gets the set of precedence constraints of tasks, the number of
tasks looking ahead (k), scheduling table for each mode and
available V-f levels for cores as inputs. Then it gives start
time and the V-f level assignment for each task at runtime.
At the initialization step, the system starts its operation in the
LO mode and also, the voltage and frequency of each core is
set to the maximum value (line 1-3). This algorithm is done
at each time slot (line 4-42). In each slot, the system checks
whether switches to the HI mode or not (line 5-9). If any
task execution exceeds its CLO

i and the output of this task is
not ready, the system switches to the HI mode and remains
in this mode till end of the period. In this situation, the V-f
level of each core should be at first set to the maximum
value to meet the deadline of HC tasks (line 7-8). The rest
of the algorithm is executed in both modes.

If there is a dynamic slack during run-time, the algorithm
should select the appropriate task to assign slack to that
has more effect on instantaneous power consumption (line
10-35). This dynamic slack is generated if a task finishes its
execution before its defined WCET (CLO

i or CHI
i due to the

system mode). In addition, since we use static scheduling
of tasks for both modes and do not change the order of
task execution in each core, there may be some idle time
in a core which can be used. Therefore, if there is dynamic

Algorithm 1 Online Peak Power Reduction Algorithm
Input: Task Graph (GT), Cores, Scheduling Tables of each Mode

(SchL and SchH), Number of Tasks Looking Ahead (k).
1: mode← 0 , MO← LO; // the system starts from the LO mode

and SchL is used to schedule the tasks
2: for each core j do initialize the V-f level to maximum;
3: end for
4: procedure MCS ONLINE PPREDUCTION
5: if each Task executes more than CMO then
6: mode ← 1, MO ← HI; // System switches to the HI

mode and task scheduling is done by SchH
7: for each core j do initialize the V-f level to maximum;
8: end for
9: end if

10: if each Task finishes its execution earlier than its deadline
or there is an idle time in a core then

11: if Taski has already finish its execution then
12: SlackT ← CMO

i - ACTi;
13: elseif there is an idle time in a core then
14: SlackT ← amount of the idle time
15: end if
16: TS , TP ← 0
17: for n = 1 to k do
18: TP ← τnth after generated slack;
19: if CFTS < CFTP and TP can start earlier then
20: TS ← TP , ns ← n;
21: end if
22: end for
23: if ns > 0 then
24: Update the FreqMO

TS
, CMO

TS
and PowMO

TS

25: for n = 1 to ns do Update the StMO
TaskLA−n

26: end for
27: CoreS ← CoreTS , Flagremap ← 0
28: for j = 1 to #Cores do
29: if CFCoreS < Γ× CFj then
30: CoreS ← Cj , Flagremap ← 1;
31: end if
32: end for
33: if Flagremap == 1 then Re-Map TS on CoreS ;
34: end if
35: end if
36: end if
37: for each task i do
38: if StMO

i = Tslot+1 then
39: Update V-f level of the core based on FreqMO

i
40: end if
41: end for
42: end procedure

slack, we first compute the amount of available slack (line
11-15). Now, we should select the appropriate task between
k tasks that can be released early due to the slack time after
reclaimable slack (line 17-22) based on the cost function.
After determining the proper task, according to the system
mode situation, frequency, WCET and maximum power
consumption of the optimum task are changed according
to the amount of slack (line 24). If there is at least one task
between the generated slack and selected task, we change
their start time. Therefore, their deadline would be changed
(line 25-26). Now, the re-mapping technique is applied if the
core in which the task will be run, has a higher temperature
than others (line 27-34). As a result, it is possible to re-map
the selected task to a core according to cost function (Eq.
5). At the end of each slot, if the start time if a task is the
next slot, the V-f level of the core that task is mapped on it
will be changed for the next time slot according to defined
frequency scaling factor (line 37-41).

