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Abstract
Deploying deep learning models to the edge is challenging due to
limited available resources of embedded devices. To address this,
we introduce PEAX, a flexible and automatic model augmentation
framework designed to enhance deep learning inference efficiency
on microcontrollers. PEAX focuses on adaptive and other advanced
techniques, including novel approaches to model right-sizing and
model slimming, and offers optimizations through graph rewrites
and fine-tuning that surpass the capabilities of current deep learning
compiler toolchains.

PEAX also implements a compiler interface that converts opti-
mizedmodels directly through TensorFlow Lite forMicrocontrollers
or microTVM, enabling seamless deployment. We benchmarked
its augmentations on an Cortex-M4F-based Microcontroller us-
ing both compiler interfaces, demonstrating significant latency
improvements of up to 94.2% while maintaining accuracy within
2.9 percentage points of the original model. Our results show that
PEAX can substantially improve the performance of deep learn-
ing on resource-constrained devices by automatically applying
advanced model augmentations, paving the way for more efficient
edge AI applications.

CCS Concepts
• Computing methodologies→ Artificial intelligence; • Com-
puter systems organization→ Embedded software.
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Adaptive Deep Learning, Embedded Deep Learning, Automatic
Configuration
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1 Introduction
The increasing demand for edge AI applications has created a need
for efficient deep learning models that can operate on resource-
constrained devices such as Microcontrollers (MCUs). However,
deploying them on edge devices is challenging due to limited com-
putational resources, memory, and energy constraints. While ex-
isting optimization techniques like quantization and pruning can
improve efficiency, they are often insufficient on their own to create
solutions that are both usable and effective in constrained environ-
ments.

To address this challenge, researchers have explored adaptive
techniques such as Early Exit Neural Networks (EENNs), which
have demonstrated potential for reducing inference costs while
maintaining high prediction quality. However, existing approaches
often focus on a single technique, creating isolated implementa-
tions that need to be maintained individually. Furthermore, current
solutions often require significant expertise in deep learning and
compiler design, creating a barrier to entry for non-domain experts.

In this paper, we propose PEAX1, a novel model augmentation
framework that bridges this research gap by combining adaptive
and static techniques to optimize deep learning models for resource-
constrained environments. Our framework’s modular design en-
sures ease of extensibility and minimal conversion costs, making it
an attractive solution for deploying deep learning models on edge
devices. The key contributions of PEAX include:

• Performance Improvements: PEAX applies various aug-
mentations automatically to enhance the performance of
deep learning models on embedded devices.

• Modularity: Its modular architecture allows easy extension
and integration of new techniques.

1PEAX [pi:ks] stands for Performance Enhancing Adaptive eXecution
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Figure 1: A high-level representation of the overall augmenta-
tion flow of PEAX.Multiple Reports, Rewrites and Solutions
of the same type can exist within the same ModelAnalysis, if
they were created with different configurations.

• Compiler Interface: PEAX features a compiler interface
that facilitates seamless deployment on edge devices through
state-of-the-art toolchains.

• Novel Augmentations: PEAX introduces innovative ap-
proaches to model right-sizing and static slimming, which
were developed by leveraging the framework’s modular de-
sign and reusing existing functionality from early exiting
rewrites. These novel augmentations further expand the
range of optimization techniques available to users.

• Comprehensive Reports: PEAX generates comprehensive
HTML-based summaries that provide insight into the submit-
ted models and applied augmentations, lowering the barrier
of entry. These summaries are intended to make the per-
formed augmentations explainable to non-domain experts.

For this paper, we implemented the PEAX framework with its
modular design, incorporating EENNs augmentation techniques
from related work. Additionally, we added two novel static rewrite
approaches that enable further model optimizations. We evaluated
the effectiveness of these optimizations using targeted compiler
flows on an Infineon PSoC 6 MCU, achieving a latency reduction
of up to TODO% while maintaining comparable accuracy scores.

Furthermore, we published PEAX on GitHub2 to encourage fur-
ther research and development in this area.

