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ABSTRACT Mixed-Criticality Systems (MCSs) include tasks with multiple levels of criticality and different
modes of operation. These systems bring benefits such as energy and resource saving while ensuring safe
operation. However, management of available resources in order to achieve high utilization, low power
consumption, and required reliability level is challenging in MCSs. In many cases, there is a trade-off
between these goals. For instance, although using fault-tolerance techniques, such as replication, leads
to improving the timing reliability, it increases power consumption and can threaten life-time reliability.
In this work, we introduce an approach named Life-time Peak Power management in Mixed-Criticality
systems (LPP-MC) to guarantee reliability, along with peak power reduction. This approach maps the
tasks using a novel metric called Reliability-Power Metric (RPM). The LPP-MC approach uses this metric
to balance the power consumption of different processor cores and to improve the life-time of a chip.
Moreover, to guarantee the timing reliability of MCSs, a fault-tolerance technique, called task re-execution,
is utilized in this approach. We evaluate the proposed approach by a real avionics task set, and various
synthetic task sets. The experimental results show that the proposed approach mitigates the aging rate and
reduces peak power by up to 20.6% and 17.6%, respectively, compared to state-of-the-art.

INDEX TERMS Mixed-Critically Embedded Systems, Life-time Reliability, Peak Power Management,
Fault-Tolerance, Multi-Core Processor.

I. Introduction
The constraint on the power consumption and fabrication
cost has triggered a growing trend towards implementing
embedded systems with multiple functionalities on a shared
platform [1]–[3]. Such systems that have functionalities
with different criticality levels concerning how important
they are to the application, are called Mixed-Criticality
Systems (MCSs) [1]–[4]. The number of processing cores
is rising in such systems that results in boosting computing
capacity [4]. However, increasing the number of processing
cores and aggressive downscaling of feature size have re-
sulted in higher overall power dissipation and power density,
respectively, and consequently, elevate processor tempera-
ture [5], [6].

Different tasks running on an MCS require different
reliability levels corresponding to their criticality [2], [7]–
[9]. For example, in avionics applications, the flight man-

agement system includes high criticality (HI-Crit) tasks, like
the engine operation (i.e., the task that ensures the safe
operation). Failure during these task’s executions may lead
to system failure, and cause catastrophic damage. These
tasks should be executed with higher reliability or execution
time in comparison with low criticality (LO-Crit) tasks
like air conditioning. By executing these LO-Crit tasks,
the system accomplishes its mission successfully. There are
defined standards like DO-178B [10] that provide reliability
metrics for each task in each level of criticality in the
MCSs [7], [8]. DO-178B considers the Probability of Failure
per Hour (PFH) as a reliability metric based on transient
faults.

A large number of previous works consider task re-
execution or replication [2], [3], [7], [11] and task migra-
tion [8], [12]–[14] to confront with transient and permanent
faults in MCSs, respectively. Regarding the transient fault
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tolerating, when a task is executed, if an instance of the
task failed due to a transient fault occurrence, another
instance of the task is executed to meet the required reli-
ability level with higher probability. On the other hand, if a
core failed permanently, HI-Crit tasks are migrated and re-
mapped on an active core. Hence, HI-Crit tasks are executed
correctly before their deadline. Although the downside of
these approaches is timing overhead, they guarantee required
reliability; however, there is no improvement on life-time
reliability. As a result, to the best of our knowledge, there
is no proposed solution to address these issues in mixed-
criticality systems: 1) considering both transient and per-
manent faults, 2) mitigating aging, i.e., improving life-time
reliability. These approaches would be beneficial to apply
in real-life avionic applications, like satellites and airplanes,
where functions have different criticality levels, and LO-Crit
tasks can be dropped in an emergency situation in favor
of HI-Crit tasks to have a safe operation. Besides, life-time
reliability management would be essential while designing
such systems.

From the perspective of MC system operation, each
system operates in different criticality modes. At first, the
system starts its operation in the Low (LO) mode and in this
mode, all tasks must finish their execution correctly before
their deadlines. However, as an example, if a fault occurs and
leads to exceeding the Worst-Case Execution Time (WCET)
of HI-Crit tasks, these tasks overrun and consequently, the
system switches from LO mode to the High (HI) mode. In
this HI mode, we have to guarantee the correct execution of
HI-Crit tasks before their deadlines to prevent catastrophic
consequences [1]–[3]. In the worst-case scenario, executing
all HI-Crit and LO-Crit tasks up to their WCET in the HI
mode, requires higher computational demands, which may
increase the processor’s utilization and causes the cores to
be activated for some time with the highest performance.
Thus, all cores may execute tasks simultaneously to meet
the task deadlines, which draw a significantly larger power
than it is designed for and may increase the system in-
stantaneous power consumption [15]–[17]. In this situation,
the system is more likely to generate heat beyond its
cooling capacity. Therefore, it will be more susceptible to
failures [17]. To overcome this power consumption issue,
Dynamic Voltage and Frequency Scaling (DVFS) is one of
the outstanding technique [18]. However, there are some
restrictions in managing the power of MCSs while using
the DVFS technique. For example, applying DVFS leads to
high switching time overhead due to changing the cores’
voltage and frequency levels. Thus, it may cause deadline
violation and also threaten the reliability of tasks [16].
Moreover, the DVFS technique increases transient fault rate
probability [18], and therefore, it cannot be simply applied
in different operational modes of MCSs, especially in the HI
mode. On the other hand, the power budgeting strategies such
as Thermal Design Power (TDP) [17], [19] are not efficient
on permanent faults. The reason is that although these

techniques reduce chip aging and prevent failures caused by
extreme power density and generating unexpected heat, they
do not propose any policy such as aging balancing to mitigate
chip failures due to permanent faults. Note that TDP refers
to the maximum power that can be safely dissipated by a
chip. By exceeding the TDP (peak power constraint), a large
amount of heat will be generated that may exceed the cooling
capability of the chip and hence activate dynamic thermal
management [15], [17]. However, although the system in
which TDP constraint is met, some processing cores may
experience higher temperature and age faster [5]. Based on
the International Roadmap for Devices and Systems (IRDS)
2020 reports [20], aggressive down-scaling of feature size
and inefficiency of power budgeting strategies on reliability,
accelerate aging in recent and future technology sizes.

Due to the effect of temperature on aging rate and conse-
quently on failure rate, temperature management with long-
term perspective has an important effect on MCSs’ reliabil-
ity. This work proposes an approach named Life-time Peak
Power management in Mixed-Criticality systems (LPP-MC)
to prolong the life-time of MCSs. To balance the aging rate
of processing cores, that results in system life-time extension,
we propose Reliability-Power Metric (RPM). According to
RPM, the proposed algorithm selects the appropriate region
with lower aging rate and less power density to map tasks
with different criticality levels. After mapping tasks, we
apply re-execution fault-tolerance technique to guarantee that
tasks execute correctly before their deadline by assuming
permanent and transient faults. Then, Earliest Deadline First
with Virtual Deadline (EDF-VD) [9], [21] is used to schedule
the tasks. In summary, the main contributions of this article
are:

‚ Defining a new metric to evaluate the effect of power,
utilization, and reliability w.r.t. a life-time target on
aging rate, and then proposing an approach to balance
stress condition on the processing cores in MCSs.

‚ Proposing an scheme for peak power management to
avoid chip failures due to TDP violations in short-term.

‚ Considering both permanent and transient faults in
MCSs to guarantee the timing reliability and to improve
the life-time reliability.

‚ Calculating the required number of re-executions for
each task to guarantee the reliability in each criticality
level, based on both permanent and transient faults in
an analytical approach.

To evaluate our approach, we compare it with the state-
of-the-art task mapping approaches in MCSs [1], [22]. The
experimental results show that LPP-MC extends life-time up
to 20.6% and reduces peak power comparing to the existing
approaches up to 17.6%.

The rest of the paper is structured as follows: related work
in this area is presented in Section II. A brief overview
of fundamental concepts is provided in Section III. The
problem definition and motivational example are presented
in Section IV. Then, in Section V, we describe the proposed
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TABLE 1: Summary of state-of-the-art approaches.