D. Complexity Analysis
In this subsection, we describe the time complexity over-

head of our algorithm. We define n, c, and k as the number of

tasks, the number of cores and the number of tasks looking
ahead, respectively. In Algorithm 1, at first, the system is
checked if needed to switch to the HI mode and change the
frequency of all cores. Therefore, in the worst case situation,
due to changing the frequency of cores only once, this
operation is performed in O(c). If there is dynamic slack, we
select the proper task between k numbers of tasks look ahead
in which, this search can be done in O(k). After selecting the
proper task, the start time of the selected task and the non-
executed tasks if existed should be changed, which is done
in O(k) in the worst case. Finally, the algorithm changes the
frequency of cores before each ready task starts its execution.
This step is also done in O(c). Therefore, the order of the
algorithm is max {O(c), O(k), O(n)}.

V. EXPERIMENTS

In the experiments, we use random applications (task
graphs) generated by the tool in [12]. An example of a
real-life application is already given in our motivational
Section IV-B. There are five basic parameters, c (number
of cores), U (system utilization), d (edge percentage, the
probability of having outward edges from one task to the
others) and n (number of tasks). U/c is the normalized
system utilization that refers to both LC and HC tasks with
their predefined CHI . Table II provides the configurations
for different scenarios used in the experiments (unless stated
otherwise in some specific ones). There are four scenarios
where each of the previously described parameters is varied
while the others are fixed. The purpose is to properly analyze
how the proposed approach reacts to each parameter. In the
case of varying U/c, we restrict the number of cores to 4
and the number of tasks to 40. The reason is that, when
U/c ≥ 0.75, [12] fails to schedule the task graphs with
higher c and n. Similarly, for the fourth scenario (varying
d), [12] is not able to schedule a large number of tasks and
cores with high dependency, i.e, d = 20%. For the case when
the number of tasks is varied, if we use a larger number of
cores, the number of tasks mapped to each core would be
less. The effect of looking multiple tasks ahead cannot be
examined fully.

The Pow Range parameter is the range of power that
the tasks may consume. These power values are generated
randomly following the normal distribution within each
task graph. In order to have a realistic possible range
of power values, we use the MEET Simulator [25] with
several embedded benchmarks from MiBench suite [28].
The MEET simulator is configured to model the ARM
core (ARM7TDMI) running at 66 MHz. We consider the
power consumption of the system as the sum of the power
consumption of all cores [5].

Since our proposed method works at run-time phase, the
randomly generated applications are executed in our Matlab-

Table II: Experiment Configurations

Param. Varying
c

Varying
U/c

Varying
n

Varying
d

c (#core) 2, 4, 8, 16 4 4 4
U/c (utilization) [0.5,0.75] [0, 1] [0.5, 0.75] [0.5,0.75]

d
(edge percentage) 10% 10% 10% 1%, 10%

20%

n
(#task) 80 40 20, 30, 40,

50, 80 40

Pow Range [456.77, 833.33]mW

based simulator. The scheduling tables for LO and HI modes
determined at design-time and the task graphs are taken as
inputs by the simulator. The actual run time of a task follows
the normal distribution of which the mean and standard
deviation is 3×CLO

4 and CLO

12 respectively. The transition
from LO to HI mode is simulated by forcing a randomly
selected HC task to execute beyond its CLO, i.e, within the
range (CLO, CHI]. The scheduler is called whenever a task
finishes or when its execution time exceeds its CLO. After
switching to the HI mode, the simulation continues until the
end of the application period. These behaviors may change
in some experiments for different comparison purposes.

The processor with 2, 4, 8 and 16 cores are arranged in
the 2×1, 2×2, 2×4 and 4×4 floorplans respectively. Our
approach does not have to probe the cores temperature to
make decision. Therefore, during the simulations of the task
graphs, the power values of cores depending on the running
tasks are recorded. After that, HOTSPOT [24] is used to
obtain the cores temperature throughout the execution. In
addition, the effect of changing V-f levels is modeled by
scaling the frequency within the range [0.4, 1] [9].