2 Related Work
In recent years, adaptive techniques have shown their ability to
significantly improved inference costs while maintaining predic-
tion quality [10]. These techniques have also been applied to em-
bedded scenarios and extended by leveraging unique application-
specific properties to further enhance performance [5, 6, 8]. Such
approaches include the utilization of EENNs with domain-specific
at-runtime decision mechanisms, either guided by the input’s simi-
larity to the majority class [5], or leveraging the temporal compo-
nent of sensor data streams [6, 8].

Network Architecture Search (NAS) frameworks for adaptive
techniques are able to create efficient models that incorporate adap-
tive techniques. However, these frameworks rely on costly search
methods like evolutionary search and are typically limited to spe-
cific problems, such as confidence-based EENNs [2–4]. Furthermore,
these frameworks do not always perform all necessary implemen-
tation steps, such as configuring decision mechanisms [2–4], and

2https://github.com/MaxS1996/peax

are instead limited to just creating the EENN model architecture or
to specific hardware targets or tasks and used layers [4].

In contrast, Network Augmentation (NA) involves starting from
an existing model and finding viable solutions at a significantly
reduced search cost, proving effective in optimizing models for
various applications, which enables the utilization of existing model
zoos as starting point [7].

Our work introduces PEAX, a dedicated NA framework de-
signed specifically for embedded deep learning applications. PEAX
integrates a range of techniques, including NAs for EENNs and
histogram-based termination [7, 8], model right-sizing, and model
slimming. Unlike NAS frameworks, PEAX does not rely on costly
evolutionary search algorithms and is not limited to a single tech-
nique. Instead, it provides a flexible and extensible framework for
optimizing deep learning models for embedded applications with
a focus on adaptive solutions. This modular architecture enables
developers to extend its functionality easily, while reusing existing
components during the implementation and execution.

The model slimming and right-sizing augmentations have been
created for this publication to showcase the ability to implement
novel NAs by reusing the available components already integrated
into PEAX.

3 Architecture
The design of PEAX emphasizes three main principles: ease of use,
cost-effectiveness, and modularity. These principles ensure that
the framework is accessible, cost-efficient in its use, and extensible,
facilitating future additions with novel augmentation flows. An
overview of PEAX’s design is illustrated in Fig. 1.

At the center of the PEAX framework is the ModelAnalysis
class. This class encapsulates the entire augmentation process for a
model, providing a structured approach to optimizing deep learning
models for embedded systems. By centralizing the augmentation
process into one object, it ensures that each process can access
the information available in other components that operate on the
same model. This promotes the reuse of information across differ-
ent optimizations/augmentations and their internal steps, thereby
enhancing efficiency and consistency.

3.1 The ModelAnalysis Class
Objects of the ModelAnalysis class are instantiated by submitting
the original models. They serve as a container for all the information
and objects generated during the model’s processing. Given that dif-
ferent augmentation flows require vastly different information and
processing steps, the ModelAnalysis class is structured to include
only the base information essential for almost every augmentation
that can be quickly acquired. This information includes:

• Graph-Level Representations:Both fine-grained and coarse-
grained representations of the model are maintained to sup-
port various report and rewrite operations.

• Subgraphs: The feature extraction and prediction subgraphs
in both representations are identified and stored.

• Cost Estimates:Detailed node-wise estimates of themodel’s
inference cost in operations per second are calculated.
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Figure 2: The achieved performances of the different augmentation flows for the MI detection model. The latency values
are normalized to the TensorFlow Lite for Microcontrollers (TFLM) latency, to enable a comparison between the supported
compiler/deployment toolchains. Detailed results in tabular form will be available in the GitHub repository.

• Model Task: The predicted task of the submitted model,
such as (binary) classification or regression, is determined
and recorded.

• Data Modality: The modality of the input data is estimated
based on the tensor shape and model architecture.

3.2 Reports
To accommodate the diverse requirements of various augmenta-
tion techniques, the ModelAnalysis class incorporates a registry
of artifacts, known as Reports, which provide additional informa-
tion extracted from the model and can be submitted by the user or
Rewrites that require their functionality. These Reports are evalu-
ated lazily, to ensure efficiency and avoid redundant computations.