(S)/(M) RT MC LC tasks’ Peak Avg. Tra. Per. Life-
# -Core Tasks Tasks QoS Power Power Fault Fault time

1 Huang’14 [18], Ali’15 [23], Taherin’18 [24], Zhang’21a [25], Zhang’21b [26] (S)-Core ✓ ✓ ˆ ˆ ✓ ˆ ˆ ˆ

2 Haririan’15 [27], Digalwar’17 [28] (M)-Core ✓ ✓ ˆ ˆ ✓ ˆ ˆ ˆ

3 Ranjbar’19 [29], Ranjbar’21 [16] (M)-Core ✓ ✓ ✓ ✓ ✓ ˆ ˆ ˆ

4 Ranjbar’22 [15] (M)-Core ✓ ✓ ✓ ✓ ˆ ✓ ˆ ˆ

5 Saraswat’09 [12], Saraswat’10 [13], Liu’13 [14], Al’16 [8], Alahmad’17 [30] (M)-Core ✓ ✓ ˆ ˆ ˆ ˆ ✓ ˆ

6 Ranjbar’20 [9], Huang’14 [7], Al’16 [3] (S)-Core ✓ ✓ ✓ ˆ ˆ ✓ ˆ ˆ

7 Zeng’16 [2], Caplan’18 [11], Rambo’21 [31] (M)-Core ✓ ✓ ˆ ˆ ˆ ✓ ˆ ˆ

8 Koc’19 [32], Choi’18 [33] (M)-Core ✓ ✓ ✓ ˆ ˆ ✓ ˆ ˆ

9 Huang’11 [34] (M)-Core ✓ ˆ ˆ ˆ ˆ ˆ ˆ ✓

10 Das’14 [35] (M)-Core ✓ ˆ ˆ ✓ ✓ ✓ ✓ ✓

11 Das’16 [36] (M)-Core ˆ ˆ ˆ ˆ ✓ ˆ ˆ ✓

12 Haghbayan’17 [5] (M)-Core ˆ ˆ ˆ ✓ ˆ ˆ ˆ ✓

13 Das’13 [37] (M)-Core ✓ ˆ ˆ ˆ ˆ ✓ ✓ ✓

14 Lee’10 [38] (M)-Core ˆ ˆ ˆ ✓ ˆ ˆ ˆ ˆ

15 Lee’14 [39], Munawar’14 [17] (M)-Core ✓ ˆ ˆ ✓ ˆ ˆ ˆ ˆ

16 Our Work (LPP-MC) (M)-Core ✓ ✓ ✓ ✓ ˆ ✓ ✓ ✓

LPP-MC approach in detail. In the end, Section VI and VII
describe experimental results and conclusion, respectively.

II. Related Work
The state-of-the-art research works on multi-core MCSs
focus on three scopes: utilization bound improvement, power
management and reliability management. Since our focus
is on power and reliability management, we discussed the
most related works within these scopes. These works are
categorized in Multi(M)/Single(S)-Core, Real-Time (RT),
and Mixed-Criticality (MC) task model from the perspective
of different objective optimization, such as providing Quality
of Service (QoS) for the LO-Crit tasks in the HI mode,
peak or average power consumption management, transient
fault, permanent fault and life-time, which are summarized
in TABLE 1. The research works in the scope of power
management are given in rows 1-4 of TABLE 1. Rows 5-8 of
the table show works on reliability management, specifically
timing reliability. The works given in rows 9-15 are im-
plemented on non-MCSs with life-time reliability and peak
power objectives. A brief explanation of these works is given
below.

Power Management: There are some works in the context
of power management in MCSs [18], [23]–[28], [40], in
which, the authors have applied DVFS to minimize en-
ergy consumption and have dropped LO-Crit tasks in HI
mode (rows 1-2). Researchers in [41] give a comprehen-
sive study in the field of power and energy-aware task
scheduling in MCSs. However, there is a lack of peak power
reduction in some research works, like what mentioned in
rows 1-2 and no guarantee to meet TDP. In [16], [29],
the authors have minimized peak power consumption by
employing the accumulated dynamic slack and then using
the DVFS technique at run-time for mixed-criticality systems
with no guarantee of meeting the TDP constraint (row 3).

However, since the DVFS technique increases the rate of
fault occurrence [18] and there is no method in order to
tolerate transient faults, reliability management cannot be
guaranteed. Besides, these authors have presented a design-
time approach to manage peak power and transient fault
occurrence in MCSs by finding different scenarios of task
mapping (row 4). However, this presented approach does
not guarantee the reliability requirements and improves the
life-time reliability and average power consumption.

Reliability Management: The reliability of MCSs has been
considered by researchers as well. All techniques that were
presented in [8], [12]–[14] have considered permanent faults
as the fault model that have guaranteed reliability of the
HI-Crit tasks by migration and reallocation. If there is no
appropriate core to migrate HI-Crit tasks, they will drop
LO-Crit tasks (row 5). Besides, researchers in [30] have
proposed redundancy-based task mapping and scheduling to
address the reliability improvement; however since the task’s
replicas are mapped to different types of processors, like
safe and regular, there is no guarantee on correct execution
of HI-Crit tasks in the case of failing of safe processors.
Researchers in [42] give a comprehensive study in the field
of reliability management for multi-core MCSs. Besides,
there are some works that have considered transient faults
as well [2], [3], [7], [9], [11], [32], [43]. Huang et al. [7],
have applied re-execution fault-tolerance technique to MCSs.
They have proposed an analytical approach to model safety
requirements for both HI-Crit and LO-Crit tasks in single-
core MCSs. Ranjbar et al. [9] also have used re-execution to
meet reliability requirement. Moreover, they have considered
maximum allowable number of drops for LO-Crit tasks in HI
mode. Researchers in [3] have defined a four-mode model for
single-core MCSs and optimized the LO-Crit tasks’ quality
of service (row 6). Later, Caplan et al. [11], have proposed an
algorithm for this model in multi-core MCSs. Also, based on

VOLUME , 3



Navardi et al.: Peak-Power Aware Life-time Reliability Improvement in Fault-Tolerant Mixed-Criticality Systems

the proposed approach in [7], Zeng et al. [2] have proposed
a multi-core fault-tolerance scheduling algorithm. They have
used replication besides re-execution (row 7). [31] has also
presented a replica-aware co-scheduling method for MCSs
by exploiting cross-layer fault tolerance mechanisms. This
method has supported network-on-chip communication delay
and replication management overheads. However, there is
no guarantee on correct execution of LO-Crit tasks in the
HI mode, which may lead the system not to do its mission
efficiently. Researchers in [32], [33] have proposed mapping
algorithm for multi-core MCSs and guarantee a level of QoS
for LO-Crit tasks (row 8). The disadvantage of this set of
approaches is that they can no longer be used if a core fails.
Hence, life-time of each core plays a crucial role in the
efficiency of these works that is one of the main drawbacks
of these approaches. Some other previous works focus on
single-core MCSs reliability improvement [3], [7], [9], [44].
Although scheduling on single-core architectures is more
straight forward, however, since multi-core architectures are
more power-efficient and flexible in task scheduling, almost
all of the recent MCSs exploit multi-core architectures and
many of the state-of-the-art researches are focusing on these
systems.

There are previous works in the context of life-
time (rows 9-13) and peak power (rows 14-15) which are
implemented for non real-time systems or systems with one
level of criticality. In the following, a summary of these
works is mentioned: 1) Life-time Improvement: A task alloca-
tion and scheduling for real-time applications are presented
in [34]. This work has presented an analytical model in
order to estimate the life-time (row 9). Das et al. [35], have
considered multi-objective optimization problem including
energy and reliability for real-time applications (row 10).
Also, Das et al. [36], propose a mapping and scheduling for
Synchronous Data Flow Graphs (SDFGs) to improve life-
time and power consumption (row 11). The work in [5],
has applied a two-step resource management approach for
dynamic applications to improve life-time while meeting a
power budget. Although the work presented in [5] considers
throughput, there is no guarantee to complete the correct
execution of tasks before their deadline. Moreover, they are
not concerned about transient faults (row 12). Besides, re-
searchers in [37] have considered trade-off between transient
and permanent faults in resource allocation. However, there
is no guarantee to manage the real-time constraints (row 13).
2) Peak Power Reduction: The first work on peak power
control has been presented in [38]. They have considered
task graph model and there is no constraint on the task
execution time (row 14). Later the works in [17], [39], have
assumed real-time tasks and propose an scheduling algorithm
to reduce the peak power (row 15).

There is no policy for the HI and LO modes in the
mentioned categories due to the existence of one operational
mode in the traditional systems. If these approaches are
applied in MCSs, the utilization will reduce extremely. The
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FIGURE 1: System overview

reason is that, there is a gap between Worst-Case Execution
Time (WCET) and Actual Execution Time (AET) of a task.
These algorithms consider WCET; hence this gap leads the
cores to be underutilized [45]. On the contrary, consider-
ing two or more criticality modes (i,e, MCSs) results in
decreasing the gap due to the close proximity of WCET and
AET in lower modes by defining two WCETs for HI-Crit
tasks, optimistic and pessimistic, and therefore, improving
the system utilization [45]–[47].