The results are compared against [12] and [23]. The work
[12] proposes an offline scheduling algorithm for an MC
system where most of the LC tasks are not dropped in the
HI mode to improve the QoS of the system. However, they
ignore the peak power and temperature aspect of the system.
Additionally, researchers in [23] suggest an online energy
minimization algorithm for hard real-time systems where
they use the dynamic slack just for the immediately available
task to decrease the V-f level.

A. The effect of varying 〈α, β〉
At first, we evaluate the results for different values of

α and β in Eq. 4. The experiments are carried out for a
system with c = 8, U/c ∈ [0.5, 0.75], d = 1% and n =
30. The average results (Fig. 3) are obtained for a set of
100 task graphs with different 〈α, β〉 = 〈0, 1〉, 〈0.25, 0.75〉,
〈0.5, 0.5〉, 〈0.75, 0.25〉 and 〈1, 0〉. The results are normalized
to [12]. In this section, to show the effect of varying these
two parameters, tasks are executed with their actual time
and task re-mapping is not exploited. It can be seen that, in
every case, utilizing our approach would lead to a system
with lower peak power, energy as well as peak temperature.
Besides, the expected effect of varying 〈α, β〉 is confirmed in
the experiments. For example, the average normalized peak
power is progressively reduced when β increases from 0 to
1 as presented in Fig. 3a. Similarly, in Fig. 3b, the higher the
α, the lower the energy consumption and peak temperature.
Finally, as the algorithm looks further ahead in the future to
find the best tasks to assign the dynamic slack, the results
are generally getting better, up to 1.25%, 1.25% and 0.22%
more reduction in peak power, energy and peak temperature.
It is worth noting that, in this experiment, we intentionally
disable the task re-mapping technique to make sure that the
effect of 〈α, β〉 is not skewed by another optimization.

In the rest of this paper, we consider 〈α, β〉 = 〈0.5, 0.5〉
that balances both peak power and temperature average
reduction in comparison with other values of 〈α, β〉.

B. Our proposed method in comparison with different task
execution scenarios

In this experiment, we evaluate the quality of our proposed
method against the situations where no online management
techniques is used. We derive three cases with three assump-
tions about the task actual execution time at run-time phase
and how dynamic slack, if any, are exploited.

1 2 3 4 5 6
Number of Tasks Look-Ahead

0.855

0.86

0.865

0.87

0.875

N
or

m
al

iz
ed

 P
ea

k
P

ow
er [,] = [0,1]

[,] = [0.25,0.75]
[,] = [0.5,0.5]
[,] = [0.75,0.25]
[,] = [1,0]

(a) Normalized Peak Power

1 2 3 4 5 6
Number of Tasks Look-Ahead

0.825

0.8275

0.830
0.8325

0.835

0.8375
0.840

N
or

m
al

iz
ed

 E
ne

rg
y [,] = [0,1]

[,] = [0.25,0.75]
[,] = [0.5,0.5]
[,] = [0.75,0.25]
[,] = [1,0]

(b) Normalized Energy

1 2 3 4 5 6
Number of Tasks Look-Ahead

0.9675

0.968

0.9685

0.969

0.9695

0.97

N
or

m
al

iz
ed

 M
ax

. T
em

p.

[,] = [0,1]
[,] = [0.25,0.75]
[,] = [0.5,0.5]
[,] = [0.75,0.25]
[,] = [1,0]

(c) Normalized Peak Temperature

Figure 3: Impact of varying
α and β on peak power, en-
ergy and MAX temperature.

1 2 3 4 5 6
Number of Tasks Look-Ahead

0.84

0.86

0.88

0.90

0.92

0.94

N
or

m
al

iz
ed

 P
ea

k
P

ow
er WCNR

ACNR
ACR

(a) Normalized Peak Power

1 2 3 4 5 6
Number of Tasks Look-Ahead

0.55

0.60

0.65

0.70

0.75

0.80

N
or

m
al

iz
ed

 E
ne

rg
y

WCNR
ACNR
ACR

(b) Normalized Energy

1 2 3 4 5 6
Number of Tasks Look-Ahead

0.90
0.91

0.92

0.93

0.94

0.95
0.96

N
or

m
al

iz
ed

 M
ax

. T
em

p.