Each Report is assigned a unique identifier based on its type and
configuration, enabling its reuse across multiple augmentations
and reducing computational overhead. The Reports are submitted
to the ModelAnalysis as closures that wrap their constructors, and
are only created when their functionality is required.

This strategy, including the unique identifier and lazy evaluation,
are designed to ensure that the execution of PEAX is cost-effective.

Frequently used Reports include DatasetReports, which en-
able developers to submit required datasets for training, evaluation
(using the AccuracyReport), or finetuning steps as Numpy arrays,
Python lists, or TensorFlow Dataset objects. The additional wrapper
enables PEAX to extract basic statistics from the datasets, providing
developers with insights into the quality of their data, and caching
this information for future use.

Other notable Reports include the EarlyExitReport, which
evaluates the submitted model to identify suitable locations for
introducing early exit branches and determines the most suitable
architecture for each branch location. Additionally, the HWReport
can be used as an interface to performance models [9], estimating
the layer-wise latency, memory, and storage or other performance
metric of the model inference. The open-source version of PEAX
relies on simple performance models, simplifying the hardware de-
scriptions to the peak operations per second, the available memory
and the interconnect speed between processors. Developers can use
the HWReport class to interface with their own hardware models.

It is important to note, that differently configured Reports of
the same type can be submitted to the same ModelAnalysis object.

3.3 Rewriters
Rewriters are a critical component of the PEAX framework, re-
sponsible for performing specific augmentations of the model using
the base information and Reports or other Rewriters registered
with the ModelAnalysis class. These augmentations result in one
or more optimized Solutions, which can be converted back into
ModelAnalysis objects, enabling further sequential optimizations.

Multiple Rewriters can be registered with the same Model-
Analysis to create Solutions tailored to different environments
or targets. This flexibility allows developers to explore various
augmentations and adapt to diverse deployment scenarios, while
leveraging the reuse between artifacts.

The workflow within PEAX is managed through a queue system,
where ModelAnalysis objects have a queue that can be populated
with augmentation passes. These passes are closures that wrap the
creation of the Rewriters and Solutions within a single function
call. Each Rewriter class has a function to enable developers to
easily create such a closure to submit to the queue. Each step in
the queue produces one or more Solutions, which can then be
converted into new ModelAnalysis objects for subsequent opti-
mization steps in the queue. Alternatively, developers are able to
submit Reports and Rewriters and perform the augmentations
manually to have better control over the process. This queue-based
system enables efficient and flexible optimization workflows, allow-
ing developers to chain multiple augmentations if needed. In the
current version of PEAX, developers still have to select the order
and amount of augmentation passes that are added to the queue.
These passes can be applied sequentially or in parallel.

One example of a Rewriter is the RightSizingRewriter, which
is a novel static augmentation that was implemented for this pub-
lication. This Rewriter prunes the submitted model by removing
deeper layers and attaching a new classifier subgraph to the deep-
est remaining layer. Notably, this implementation reuses existing
Reports from the early exit augmentations of PEAX, including
three DatasetReports for training, validation, and test sets, an
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EarlyExitReport to identify potential locations and configura-
tions for the new classifier, and an AccuracyReport to compare
the options in the search space of potential solutions to the origi-
nal model. The AccuracyReport and EarlyExitReport are used to
create a search space, where the Pareto front is identified, and poten-
tial solutions can be sampled from it. Another novel contribution is
the ModelSlimmingRewriter, which relies on the ModelAnalysis
to identify the feature extraction subgraph and create multiple ver-
sions of the model by scaling the number of filters and units in
the contained layers, while keeping the hyperparameters of the
predictor subgraph unchanged. Such a functionality can be used,
if a heterogeneous fleet of devices needs to be targeted, without
having to handcraft dedicated model architectures for each target.

3.4 Compiler Interface
The PEAX framework features specialized Rewriters, known as
CompilerInterfaces, which convert augmented models into de-
ployable formats using popular toolchains such as TFLM and mi-
croTVM. These interfaces enable seamless deployment of optimized
models on various target platforms.

One key difference is that Solutions generated by Compiler-
Interfaces are not convertible back into ModelAnalysis objects,
as they are intended for deployment rather than further optimiza-
tion.