In many of the previous works on MCSs, the LO-Crit tasks
are ignored in the HI mode and furthermore, none of them
consider life-time and TDP. To the best of our knowledge,
there is no algorithm that prolongs life-time along with
considering the TDP constraints in MCSs, while LO-Crit
tasks are executed in the HI mode by increasing their period
(i.e., using service degradation) until all tasks are schedulable
in the HI mode.

III. Preliminaries
In this section, the essential concepts to understand the
proposed approach are introduced. For this aim, system and
task models are explained. Then, we show how power, and
reliability are modeled in this work.

A. System Overview and Application Model
FIGURE 1 presents our system overview in which tasks are
executed on a multi-core system. Temperature and power
consumption of the cores are utilized to analyse the cores
reliability and manage peak power, respectively. The map-
ping and scheduling unit uses the output of the reliability
analysis unit and peak power analysis unit. Then, it decides
how to map and schedule the input tasks on the cores.

Application Model: Let τ “ tτ1, τ2, ..., τnu be a set
of independent periodic tasks which execute on a multi-
core systems with m ˆ m square matrix layout (ς “

tς1,1, ς1,2, ..., ςi,j , ..., ςm,mu where i, j P t1, 2, ...,mu). Each
τk is characterized by tCk, Tk, Dk, χu. Ck denotes the
WCET of task τk. Tk is the period of task τk which is the
minimum time amount between two released instances of
the task. Note that the period amount is used to compute
the task utilization bound which is used to check the task
schedulability in the system (uk “

Ck

Tk
). Dk is the implicit-
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deadline1 of task τk. Analogous to [1], [3], [22], we consider
the former that deadline is equal to the period (Tk “ Dk).
Besides, χ is a criticality level of task τk (χ P tLO,HIu)2

Also, τχ represents all tasks with χ´Crit.
For mixed-criticality tasks, two levels of WCET are gen-

erally considered; Low WCET (LWCET, denoted by CLO
k )

and High WCET (HWCET, denoted by CHI
k ). We discuss

in Section D, how these mixed-criticality tasks are analyzed
and how these WCETs for different operational modes are
computed.

Besides, the total utilization of χ1 Crit tasks pτχ1
q in

the χ2 mode is denoted by Uχ2
χ1

and is calculated by
ř

τkPτχ1
Cχ2

k {Tk [7], [18], [22].
System Operational Mode: Without loss of generality,

we assume an MCS with two criticality modes: HI and
LO [2], [7], [9]. At the beginning of time, all of the cores
start in the LO mode. In this mode, if the execution time
of any HI-Crit task exceeds its LWCET, the core enters to
the HI mode [2]. It remains in this mode until there is no
HI-Crit task in the execution queue of the core. To guarantee
the HI-Crit tasks are executed before their deadlines, EDF-
VD [21] (one of the most common scheduling algorithms
for MCSs) is used to schedule tasks. Moreover, service
degradation policy is considered for the LO-Crit tasks [2],
[7]. The details are elaborated in Section E.

B. Power Model
The power consumed in each core ςi,j includes static and
dynamic power [18], [23], [27]:

PCore
i,j “ PSta

i,j ` PDyn
i,j (1)

The static power PSta
i,j is dissipated due to sub-threshold

leakage current and is approximately related to the number
of transistors on the chip. The dynamic power PDyn

i,j is akin
to the switching activity α, internal nodes capacitance c,
operating voltage vdd and frequency f :

PDyn
i,j “ αi,j ˆ ci,j ˆ fi,j ˆ pvddq2i,j (2)

The total power consumption of cores at a given time is:

PTot “

Core Numbers
ÿ

i,j“1

PCore
i,j (3)

A chip can withstand certain power threshold which is
determined by the chip TDP. Therefore, the TDP constraint
determines the total power consumption limit.

C. Fault Model and Fault Tolerance
We consider both transient and permanent faults in the
proposed approach. We employ fault tolerance techniques to
guarantee the reliability requirement of the MCS. To achieve
this purpose, the DO-178B standard and furthermore, the

1Between two kind of deadline, implicit and constrained [22]
2Analogous to [3], [7], [11], we consider two criticality levels in this

article.

TABLE 2: DO-178B safety standard [7], [10]

χ A B C D E

PFH(χ) <10´9 <10´7 <10´5 ě 10´3 -

Safety Impact Catastrophic Hazardous Major Minor No effect

Probability-of-Failure-per-Hour (PFH) metric are utilized to
characterize the system reliability [2], [3], [9], [24]. As
shown in TABLE 2, DO-178B introduces five levels of
criticality A, B, C, D and E, which A provides the highest
level of criticality and E is the lowest one. Usually, the HI-
Crit tasks are classified in the levels A to C. The tasks that
have criticality level D or level E are more LO-Crit tasks
and QoS is more important for these tasks.

In the following, we first define reliability and Probability-
Of-Failure (POF). Then, we present the transient and perma-
nent fault models used in this work.

The system reliability is denoted by Rptq. Rptq is the
probability of the correct operation of the system during the
period of time rt0, ts (i.e., in the operational phase), where
t0 refers to initial time that can be equal to 0. The PFH can
be calculated as follows [48]:

PFH “ POF {t, POF “ 1 ´ Rptq (4)

where t is time in hour and 1 ď t ď 10 [7]. Without loss of
generality, we assume t “ 1, therefore PFH “ POF .

Transient Fault Model: An instance of the task τk is not
completed before its deadline, with the probability of failure
f due to transient faults [7]. Note that an error detection
mechanism, like ARGUS [49], is employed to check the
correctness of the task’s output when the task finishes its
execution. ARGUS is one of the significant checker tools
to detect errors, which can be applied to any embedded
systems with low chip area overhead and check control flow,
data-flow, computation, and memory access separately [15].
Hence, the timing overhead of error detection has been
considered in the tasks’ WCETs in our evaluation. We use
re-execution technique for each task to deal with transient
faults and meet the timing reliability requirements [2], [11].
In the case of fault occurrence, there is a timing overhead
to discard the faulty result and resume the task execution.
Since we have to guarantee the worst-case scenario, we
consider the timing overhead in the WCETs of tasks as well.
The number of re-execution task τk to guarantee the timing
reliability requirement in χ criticality mode (LO or HI mode)
is denoted by nχ

k and is calculated in Eq. 5. FIGURE 2 shows
how a task is released and re-executed in each period until
duration time t. Each task instance τk is released in its period
of Tk. In one period, we assume each instance is re-executed
nk times with the execution time of Ck, so nk ˆ Ck is the
total execution time of task τk shown as a green rectangle
during a time period. Also, if the probability of failure of
task τk was f , it will be decreased to fnk in one period
when re-executing the task for nk times. On the other hand,
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FIGURE 2: Number of instances of task τk until time t

if we want to calculate the probability of failure in time t,
not a period, we need to take into account the total number
of released instances in duration t, (rpnk, tq), which is equal
to four in the FIGURE 2. Hence, we can model PFH and
consequently, transient reliability RTra

k pt, χq for a LO-Crit
or HI-Crit task τk as Eq. (5) [7]:

RTra
k pt, χq “ 1 ´ PFHTra

k pt, χq “ 1 ´ rpnχ
k , tq ˆ fnχ

k

(5)

where nχ
k is the re-execution number of task τk in criticality

mode χ. t is the operating time in hour and rpnχ
k , tq is the

maximum number of instances of τk that can be executed
until time t. With the help of FIGURE 2, this maximum
number can be calculated as follows [7]:

rpnχ
k , tq “ maxtt

t ´ nχ
k ˆ Ck

Tk
` 1u, 0u (6)

The PFH of all χ Crit tasks on a specific core ςi,j
in criticality mode χ is denoted by PFHTra

i,j pt, χq and is
calculated as follows [7]:

RTra
i,j pt, χq “ 1 ´ PFHTra

i,j pt, χq “ 1 ´
ÿ

kPχ

PFHTra
k pt, χq

(7)
where PFHTra

k pt, χq is equal to rpnχ
k , tq ˆ fnχ

k based on
the Eq. (5).