WCNR
ACNR
ACR

(c) Normalized Peak Temperature

Figure 4: Ours normalized to
[12] under scenarios WCNR,
ACNR and ACR.

• WCNR (Worst-Case, No-early-Release): All tasks are
executed until their WCETs (CLO in the LO mode and
CHI in the HI mode).

• ACNR (Actual-Case, No-early-Release): All tasks are
executed with their actual execution times. However, the
incurred dynamic slack is not exploited, i.e., the tasks are
not released earlier than their start times determined at
design-time phase.

• ACR (Actual-Case, early-Release): All tasks are executed
with their actual execution times. The immediately fol-
lowing tasks which are ready can be released earlier than
their presumed start times but without DVFS.
The system parameters used in this experiment are c = 8,

U/c ∈ [0.5, 0.75], d = 1% and n = 30. The results obtained
from our approach are normalized against the ones from
WCNR, ACNR and ACR. They are illustrated in Fig. 4.
In WCNR, the system profile in terms of power, energy and
temperature is expected to be the worst due to the pessimistic
analysis on task execution time. When a more realistic task
execution time is taken into account as in the cases of ACNR
and ACR, the system profile is better. However, it can be
seen that our approach, even without task re-mapping, does
improve the system profile further quite significantly. The
best result is achieved when our algorithm looks five tasks
ahead when the peak power, energy and peak temperature
are reduced by 12.7%, 25.1% and 4.7% compared to ACR.
In the rest of this paper, due to not exploiting dynamic slacks
at run-time phase in presented method of [12], we use ACNR
scenario to have a fair comparison.

C. The optimum number of tasks to look ahead and the effect
of task re-mapping

In this subsection, we would like to analyze the optimum
number of tasks to look ahead by evaluating 1) the respective
average quality of results; and 2) the latency due to extra
processing for more tasks looking ahead. The number of
tasks look-ahead is varied from 1 to 10. The effect of task
re-mapping is also assessed in this section.

1 2 3 4 5 6 7 8 9 10
Number of Tasks Look-Ahead

0.85

0.86

0.87

0.88

0.89

0.9

N
or

m
al

iz
ed

 P
ea

k
P

ow
er With Remapping

Without Remapping

(a) Peak Power

1 2 3 4 5 6 7 8 9 10
Number of Tasks Look-Ahead

0.6

0.65

0.7

0.75

0.8

N
or

m
al

iz
ed

 E
ne

rg
y

With Remapping
Without Remapping

(b) Energy

1 2 3 4 5 6 7 8 9 10
Number of Tasks Look-Ahead

0.92

0.93

0.94

0.95

0.96

0.97

N
or

m
al

iz
ed

 M
ax

. T
em

p.

With Remapping
Without Remapping

(c) Max. Temperature

Figure 5: Normalized improvement in peak power, energy
and MAX temperature for all scenarios shown in Table II.

0.9450
0.84

1

2

0.85

3

Ti
m

e
C

on
su

m
in

g
(s

)

10 -4

0.94

4

0.86

5

Normalized Max. Temp.Normalized Peak Power

6

0.87 0.9350.88 0.89 0.930.90.9

k=1

k=2

k=8

k=3
k=4k=5

k=10
k=7
k=6

k=9

Figure 6: Time overhead when using different numbers of
task look-ahead (k).

The results presented in Fig. 5 are obtained from all
scenarios described in Table II. As a result, looking ahead
4 tasks provides a significant reduction in peak power
and also in maximum temperature and energy consumption
with and without task re-mapping. When task re-mapping
is used, the temperature, on average, is reduced by 2.7%
compared to the case where task-remapping is disabled. In
general, by looking ahead 4 tasks and enabling task re-
mapping, the proposed method reduces the peak power,
energy consumption and maximum temperature on average
by 14.6%, 39% and 7.1%, respectively compared to [12] and
4.2%, 16% and 3.1%, respectively compared to [23].