Currently, PEAX supports TFLM and microTVM for model con-
version, with microTVM relying on the TFLM interface for the
quantization step. The addition of CompilerInterfaces and the
queueing system enables PEAX to utilize different toolchains for
converting and deploying Solutions comprising of multiple sub-
models. Each of these submodels can be converted into its own
ModelAnalysis object, enabling the usage of the most optimal
compiler toolchain for each combination of subgraph and target
device.

One promising use case for this capability is the distribution of
subgraphs of an EENN across different targets in heterogeneous or
distributed environments, allowing for more efficient and flexible
deployment of complex models.

3.5 Current Functionality
Several Rewriters have been implemented within the PEAX frame-
work:

• Confidence and Temporal EENNs: Creates EENNs using
confidence-based or temporal decision mechanisms, allow-
ing distribution of subgraphs across heterogeneous devices.
Developers can use their own performance models to acquire
performance data during the augmentation [7, 8].

• Histogram-Based Early Termination: Introduces a pool-
ing layer in a dedicated branch and monitors the histogram
of the intermediate feature map (IFM) over time to detect rel-
evant changes in the model input. This rewriter implements
an automated augmentation flow for an adaptive technique
from related work [8].

• Model Right-Sizing: Prunes deeper layers of the model and
attaches a new classifier at the deepest remaining layer. This
is a static augmentation that reuses implemented Reports
of the EENN augmentations.

• Static Slimming: This augmentation was newly created
for this publication. It creates different width versions of
the submitted model, reducing training costs by transferring
weights between versions. This is useful for creating model
variants targeting a heterogeneous fleet of devices.

The static slimming functionality generates multiple model vari-
ants with varying numbers of filters or neurons in the feature ex-
traction subgraph. By transferring weights from the original model
and previously trained slimmer solutions, the rewriter attempts to
minimize the required training effort.

PEAX also offers a mechanism for generating detailed, HTML-
based summaries, providing insights into the submitted model and
performed augmentations. These summaries enable users to gain a
deeper understanding of relevant properties of their model architec-
ture for embedded deployments and the benefits of the augmented
solutions.

In conclusion, PEAX’s modular architecture, ModelAnalysis
class, diverse Rewriters, specialized CompilerInterfaces, and
detailed summaries provide a robust and flexible framework for
augmenting deep learning models on embedded devices.

4 Evaluation
To demonstrate the capabilities of the PEAX framework, we con-
ducted an evaluation using an Infineon PSoC 6 MCU, specifically its
Cortex-M4F CPU running at 150 MHz. We targeted two common
embedded deep learning applications: Electrocardiography (ECG)
monitoring and speech command detection. These benchmarks
were selected because they represent critical and widely-used em-
bedded applications.

We applied all appropriate rewrites implemented in PEAX to the
reference models of both use-cases and queued the existing TFLM
and microTVM CompilerInterfaces to automatically convert the
created Solutions into a deployable format, this enabled a direct
comparison of the performance of both toolchains for these use-
cases. Additionally, we evaluated the potential improvements that
can be achieved by chaining augmentations for the combination
of a static slimming step followed by the application of adaptive
techniques.

4.1 Myocardial Infarction Detection on
Single-Lead ECG Data

Myocardial infarctions (MIs) pose a significant threat to health,
making continuous monitoring crucial for timely interventions.
Wearables like smartwatches can be vital in this regard, but they
must strike a balance between achieving high accuracy and main-
taining long battery life.

For this evaluation, we leveraged a Convolutional Neural Net-
work (CNN) from related work [5], originally designed as an EENN
consisting of two 1D-CONV and a dense layer. The original Early
Exit (EE) branch was introduced after the first CONV layer. How-
ever, for the purpose of this evaluation, we removed the EE branch
from the original model to create the baseline model. The evaluation
took place on the PTB-XL dataset [11].