Permanent Fault Model: We adopt an analytical model
similar to [5], [34] to calculate the permanent reliability of
each core (RPer

i,j ptq). Furthermore, we assume each core ςi,j
will permanently fail with probability of failure PFHPer

i,j .
Therefore, permanent reliability RPer

i,j ptq can be calculated
as follow:

RPer
i,j ptcq “ 1 ´ PFHPer

i,j ptcq “ e´pAi,jq
β

(8)

Ai,j “

tc
ÿ

s“1

ts ´ ts´1{αpTempq (9)

where β is the Weibull slope parameter, ts is a time slot,
tc is a current time and Temp is the temperature in Kelvin.
α is the aging rate that depends on temperature and wear-
out mechanisms. In this work, we consider Electromigra-
tion (EM) as one of the most important aging causes [5],
[34]:

αEM pTempq “
A0 ˆ pJ ´ JCritq

´n ˆ eEa{K.Temp

Γp1 ` 1
β q

(10)

in which A0 is material-dependent constant, J and JCrit are
current density and critical current density, respectively. n

typically is equal to 2, Ea,K and Γ are the activation energy,
Boltzmann’s constant and gamma function, respectively.

The average life-time of the core ςi,j is estimated by Mean
Time To Failure (MTTF). By the first core failure, the system
needs to be fixed or changed. Thus, the minimum of MTTF
of the cores can be estimated as the system MTTF [34], [50].

MTTF “

ż 8

0

RPer
i,j ptqdt (11)

D. Mixed-Criticality Task Analysis
Analogous to [7], [9], we define the two execution time levels
based on the reliability requirement level. As mentioned
in previous section, Tolerating transient faults has been
achieved by re-executing tasks. Therefore, this technique
directly affects the execution time of task. Consequently,
re-executing each task to guarantee its safety requirement
would result in specific WCETs for each criticality level [7].
To guarantee the reliability, the number of re-executions (nk)
for each criticality level of tasks in each mode is obtained
(nLO

k for LO mode, and nHI
k for HI mode), which has

been discussed in previous section. Therefore, CLO
k is the

Low WCET (LWCET) of task τk and also CHI
k is the High

WCET (HWCET) of task τk. Now, the WCET of each task in
each criticality level is computed as follows, where for each
LO-Crit task, the LWCET CLO

k is equal to the HWCET CHI
k

and nLO
k is equal or lower than nHI

k subject to the criticality
level [7], [9]:

‚ LO Crit tasks: CLO
k “ CHI

k “ nLO
k ˆ Ck

‚ HI Crit tasks:

#

CLO
k “ nLO

k ˆ Ck,

CHI
k “ nHI

k ˆ Ck,

E. Mixed-Criticality Scheduling Algorithm
There are various algorithms for task scheduling in MCSs.
One of the most efficient algorithms is EDF-VD [21]. EDF-
VD has separate policies to schedule tasks in the two modes.

1) LO Mode Policy: The tasks are scheduled based on
their LWCET and a Virtual Deadline (VD). In fact, the VD
is defined to give higher priority to the HI-Crit tasks in the
scheduling algorithm. The VD is obtained as follows: V D “

x ˆ D, where x “ ULO
HI {p1 ´ ULO

LO q [21].
2) HI Mode Policy: Task Dropping (TD) or Service Degra-

dation (SD) are utilized to improve schedulability. When the
system enters to the HI mode, it is possible that algorithms
cannot schedule all tasks with their HWCET. In this case,
EDF-VD does TD or SD for the LO-Crit tasks. The TD drops
the LO-Crit tasks in the HI mode to guarantee the HI-Crit
tasks meet their deadlines [47]. The SD extends the period of
each LO-Crit task to reduce the number of executed LO-Crit
tasks. For this aim, the period of LO-Crit task T converts to
T 1 as follows: T 1 “ df ˆ T where df ą 1 [7].

IV. Problem Definition and Motivation
This section defines the problem statement that is discussed
in this work. Then, it shows the effectiveness of using Region
Selection (RS) in solving the problem through a concrete

6 VOLUME ,
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FIGURE 3: Motivational example

example. After defining the problem and illustrating the
example, we take advantage of RS to uniform aging rate of
cores and power consumption in order to increase life-time
and reduce peak power in mixed-criticality systems.

A. Problem Definition
This work deals with the life-time and peak power manage-
ment in mixed-criticality systems. The proposed approach
tries to balance the aging of cores and consequently increases
the life-time. On the other hand, reliability level is satisfied
by one of the fault tolerance techniques, re-execution. The
problem can be formulated as follows:

Inputs: Given:
‚ The multi-core embedded system that the cores are

assumed to be organized in a m ˆ m square matrix
layout. ς “ tς1,1, ς1,2, ..., ςm,mu

‚ The mixed-criticality task set τ “ tτ1, τ2, ..., τnu.
‚ The target reliability Rtargetptq and tlife´time.
‚ The system power constraint pTDP q.
‚ The scheduling and aging parameters.
Outputs: Determining a mapping algorithm to allocate

tasks to processing cores and a scheduling algorithm to
schedule tasks on each processing core w.r.t the constraints.

Constraints: Reliability, power and schedulability are
represented as main constraints which are introduced as
follows.

‚ Reliability level constraint: 1) RPerptq ą Rtargetptq,
and 2) PFHTrapt, χq ă PFHtargetpχq

‚ Power constraint: PTot ă TDP
‚ Schedulability analysis: UMC ď 1

Objective: The main objective of this work is life-time
improvement in MCSs.

B. Motivational Example
In this section, we give a motivational example to show the
effect of RS technique. We show that selecting a region of
processing cores for mapping the tasks reduces the number
of active cores. Then, we take this advantage to reduce peak
power and consequently avoid chip failure.

We implement CU-UDP algorithm [22] on a 4ˆ 4 multi-
core platform in two different scenarios. First, we assume a
scenario that we have 16 cores when implementing CU-UDP.
Second, we use RS, in which, we have a subset of cores (nine
cores in this example) when the tasks are mapped. The
task set and timing parameters of our example are given in
FIGURE 3a. CU-UDP sorts tasks unaware of task criticality.
It considers UHI

HI for HI-Crit tasks and ULO
LO for LO-Crit

tasks to sort the tasks in decreasing order of utilization. Then,
it maps the HI-Crit tasks based on Worst Fit (WF) strategy
subject to the UHI

HI ´ULO
HI and LO-Crit tasks based on First

Fit (FF) strategy. In the first scenario, FIGURE 3b and 3c
show the result of tasks mapping based on CU-UDP with
16 cores without RS that all available resources have been
utilized.

In the second scenario, we apply RS technique. Each
region has two properties; a central core that is named
First Node (FN) and region radius r that p2r ` 1q2 cores
exist around FN [5]. Therefore, there are four regions with
radius r “ 1 and p2 ` 1q2 “ 9 cores in this example. In
FIGURE 3d, CU-UDP maps the tasks on a region with nine
cores until there is no available core for mapping the tasks
on. Then, it switches to another region and keeps going
to map all the tasks. The result in FIGURE 3e shows the
task set is mapped on 12 cores by using RS. If we choose
another region except for this region, we will have some
idle cores too. As most of the mapping algorithms in MCSs
use WF strategy, these algorithms may turn on all available
cores. However, RS leads to have some idle cores and to
manage peak power without time redundancy or increasing
fault rate. For instance, DVFS manages peak power but
it increases transient fault rate exponentially by reduction
of operating voltage [48]. Although turning off four cores
reduces peak power consumption, it may increase power
density on the active cores. Hence, it is important to propose
an algorithm to take into account the power density of the
cores intelligently. If we do not utilize some cores unaware
of reliability and temperature, it even can cause hotspot and
accelerate aging [5]. However, if we manage RS and choose
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a fresh region to map tasks, it results in an increased life-
time.

V. Proposed Approach
In this section, we present an approach that uses RS to
solve the problem. We first introduce our proposed approach
which consists of four main units: the subset unit, the
reliability power unit, the LPP-MC mapping unit and the
scheduling unit. Then, we explain the implemented algorithm
for each unit.

A. LPP-MC Approach
FIGURE 4 shows the overview of an MCS operational phase
includes offline and online phases that utilizes LPP-MC.
An operational phase defines as a period of time from the
start of system operation to the end of it, which is usually
between 1 to 10 hours due to the application (as mentioned
in section C). In each operational phase, at first, the offline
phase will be done then the online phase will start. In the
offline phase, LPP-MC takes the task set, reliability target,
PFH and TDP as inputs and generates the mapped tasks
and tests the schedulability of tasks. Then, the mapped tasks
are scheduled by EDF-VD in the online phase. In the first
step, the subset unit divides the task set in l subsets. Then,
the LPP-MC mapping unit selects an appropriate region by
considering RPM and maps a subset of tasks on the selected
region. Later, the scheduling unit tests schedulability and
returns a flag. If the flag is set to zero (i.e., the task subset
cannot be scheduled under the defined circumstances), LPP-
MC will select another region to map the subset until the
schedulability flag is set or LPP-MC failed. In parallel, the
reliability-power unit updates RPM and the next subset is
mapped by the LPP-MC mapping unit. All these calculations
are done offline so the required time for task mapping is
not critical. Further explanation of the units is presented as
follows.