Besides, we evaluate the time overhead for different
number of tasks look-ahead. We measure this time by
using the timer provided by Matlab. The values obtained
by this way of measurement may not be applicable for an
actual embedded system. However, the relative relationship
between different numbers of task look-ahead can still be
considerable. As an example, we show the average time
for d= 1%, c= 4, U/c= [0.5,0.75] and n= 40 with 100 task
graphs. The results are given in Fig. 6 where k represents the
number of tasks look-ahead. It can be seen that, when k = 4,
despite some increment in time overhead, the peak power
and temperature is reduced significantly compared to when
k ≤ 3. The improvements are less pronounced when k > 4,
especially when the time overhead is taken into account.
Therefore, in the following experiments, we decide to use
k = 4 with task re-mapping.

D. The analysis of the proposed algorithm for the scenarios
shown in Table II

In order to illustrate how effective our proposed method
is with different parameters, we analyze the results under
four separate scenarios described in Table II. The results,
which are normalized to [12], are provided in Fig. 7. In
general, as the applications are getting more complicated
(e.g., having a large number of tasks or cores, high inter-
task dependency or system utilization), it is harder to achieve
significant saving in peak power, energy. However, there is

c= 2 c= 16c= 4 c= 8
cv Number of Cores

0.4

0.5

0.6

0.7

0.8

0.9

Im
pr

ov
em

en
t

P
er

ce
nt

ag
e 1 Energy Consumption Peak Power Max. Temperature

(a) Varying Number of Cores

U/c= [0,0.5] U/c= [0.5,0.75] U/c= [0.75,1]
Utilization

0.4

0.5

0.6

0.7

0.8

0.9

1

Im
pr

ov
em

en
t P

er
ce

nt
ag

e Energy Consumption Peak Power Max. Temperature

(b) Varying Utilization Bound

n= 20 n= 30 n= 40 n= 50 n= 80
Number of Tasks

0.4

0.5

0.6

0.7

0.8

0.9

1

Im
pr

ov
em

en
t P

er
ce

nt
ag

e Energy Consumption Peak Power Max. Temperature

(c) Varying Number of Tasks

d= 1% d= 20%d= 10%
 Edge Percentage

0.4

0.5

0.6

0.7

0.8

0.9

1

Im
pr

ov
em

en
t P

er
ce

nt
ag

e Energy Consumption Peak Power Max. Temperature

(d) Varying Edge Percentage

Figure 7: The improvements in peak power, energy and
MAX temperature for each scenario described in Table II.

only a slight variation in the reduction of the maximum
temperature across all scenarios. It is thanks to our task re-
mapping technique where the tasks are re-distributed more
evenly to the cores at run-time based on their accumulated
energy.

For the case of varying the number of cores, since our
method only tries to optimize the peak power for each core
individually to reduce the time overhead, it is more difficult
to maintain similar system peak power reduction when c is
low. Nevertheless, as illustrated in Fig. 7a, the difference is
quite marginal. The reduction is worse by only about 2% as
c increases gradually from 2 to 16 cores. On average, the
peak power and energy consumption is reduced by 11.5%
and 32.5% respectively.

The effectiveness of our method depends on the available
slacks at run-time and the possibility of assigning them to
the tasks. Therefore, if there is less slack due to the nature of
the application in terms of the number of tasks and system
utilization, the reduction in peak power, energy consumption
and maximum temperature is less. For instance, in Fig. 7b,
when the system utilization is getting higher, the idle time of
the core between two consecutive tasks is getting smaller.
The tasks also tend to execute longer. Thus, the amount
of slacks that can be exploited at run-time is limited. But,
overall, the peak power is reduced by at least 13%, and
up to 18%. Similarly, when there are more tasks in the
system with the same U/c, the dynamic slacks incurred
when the tasks finish earlier than their WCETs are smaller.
The reason is that, as the expected execution times of the
tasks are decreased, the absolute differences between their
actual run-time and WCETs are inherently small. However,
as seen in Fig. 7c, our method manages to reduce the peak
power, energy and maximum temperature by 14.6%, 40.6%
and 7.4% correspondingly.