Subset Unit: In this unit given task set is divided into
subsets. Since LPP-MC considers a subset of cores to map
the tasks, it is necessary to map a subset of tasks on a subset
of cores. Otherwise, it will be impossible to map all tasks

of the task set on a subset of cores. We consider two main
factors for dividing a task set into subsets: The sum of tasks
utilization in task set and utilization level of a region of cores.
By dividing these two factors we calculate the minimum
number of subsets. For this aim, the subset unit sorts the
tasks from the HI-Crit to the LO-Crit level to divide the
task set into subsets. Then, it assigns one task of the task set
to each subset until all subsets include one task. It repeats
this algorithm for all tasks. In this situation, HI-Crit and
LO-Crit tasks will distribute uniformly in different subsets.
It should be mentioned that the proposed approach is applied
in offline mode. Therefore, it has no knowledge about the
online power trace of the system. However, we guaranty that
total power consumption is always less than TDP. Hence, the
task with the highest power consumption level is assumed
as the power of the core. In this way, we can manage peak
power in offline mode.

Reliability-Power Unit: The reliability calculator and the
power and reliability analyzer are the main components of
the reliability-power unit. Temperature is akin to the power
consumption of each core which is given to the reliability
calculator as an input to calculate core reliability. After
calculating core reliability, the power & reliability analyzer
uses it to calculate the region selection metric. In this work,
as explained in section I, we propose a new metric named
Reliability-Power Metric (RPM) given in Eq. (12). It uses the
concept of Reliability Factor (RF) which has been presented
for the first time in [5]. The proposed technique in [5]
minimizes the communication latencies of interconnected
tasks belonging to the same application and manages the life-
time; while, in our proposed method (RPM), we minimize
the number of active cores to reduce peak power along with
life-time management. The RPM is defined for all available
FN cores ςw,h as follows:

RPMr
w,h “

w`r
ÿ

i“w´r

h`r
ÿ

j“h´r

rPer
i,j ˆp1´pi,jqˆp1´ui,jq (12)

where, RPMr
w,h is RPM for the FN ςw,h and radius r on

a square region. This region includes p2r ` 1q2 cores ςi,j .
ui,j is the core ςi,j utilization and 1 ´ ui,j is weight of the
core. pi,j is a factor for power of core ςi,j which is a binary
variable.

Three factors take part in this metric. The first factor
is rPer

i,j which is a factor for core aging. If RPer
i,j ptq is

greater than Rtargetptq, it means the core ςi,j is fresh enough,
otherwise, the core ςi,j is aged. Therefore, the value of rPer

i,j

is equal to RPer
i,j ptq if the core ςi,j is not aged, otherwise

rPer
i,j is set to zero. Hence, a region with FN ςw,h and higher
RPMr

w,h contains more fresh cores. The second factor is
pi,j that distributes power consumption among cores. To
initiate pi,j , we compare the power of the core ςi,j with
TDP {pm ˆ mq. Since we must guarantee to meet the TDP
constraint, we consider the worst-case scenario. It means
among the power of tasks, mapped on the core ςi,j , the
one with the highest power is assumed as the power of
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core ςi,j (further explanation in Section VI). If the power
of core ςi,j exceeds TDP {pm ˆ mq, pi,j is set, otherwise,
it is reset. The power factor discourages the selection of
regions that have a high power density. The last effective
factor to select an appropriate region is the utilization factor.
We map tasks on a region that has the lowest utilization
to apply load balancing besides distributing power density.
After calculating the RPM, it is transmitted to the LPP-MC
mapping unit.

Life-time Peak Power management in Mixed-
Criticality systems (LPP-MC) Mapping Unit: A task
allocation algorithm must meet the required reliability level
and peak power constraint, and maximize the processor’s
utilization. To achieve these objectives, this unit uses region
selection. The region with the maximum metric level takes
priority over the other regions. The LPP-MC mapping unit
takes the task subset and the RPM from the subset unit and
the reliability-power unit, respectively. Then, the LPP-MC
mapping unit selects a region that has more fresh cores and
lower power density using the defined metric. After region
selection, the LPP-MC mapping unit sorts tasks of the subset
and cores of the selected region. Then, it maps the tasks
based on Best Fit (BF) strategy. The mapped tasks are given
to the scheduling unit as an input.

Re-Execution Number Calculator Unit: LPP-MC must
guarantee the mapped tasks to be schedulable under the
reliability constraints. The re-execution number calculator
unit calculates the required number of re-executions for each
task τk to guarantee its timing reliability requirement based
on DO-178B.

This unit considers both effect of transient and permanent
faults to calculate the re-execution numbers. If only the
transient faults are considered to calculate the re-execution
time overhead, it may lead to fault rate underestimation in
the long-term. Therefore, we present the following model
to guarantee the reliability of tasks under permanent and
transient faults to have a more accurate estimation of the
required number of re-executions for each task in order to
meet the timing reliability requirements.

The reliability RPer
i,j ptq and RTra

i,j pt, χq are calculated
based on the permanent and transient faults rate, respectively.
These reliability factors are independent, therefore the total
reliability of each core ςi,j , denoted by RTot

i,j ptq, can be
modeled as follows:

RTot
i,j pt, χq “ RPer

i,j ptq ˆ RTra
i,j pt, χq (13)

PFHTot
i,j pt, χq is the PFH for the tasks on the core ςi,j :

PFHTot
i,j pt, χq “ 1´p1´PFHPer

i,j ptqqˆp1´PFHTra
i,j pt, χqq

(14)
that it is used to calculate the re-execution number nχ

χ.
Schedulability Test Unit: This unit uses re-execution

number nχ
χ to calculate ULO

LO , ULO
HI , U

HI
HI and finally UMC . It

calculates total system utilization UMC by using Eq. (15) [7].

UMC “ maxtULO
LO ` ULO

HI ,

UHI
HI {p1 ´ pULO

HI {p1 ´ ULO
LO qqq ` ULO

LO {pdf ´ 1qu

(15)

If UMC is larger than 1, the tasks cannot be scheduled.
Hence, the schedulability test unit reset the schedulability
flag and gives it back to the LPP-MC mapping unit to re-
map the tasks. Otherwise, the schedulability test unit gives
the mapped tasks to the reliability-power unit.

If a subset is mapped and scheduled, the next subset and
the updated RPM are given to the LPP-MC mapping unit.
The cycle of task mapping and scheduling is repeated until
all tasks are mapped. Now, we explain the algorithm of the
units.

B. Algorithm Description
Algorithm 1 is consisted of four main functions: up-
date RPM(), Subset Creation(), LPP MC Map() and Cal-
culate U MC(). Function update RPM() and function Sub-
set Creation() are used in the reliability-power unit
and the subset unit, respectively. We explain function
LPP MC Map() in Algorithm 2 which is used in the LPP-
MC mapping unit. Furthermore, function Calculate U MC()
is used in the scheduling unit and is explained in Algo-
rithm 3. The detail of each algorithm is as follows:

Algorithm 1: For each start of the system operation,
Algorithm 1 updates the reliability RPer

i,j ptq, the utilization
factor ui,j and the power factor pi,j for each core ςi,j in
lines 1-4. At the first time, since all processing cores are
free, ui,j and pi,j are initiated to 0. The reliability RPer

i,j ptq
is set to the last reliability of core ςi,j . Then, line 5 calculates
the maximum radius of the chip. In lines 6-13 the algorithm
calculates the RPMr

w,h for each FN ςw,h and radius r
based on the Eq. (12). Furthermore, it sorts RPM array
in decreasing order of the RMP in line 14. In line 15
function Subset Creation() divides the task set τ in l subsets.
In line 16, some variables is initiated: l is the number of
subsets, sc and cc count the number of subsets and cores,
respectively. r is the current radius which is used in mapping
the tasks.

Lines 17-49 map the subsets on the cores. These lines are
repeated until all subsets are mapped successfully. In line 18,
flag sche suc is initiated to 0. This flag is set by function
Calculate U MC(), when the subset sc is schedulable. Core
ςw,h with the maximum RPM0

w,h is chosen as FN. As
explained in Section A, a region with the highest RPM is
the most appropriate region for mapping a subset.

Function LPP MC Map() maps the tasks of the current
subset (subset sc) on the selected region with center FN
and radius r (line 19). If function LPP MC Map() maps the
subset sc, Algorithm 1 tests the schedulability and updates
the RPM (lines 22-35). If map suc is set (line 22), func-
tion Calculate U MC() tests the schedulability for provided
mapping (line 23). In this step, if the flag sche suc is

VOLUME , 9



Navardi et al.: Peak-Power Aware Life-time Reliability Improvement in Fault-Tolerant Mixed-Criticality Systems

Algorithm 1 Proposed approach (LPP-MC) description
1: for each core ςi,j do
2: ςi,j .R

Per Ð Calculate Relipq; %Eq. p8q

3: ςi,j .p Ð 0, ςi,j .u Ð 0;

4: end for
5: max r Ð p

?
cores number ´ 1q{2;

6: for each r “ 0 : max r do
7: cc Ð 0;
8: for each FN ςw,h do
9: RPMr

w,h Ð update RPMpς.RPer, ς.p, ς.bq;%Eq. p12q

10: rpm array.valuepr, ccq Ð RPMr
w,h;

11: rpm array.FNpr, ccq Ð w, h; cc Ð cc ` 1;

12: end for
13: end for
14: rpm array Ð Sortprpm arrayq;

15: sub set Ð Subset CreationpTasksq;

16: l Ð lengthpsub setq; sc Ð 1; cc Ð 0; r Ð 0;

17: while sc „“ l do
18: sche suc Ð 0; FN Ð rpm array.FNpr, ccq;

19: pmap suc,Qq Ð LPP MC Mappsub setpscq, r, FN, ςq;

20: if map suc then
21: sche suc “ Calculate U MCpQq;

22: if sche suc then
23: for each r “ 0 : max r do
24: cc Ð 0

25: for each FN ςw,h do
26: RPMr

w,h Ð

update RPMpς.RPer, ς.p, ς.bq;%Eq. p12q

27: rpm array.valuepr, ccq Ð RPMr
w,h;

28: rpm array.FNpr, ccq Ð w, h; cc Ð cc ` 1;

29: end for
30: end for
31: rpm array Ð Sortprpm arrayq;

32: sc Ð sc ` 1; r Ð 0; cc Ð 0;

33: mapped taskspscq “ Q;

34: end if
35: end if
36: if !map suc || !sche suc then
37: if cc ! “ lengthpRPM arrayprqq then
38: cc Ð cc ` 1;

39: else
40: if r ă r max then
41: r Ð r ` 1; cc Ð 0;

42: else
43: return 0

44: break; %cannot find the appropriate FN

45: end if
46: end if
47: end if
48: end while
49: return mapped tasks;

set (line 22), RPMr
w,h is updated by considering the changes

of ui,j and pi,j values for each core ςi,j in line 23-30. Then,

Algorithm 2 LPP-MC-Map function
1: Tasks Ð Sort TaskspTasksq;

2: for k “ 1 : lengthpTasksq do
3: Cores Ð Sort CorespFN, r, ςq;

4: τk Ð Taskspkq; ij Ð 0; deltaR Ð 0; map suc Ð 0;

map suc Ð 0;

5: while !map || ij „“ lengthpCoresq do
6: c “ Corespijq; c.W “ 1 ´ c.U ;

7: if c.deltaR ď 0 && τk.U ď c.W && WCP ď TDP then
8: Qpkq Ð assignpc, τkq; map suc Ð 1; break;

9: else if !deltaR && τk.U ď c.W && WCP ď TDP then
10: BU c Ð c; deltaR Ð 1;

11: end if
12: ij Ð ij ` 1;

13: end while
14: if !map suc then
15: if deltaR then
16: Qpkq Ð assignpBU c, τkq;

17: else
18: Qpkq Ð 0; map suc Ð 0; break;

19: end if
20: end if
21: end for
22: return map suc,Q;

the counter sc is increased and the variables cc and r are
reset (line 32).

If in functions LPP MC Map() or Calculate U MC(), the
subset sc cannot be mapped or schedulable due to the con-
straints (line 36), the algorithm looks for the next appropriate
region (lines 37-46). In each time, if the algorithm returns 0,
there is no possible region for mapping and scheduling tasks.

Algorithm 2: This algorithm gets the subset sc, the
cores ς , FN ςw,h and radius r. FN ςw,h and radius r are
the properties of the selected region which determines its
cores. Function LPP MC Map() applies a Worst Fit (WF)
strategy based on the utilization of cores. Before mapping
the tasks of the subset sc on the selected region, function
Sort Tasks() sorts the tasks in decreasing order of power
consumption. Then, the tasks with the same power are sorted
in decreasing order of utilization.

In line 3, function Sort Cores() sorts all the cores in the
selected region as follows; it sorts first non-busy cores in
decreasing order of reliability and then, cores with equal
reliability, in increasing order of utilization. Then Lines 2-
21 are repeated until all tasks are mapped on the cores.
Task τk is mapped on core c and the information of mapping
is saved on a data structure Q (line 8). If the following
three conditions are satisfied: 1) Processor core c is fresh
enough (i.e., deltaR “ Rtarget

i,j ptq ´ RPer
i,j ptq ă 0), 2) The

utilization of the task τk is smaller than the weight of
core c, and 3) Adding the task τk does not violate the TDP
constraint. Otherwise, the first core for which, condition 1
and 2 are satisfied, is selected for mapping the τk on
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Algorithm 3 Schedulability test in LPP-MC
1: PFH targetpHIq Ð initial PFH targetpq;% TABLE I

2: PFH targetpLOq Ð initial PFH targetpq;% TABLE I

3: for each core P Q do
4: ij Ð Q.CoreNymber;

5: for each criticality level χ do
6: PFH Totpij, χq Ð 1; npij, χq Ð 0;

7: while PFH Totpij, χq ą“ PFH targetpχq do
8: npij, χq Ð npij, χq ` 1;

9: PFH Totpij, χq Ð calculate PFH Totpij, χ,Qq;

10: end while
11: end for
12: for LO Crit task do
13: while PFH Totpij, SDq ą“ PFH targetpLOq do
14: n Primpijq Ð n Primpijq ` 1;

15: PFH Totpij, SDq Ð calculate PFH Totpij, SD,Qq;

16: end while
17: end for
18: nLO

LO “ nHI
LO;

19: ULO Ð calculate UtilpnLO
LO, nLO

HI , ijq;

20: UHI Ð calculate UtilpnLO
LO, nHI

LO, nHI
HI , ijq;

21: UMC Ð MAXpULO, UHIq;

22: if UMC <= 1 then
23: sche suc Ð 1;

24: else
25: sche suc Ð 0; break;

26: end if
27: end for
28: return sche suc;

it (line 10). If the variables map “ 0 and deltaR “ 1,
Algorithm 2 maps the task τk on a core that satisfied the
conditions 1 and 2 (lines 14-16). Function LPP MC Map()
returns fail and stops task mapping whenever it cannot find
an appropriate core for a task(lines 18).

Algorithm 3: It tests schedulability of tasks for the
subset sc which are mapped on the cores in the map-
ping Q. In the first step, the algorithm initiates the target
PFH (PFHtarget) for the tasks due to the their criticality
levels. Then, lines 3-27 are repeated for each core c in the
current mapping. In lines 5-11, Algorithm 3 calculates the
re-execution numbers of HI-Crit and LO-Crit tasks (nHI

HI

and nHI
LO) in the HI mode by using Eq. (14). Then, it

calculates the re-execution number of HI-Crit tasks in the LO
mode (nLO

HI ) in lines 12-17. In lines 18-21, it uses nHI
HI , nHI

LO

and nLO
HI to calculate the HI and LO mode utilization UHI

and ULO, and then the system utilization UMC by using the
Eq. (15). If Algorithm 3 cannot schedule at least one task
on a core, it fails and returns 0.

Example: We present an example here to explain LPP-
MC. A task set is considered in TABLE 3 to be mapped on a
4ˆ4 multi-core platform. According to FIGURE 4, there are
four major steps to apply LPP-MC: subsets creation, region
selection, mapping the tasks, and testing the schedulability.
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FIGURE 5: An example to illustrate the proposed mapping

Before these steps, the RPM is initiated to 1 and 9 for r “ 0
and r “ 1, respectively (lines 1-13, Algorithm 1).

In the first step, LPP-MC sorts the tasks from the HI-Crit
to the LO-Crit level to divide task set in subsets (TABLE 3).
Then, it assigns one task of the task set to each subset until
all subsets include one task. It repeats this algorithm for
all tasks (line 15, Algorithm 1). The result of this step is
shown in TABLE 4. The remaining three steps are repeated
for the mapping of each subset (lines 17-48, Algorithm 1).
We explain these three steps for subset 1 that is similar for
the rest of subsets.