Besides, the possibility of releasing the tasks earlier than
their presumed start times also affects the outcomes. When
the dependency between the tasks is high, a significant
amount of them cannot be released earlier. This behavior can
either have a positive or negative impact on the system. For
the former, the cores might have more idle time because the
tasks have to wait longer for their precedence to finish. For
the latter, our method has less opportunity to apply DVFS to
tasks. However, at run-time, these idle periods might overlap
with the other tasks with the already reduced V−f level. The

331.37

329.67

327.98

326.29

324.60

322.91

321.21

320.09

(a) [12] with d=
20%

(b) d= 20% and k= 1 (c) d= 20% and k= 4

Figure 8: Temperature profile for different edge percentage.

peak power of the whole system is consequently reduced.
It can be seen in Fig. 7d that, when d = 20%, the best
peak power reduction is achieved compared the cases where
d = 1% and d = 10%.

Fig. 8 shows an example stead-state heat map of the
systems with different edge percentage parameter. The result
is obtained for system with c = 16, U/c = 0.5 and n = 80.
We show the results of looking one and four tasks ahead as
compared to [12]. It can be observed that, our approach not
only reduces the maximum temperature, but also helps in
balancing the difference in temperature between the cores,
especially when k = 4.

VI. CONCLUSION AND FUTURE WORK

In this paper, we study online peak power and peak tem-
perature reduction in multi-core mixed-criticality embedded
systems. Our presented method uses re-mapping technique
and DVFS at runtime whenever there is a dynamic slack. We
also propose the associated cost functions to select the most
appropriate task to assign the dynamic slacks to decrease its
V-f level or to re-map it to another core. We have evaluated
the method in both low and high-criticality modes.

As future research, we would consider the management
of peak power consumption and thermal cycling issues by
considering the whole system instead of greedily optimizing
individual cores. Furthermore, we will try to have a real
implementation of proposed method to evaluate it.

REFERENCES

[1] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-
Spaccamela, S. van der Ster, and L. Stougie, “The preemptive
uniprocessor scheduling of mixed-criticality implicit-deadline
sporadic task systems,” in Proc. ECRTS, 2012.

[2] H. Su and D. Zhu, “An elastic mixed-criticality task model
and its scheduling algorithm,” in Proc. DATE, 2013.

[3] Z. Guo, L. Santinelli, and K. Yang, “Edf schedulability
analysis on mixed-criticality systems with permitted failure
probability,” in Proc. RTCSA. IEEE, 2015.

[4] M. A. Awan, D. Masson, and E. Tovar, “Energy efficient
mapping of mixed criticality applications on unrelated het-
erogeneous multicore platforms,” in Proc. SIES, 2016.

[5] W. Munawar, H. Khdr, S. Pagani, M. Shafique, J.-J. Chen,
and J. Henkel, “Peak power management for scheduling real-
time tasks on heterogeneous many-core systems,” in Proc.
ICPADS, 2014.

[6] J. Lee, B. Yun, and K. G. Shin, “Reducing peak power
consumption in multi-core systems without violating real-time
constraints,” IEEE TPDS, vol. 25, no. 4, 2014.

[7] Z. Li, X. Hua, C. Guo, and S. Ren, “Empirical study of
energy minimization issues for mixed-criticality systems with
reliability constraint,” in Proc. LPDC, 2014.

[8] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele, “Energy
efficient dvfs scheduling for mixed-criticality systems,” in
Proc. of EMSOFT, 2014.