In the second step, Algorithm 1 chooses a region with
FN ςij and radius r “ 0 (line 18) and goes to the third step.
Function LPP MC Map() maps subset sc on the selected
region. Before mapping the tasks, Algorithm 2 sorts the tasks
based on the power and utilization (line 1). The result of the
task sorting is shown in FIGURE 5. Then, Algorithm 2 maps
the tasks τ13 and τ1 on core ςij (c.U “ τ13.U`τ1.U “ 0.55)
in lines 2-21. When Algorithm 2 tries to map the task τ19,
it fails due to the second condition in line 7 or 9 (pτ19.U “
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TABLE 3: Task set example
TN τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13 τ14 τ15 τ16 τ17 τ18 τ19 τ20 τ21 τ22 τ23 τ24 τ25 τ26 τ27 τ28 τ29 τ30 τ31 τ32 τ33

Crit H H H H H H H H H L L L L L L L L L L L L L L L L L L L L L L L L

Util .05 .12 .12 .02 .07 .15 .2 .02 .1 .1 .2 .5 .5 .55 .55 .5 .25 .25 .55 .4 .55 .2 .55 .55 .1 .2 .55 .25 .55 .05 .2 .2 .55

Pow .58 .61 .38 .61 .53 .37 .43 .5 .62 .63 .39 .63 .62 .49 .58 .39 .47 .61 .58 .62 .54 .36 .59 .62 .54 .57 .56 .46 .54 .4 .55 .36 .43

TABLE 4: The task set is divided in the subsets
Subset 1

TN τ1 τ7 τ13 τ19 τ31 τ25

Crit H H L L L L

Util .05 .2 .5 .55 .2 .1

Pow .58 .43 .62 .58 .55 .54

Subset 2

τ2 τ8 τ14 τ20 τ26 τ32

H H L L L L

.12 .02 .55 .4 .2 .2

.61 .5 .58 .62 .57 .36

Subset 3

τ3 τ9 τ15 τ21 τ27 τ33

H H L L L L

.12 .1 .55 .55 .55 .55

.38 .62 .58 .54 .56 .43

Subset 4

τ4 τ10 τ16 τ22 τ28

H L L L L

.02 .1 .5 .2 .25

.61 .63 .39 .36 .46

Subset 5

τ5 τ11 τ17 τ23 τ29

H L L L L

.07 .2 .25 .55 .55

.53 .39 .47 .59 .54

Subset 6

τ6 τ12 τ18 τ24 τ30

H L L L L

.15 .5 .25 .55 .05

.37 .63 .61 .62 .4

0.55q ę pc.W “ 1´0.55q). LPP-MC cannot map the subset
sc on a region with radius r “ 0. Therefore, Algorithm 1
returns to the second step. It increases the radius r (line 41)
and chooses the FN ς2,3 (line 18), then it goes to the third
step again.

In the third step, function LPP MC Map() sorts tasks
based on function Sort Tasks(). Then, it sorts cores based
on the reliability, utilization and power. It maps task τ13 on
the core ς1,2 that is the first core in the queue in FIGURE 5.
The value of the power and utilization are updated for this
core and the cores are sorted again in order to map next task.
Task τ1 is mapped on the first core in the queue (ς1,2). The
utilization of the core ς1,2 is equal to 0.5` 0.05ˆ 3 “ 0.65.
Therefore, the weight of core ς1,2 is equal to 1´0.65 “ 0.35.
The utilization of τ19 is 0.55 and is greater than the weight
of ς1,2, hence it cannot be mapped on this core. Algorithm 2
maps task τ19 on the next core in the queue (core ς1,3).
To map task τ31 and τ25, it selects the first core in the
queue (core ς1,2). Then, it updates the core utilization:
0.65 ` 0.2 ` 0.1 “ 0.95 ă 1. The task τ7 is mapped on
the core ς1,4 that is the first appropriate core on the queue
with utilization is 3 ˆ 0.2 “ 0.6 ď 1.

In the last step, LPP-MC tests the schedulability of
mapped tasks on the cores in Algorithm 3. In lines 1-20 of
Algorithm 3, the number of re-executions is calculated for
the HI-Crit and the LO-Crit tasks on each core: nHI

HI “ 3,
nLO
HI “ 2 and nLO

LO “ 1. Then, it calculates UMC by
helping Eq. (15) for cores ς1,2, ς1,3 and ς1,4 that is equal
to 0.85, 0.55, 1, respectively (lines 22-24). These three steps
are executed for mapping the other subsets. The result of
mapping all subsets are shown in FIGURE 5.

VI. Experimental Result
In this section, we first present the experimental setup. Then,
we evaluate the LPP-MC in terms of reliability and life-
time, power and temperature distribution, and utilization and
compare to the state-of-the-arts.

A. Experimental Setup
To evaluate our system, we model the embedded multi-core
platforms with ARM processors in our experiments. Besides,
we use two types of task sets for evaluation: real task set for
flight management system [2], [7] and synthetic task sets,
similar to the state of the art studies such as [2], [4], [22].
The procedure described in [7], [9] has been used to generate
synthetic task sets, where the following data are employed.

‚ The number of cores is equal to 4 ˆ 4 “ 16.
‚ System utilization is normalized by usys “ utot{16

and the normalized utilization is bounded by
usys P r0.01, 1s.

‚ The utilization of each task is bounded by
u P r0.01, 0.2s.

‚ The period of each task is bounded by T P r200, 2000s.
‚ HI-Crit Task Probability: a task is a HI-Crit task with

the probability of pht P r0.1, 0.3s.
‚ HI Mode Probability: the system switches to the HI

mode with the probability of phm P r0.01, 0.2s.

In order to have a realistic power consumption data for
tasks, we use the MEET tool [51] (which is configured with
ARM cores), and running several embedded benchmarks
from MiBench suite [52] such as Automotive, Network and
Telecommunication benchmarks on it. The benchmarks are
run 1000 times to report the maximum values of power
consumption. According to the measurements, the maximum
power of tasks is generated randomly following the normal
distribution, in the range of the minimum and maximum val-
ues, reported in experiments, which is pow P r456, 833smW.
In this work, we consider the TDP value as 80% of the
maximum power that a chip consumes, which is convention-
ally considered in embedded processors [53]. In addition, in
order to obtain the temperature of cores, HOTSPOT simu-
lator [54] is used throughout the execution for a floorplan
and configuration platform which has ARM cores [16]. For
the configuration file, we use the parameters reported in [55]
which is for ARM processors. The ARM core (A7) has an
area of 0.45mm2 in our experiments reported by the ARM
company.
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FIGURE 6: System reliability over time, by utilizing LPP-MC, DPM [1] and UDP [22] approaches.

B. Experimental Results
As mentioned in previous sections, there is no approach
that considers life-time and peak power in multi-core MCSs.
Therefore, to evaluate LPP-MC, we compare it with two
state-of-the-art mapping algorithms in multi-core MCSs
which are more close to the proposed approach; DPM [1],
and UDP [22]. In the following section, we first evaluate the
effect of different mapping on the reliability and life-time of
the cores. Furthermore, we measure the total power of cores
in time slots to show the peak power. Then, we demonstrate
temperature distribution among the cores. Eventually, we
show the schedulability using extensive experiments by
generating synthetic task sets for the proposed approach.

1) Life-time Reliability
FIGURE 6 shows system reliability in long-term (10 years)
when UDP [22], DPM [1] and LPP-MC are applied on an
MCS. To accelerate the life-time evaluation, we consider the
worst-case scenario in power and core utilization. We extract
the maximum, minimum and average reliability of 16 cores
at each time (based on the Eq. (8)) to show the effect of
different mapping on reliability. In the first three figures of
FIGURE 6, although the reliability of cores is approximately
equal to 1 in the first year when applying three approaches
the distance between the reliability of cores is increasing
over time (up to 0.12). The reason is that, the effect of
various mapping on the reliability against permanent faults
determines after spending a long time.

FIGURE 6a shows that the maximum reliability of cores in
UDP and DPM is higher than LPP-MC, while FIGURE 6b
shows that applying the two former approaches results in
lower reliability of cores than LPP-MC. Therefore, using the
LPP-MC approach reduces the variance between the maxi-
mum and minimum reliability of cores, while some of the
cores are more reliable than other cores in UDP and DPM.
Moreover, it is reasonable that the maximum reliability of
cores in LPP-MC is lower than other approaches. The reason
is that it increases the minimum reliability of cores compared
to two other approaches to balance the reliability of cores.
Additionally, it can be extracted from FIGURE 6 that since
the maximum, average, and minimum reliability of cores are
almost equal, the reliability is balanced among cores when

applying LPP-MC. Balancing the reliability of cores not only
reduces the probability of failure of MCSs, but also increases
the average reliability of cores due to the results presented
in FIGURE 6c.

FIGURE 6d shows system reliability considering the tran-
sient and permanent faults which are calculated by Eq. (7)
and Eq. (8), respectively. System reliability by applying LPP-
MC is 0.9999997 and 0.7444 in 10 years by considering the
transient fault and permanent fault, individually. It is worth
mentioning that UDP [22] and DPM [1] do not consider any
fault tolerant techniques and since failure in the execution
of HI-Crit tasks may lead to system failure [16], the system
may fail with the first transient fault on those tasks, which
causes irreparable damage to the system. This is while, LPP-
MC schedules tasks by applying re-execution at the presence
of transient faults. LPP-MC schedules tasks by EDF-VD
after applying re-execution fault tolerance technique in order
to meet the deadlines of tasks. On the other hand, LPP-
MC postpone permanent faults by re-mapping tasks in each
operational phase which leads to better load balancing over
the cores.

In this work, MTTF is reported as a metric to evaluate
the life-time of the system. FIGURE 7 compares MTTF
of the LPP-MC mapping approach to UDP and DPM.
FIGURE 7c shows that LPP-MC has a more balanced life-
time of the cores compared to UDP and DPMs. This is
because the former approaches use static mapping, while
LPP-MC changes the mapping of tasks due to the aging
parameter in each start of operational phase. Besides, the
MTTF of 12 cores is equal to about 14 years in the UDP
(FIGURE 7a) and DPM (FIGURE 7b) approaches, while it is
approximately equal to 19 years for LPP-MC (FIGURE 7c)
approach. The system MTTF is 13.98, 14.16 and 17.62 when
applying DPM, UDP and LPP-MC approach, respectively.
LPP-MC increases the life-time of the system by up to 26%
based on the reported MCS MTTF.

2) Peak Power Management
FIGURE 8a shows the worst-case power consumption trace
of 1000 task sets during a hyper-period (1000ms). As shown,
the total power consumption has the peak value when time
instants located at integer multiples of 100ms. The reason
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FIGURE 8: Power consumption during a hyper-period

is that, there are many tasks that have period equal to
time instants, which are integer multiples of 100ms (100,
200, 300, etc.). Therefore, the system consumes more power
to execute many tasks that execute in this time instants.
The curve of total power consumption has a decreasing
trend in three approaches, without considering the peaks
(FIGURE 8a). This means the period of some tasks is bigger
than 100ms. For instance, there are some tasks with the
period of 1000ms that are executed once in this hyper-period.
As the value of TDP is one of LPP-MC inputs, TDP=10W
(which is acceptable for embedded processors) is given to
the algorithm as the input of the experiment. As FIGURE 8a
shows, LPP-MC succeeds to meet given TDP, while UDP
and DPM violate TDP. The maximum power consumption
for the UDP, DPM, and LPP-MC approaches is 11.02W,
10.78W, and 9.08W, respectively. Hence, LPP-MC reduces
peak power consumption up to 17.6% compared to others.

In addition to considering a constant value for TDP, FIG-
URE 8b counts how many times systems have a power con-
sumption higher than a specific power. It is worth mentioning
that the better mapping is the one that has no violation in
lower power consumption because it can be applied to map
tasks on a chip with lower TDP. The number of violation is
non-zero for power consumption lower than 11.02W in curve
related to UDP, lower than 10.78W in curve related to DPM
and lower than 9.08W for LPP-MC. Therefore, LPP-MC can
be used for systems with lower TDP.

3) Temperature Distribution
We first measure temperature in an short term operational
phase, equal to 10 hours. Note that since the UDP and DPM
approaches have static mapping during run-time, the result
for any short term operational time has the same trend and
there is no matter we take which operational time result.
The steady-state temperature output of HOTSPOT [54] is
shown in FIGURE 9. FIGURE 9b, 9c and 9d show that
the temperature is well distributed. However, four processing
cores ς1,1, ς1,2, ς1,3 and ς1,4 of UDP [22], have reasonably
higher temperature, which are equal to 327.74 K, 327.67 K,
327.71 K and 327.76 K, respectively (FIGURE 9a). Al-
though DPM has lower maximum temperature that other
approaches and also distributes temperature, it activates most
of processor cores, which may causes to not meet TDP
constraint. On the other hand, as shown in FIGURE 9b,
the temperature of upper half of the cores are higher than
the temperature of cores ς4,1, ς4,2, ς4,3 and ς4,4, hence they
would age faster than other cores in long term. The reason
is that keeping running these cores in long-term and being
active causes higher temperature. We show and explain the
temperature distribution in long term in the next paragraph.
FIGURE 9c and FIGURE 9d shows system temperature of
two different task mappings in two operational phase by
applying LPP-MC. In FIGURE 9c, LPP-MC activates 14
cores in addition to distributing temperature among them.
Therefore, the proposed approach by applying region selec-
tion not only meets the TDP constraint due to activating
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FIGURE 9: Temperature profile for an operational time
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FIGURE 10: Temperature profile in long-term

fewer cores but also, it avoids hotspots in the chip due to
the thermal distribution. On the other hand, the difference
between the temperatures of free cores like ς3,4 or ς4,4
with other cores such as ς3,2, does not cause unbalanced
aging. The reason is that the thermal distribution changes in
long-term in LPP-MC, due to the task re-mapping in each
operational phase. For instance, FIGURE 9d shows that in
another operational phase, tasks are mapped on the younger
processors (ς4,4).

In order to show the effect of different mapping on the
distribution of temperature in the long-term, we evaluate
temperature with the assumption that the system has con-
tinuously run for different operational times (FIGURE 10).
As shown in FIGURE 10a and 10b, some cores have a
higher temperature than other cores in UDP and DPM. This
result is also matched with FIGURE 7b in which the first
12 cores also have lower MTTF due to experiencing higher
temperature. However, FIGURE 10c shows that LPP-MC
distributes temperature among cores since the task mapping
is changed during time by considering mapping tasks on
younger cores.

4) Scheduling
LPP-MC considers transient and permanent faults to calcu-
late required re-execution number to guarantee predefined
reliability level; This can affect schedulability and utilization,
Eq. 15. FIGURE 11 shows the effect of LPP-MC on MCS
utilization. We generate 1000 task sets for each total utiliza-
tion utot P r0.01, 16s. Then, we report normalized utilization
utot{16 “ usys P r0.01, 1s. The work in [7], named Safety
Quantification with Service Degradation (SQSD), uses re-
execution technique to tolerate the faults and SD in MCSs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Utilization

0
10
20
30
40
50
60
70
80
90

100

Sc
he

du
la

bi
lit

y 
Pe

rc
en

t LPP-MC 
SQSD [22] [7] [7] 

FIGURE 11: Task sets schedulability

We compare the schedulability of our approach with the
SQSD. Schedulability is the percent of the schedulable
task sets in comparison with all examined task sets on
the MCSs. FIGURE 11 shows that SQSD guarantees 100%
schedulability until the system utilization is smaller than 0.2
while LPP-MC imposes 0.1 utilization penalty. The reason of
penalty is that SQSD does not consider peak power and life-
time while applying peak power management approaches
reduces the number of active cores at a time. This limits
LPP-MC to achieve higher utilization.

VII. Conclusion and Future Work
In this work, we propose an approach called LPP-MC to
prolong the life-time and reduce the peak power of mixed-
criticality systems (MCSs). Besides, we present a reliability
model for MCSs that considers both transient and permanent
faults. For this aim, a new metric called RPM is proposed and
it includes three factors; power, reliability, and utilization to
select an appropriate cores’ region for task mapping. Besides,
the schedulability of the tasks is evaluated using EDF-VD.
The results show peak power reduction up to 17.6% and life-
time improvement up to 20.6%, compared to state-of-the-art
works, along with reliability guarantee against permanent
and transient faults.

To guarantee the worst-case scenario of system opera-
tion, we design the system for objectives’ improvement by
considering the worst-case scenario of task execution and
fault occurrence at design-time. However, since it does not
always exhibit the worst-case behavior at run-time, the core’s
capacity may be wasted, which can be a limitation/drawback
of the proposed scheme. Therefore, as prospective future
work, we would first employ the more efficient mixed-
criticality task scheduling algorithm than EDF-VD at design-
time. Then, we would consider the run-time behavior and
employ the accumulated dynamic slack of cores in order to
better manage the objectives, like improving the life-time or
reducing the peak power consumption. Besides, in multi-core
systems, to avoid manufacturing yield losses and increase
reliability, designers embed redundant cores in the system.
As another future work, those redundancies can be modeled
and considered to improve the MCS’s life-time.
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