[9] Z. Li, C. Guo, X. Hua, and S. Ren, “Reliability guaranteed
energy minimization on mixed-criticality systems,” Elsevier
JSS, vol. 112, 2016.

[10] A. Taherin, M. Salehi, and A. Ejlali, “Reliability-aware energy
management in mixed-criticality systems,” IEEE TSUSC,
vol. 3, no. 3, 2018.

[11] S. Baruah, H. Li, and L. Stougie, “Towards the design of
certifiable mixed-criticality systems,” in Proc. RTAS, 2010.

[12] R. Medina, E. Borde, and L. Pautet, “Availability enhance-
ment and analysis for mixed-criticality systems on multi-
core,” in Proc. DATE, 2018.

[13] B. Lee, J. Kim, Y. Jeung, and J. Chong, “Peak power reduc-
tion methodology for multi-core systems,” in Proc. ISOCC,
2010.

[14] M. Ansari, S. Safari, A. Yeganeh-Khaksar, M. Salehi, and
A. Ejlali, “Peak power management to meet thermal design
power in fault-tolerant embedded systems,” IEEE TPDS,
vol. 30, no. 1, 2019.

[15] T. Li, T. Zhang, G. Yu, Y. Zhang, and J. Song, “Ta-mcf:
Thermal-aware fluid scheduling for mixed-criticality system,”
JCSC, vol. 28, no. 02, 2019.

[16] H. Hong, J. Lim, H. Lim, and S. Kang, “Thermal-aware
dynamic voltage frequency scaling for many-core processors
under process variations,” IEICE Electronics Express, vol. 10,
no. 14, 2013.

[17] T. Chantem, X. S. Hu, and R. P. Dick, “Temperature-aware
scheduling and assignment for hard real-time applications on
mpsocs,” IEEE TVLSI, vol. 19, no. 10, 2011.

[18] M. Qiu, J. Niu, F. Pan, Y. Chen, and Y. Zhu, “Peak tempera-
ture minimization for embedded systems with dvs transition
overhead consideration,” in Proc. HPCC & ICESS, 2012.

[19] V. Chaturvedi, A. K. Singh, W. Zhang, and T. Srikanthan,
“Thermal-aware task scheduling for peak temperature mini-
mization under periodic constraint for 3d-mpsocs,” in Proc.
RSP, 2014.

[20] R. Kabir and B. Izadi, “Temperature and energy aware
scheduling of heterogeneous processors,” in Proc. IC3, 2016.

[21] M. Bao, A. Andrei, P. Eles, and Z. Peng, “On-line thermal
aware dynamic voltage scaling for energy optimization with
frequency/temperature dependency consideration,” in Proc.
DAC, 2009.

[22] J. Kang and S. Ranka, “Dynamic slack allocation algorithms
for energy minimization on parallel machines,” Elsevier
JPDC, vol. 70, no. 5, 2010.

[23] D. Zhu, R. Melhem, and B. R. Childers, “Scheduling with
dynamic voltage/speed adjustment using slack reclamation in
multiprocessor real-time systems,” IEEE TPDS, vol. 14, no. 7,
2003.

[24] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan,
K. Skadron, and M. R. Stan, “HotSpot: a compact thermal
modeling methodology for early-stage VLSI design,” IEEE
TVLSI, vol. 14, no. 5, 2006.

[25] M. Bazzaz, M. Salehi, and A. Ejlali, “An accurate instruction-
level energy estimation model and tool for embedded sys-
tems,” IEEE TIM, vol. 62, no. 7, 2013.

[26] R. Grgen et al., “CONTREX: design of embedded mixed-
criticality CONTRol systems under consideration of EXtra-
functional properties,” in Proc. DSD, 2016.

[27] S. Baruah, “The federated scheduling of systems of mixed-
criticality sporadic dag tasks,” in Proc. RTSS, 2016.

[28] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown, “Mibench: A free, commercially
representative embedded benchmark suite,” in Proc. IEEE
WWC-4, 2001.