The baseline achieved a test-set accuracy of 80.57%, requiring
16,776 Multiply-Accumulate (MAC) operations per inference, re-
sulting in a latency of 9.38 ms (TFLM) or 5.43 ms (microTVM) when
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Sequential Data

Figure 3: The achieved performances of the different augmentation flows for the mini-speech model. The latencies are
normalized to the TFLM latency, to enable a comparison between the supported compiler/deployment toolchains. The temporal
EENN and histogram termination solutions have been evaluated on test sequences, which contain temporal correlation between
subsequent samples to better represent a real-world environment. Detailed results in tabular form will be available in the
GitHub repository.

deployed to the MCU. While the latencies are small enough to
be insignificant for the treatment of MIs, reducing them can con-
tribute to longer battery life through race-to-sleep strategies or the
deployment to slower, but more energy-efficient MCUs.

Details about the performance of the optimized solutions can
be found in Fig. 2. In summary, all solutions reduced the MAC
footprint while maintaining competitive accuracy scores.

The smallest slimmed solution reducedMAC operations by 68.9%
with an accuracy drop of just 4.1 percentage points (p.p.). Its latency,
when deployed via microTVM, was reduced by 85.5%. Compared to
a TFLM-based deployment of the original model, the latency could
be reduced by 91.45% through model slimming and a microTVM-
based deployment.

The ahead-of-time compilation strategy of microTVM generally
outperformed TFLM-based solutions, which rely on an at-runtime
interpreter, on this use-case.

The ability to chain Rewriters was initially designed to di-
rectly integrate CompilerInterfaces into the augmentation pro-
cess. However, this feature also enables the combination of various
augmentations. To explore the potential of this, we investigated the
effects of combining the slimming step with adaptive techniques,
including EENNs and histogram-based approaches.

Our experiments revealed that combining slimming with conf.-
based EENN did not yield significant performance improvements,
likely due to the limited prediction quality and confidence of the EE
classifier. In contrast, incorporating temporal decision mechanisms
into the slimming process led to substantial reductions in MAC
footprint (74.4%) and latency (94.2% when using microTVM, and
55.7% when using TFLM), with a minor accuracy drop of 2.9 p.p..
Combining slimming with histogram-based termination resulted in
similar latency reductions, although at the cost of a more significant
accuracy loss. Notably, the combination of slimming and confidence-
based EENN techniques led to a slight increase in test accuracy on
certain configurations, suggesting that there may be additional
optimization potential in the automatic configuration step for the
training of scaled variants of the model slimming augmentation
pass.

Overall, the optimized solutions offer significant improvements
in computational efficiency and latency while maintaining high
accuracy, making them suitable for real-world healthcare applica-
tions.

4.2 Mini-Speech Commands Detection
The task of mini-speech commands detection involves classifying
a limited set of speech commands into eleven classes (nine spoken
commands, noise, and silence). For this evaluation, we used the DS-
CNN Large model from ARM [13] as the submitted model. While
smaller configurations of this specific architecture exist, they are
not able to achieve the same accuracy levels and it cannot always
be assumed that such manually scaled versions are available.

The original model achieved a test-set accuracy of 93.15% and a
test-sequence accuracy of 88.70%. The original model had a MAC
footprint of 29.3 million MAC operations and latencies of 794.77ms
(TFLM), and 1,055.66ms (microTVM).

The test set is the original test split of the mini-speech dataset
in its latest version [12], which contains a total of 105,829 audio
samples. The test sequences were created from samples of the test
set as described in related work [8], totaling thirty minutes of audio
containing various speech commands and background noise. This
was necessary to create temporally correlated samples similar to
real-world scenarios in a reproducible way.

A summary of the performance in terms of maintained accuracy
and achieved latency can be found in Fig. 3. The Temporal EENN
(EENN TEMP) and histogram-based termination (HIST TERM) so-
lutions utilize the test sequence for evaluation, whereas the other
solutions were assessed using the test set.

The most significant reduction in MACs when only applying a
single augmentation was achieved through model slimming and
temporal solutions (EENN-TEMP and HIST-TERM). The 0.5-width
configuration reduced footprint and latency by 28.9% and 41.4%
respectively, while maintaining 91.5% accuracy. Temporal solutions
reduced MAC and latency by up to 45.8% and 30.6%, but require
temporally correlated input data.
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TFLM outperformed microTVM in terms of latency. TFLM’s in-
terpreter overhead was negligible due to the larger computational
footprint and IFM sizes. MicroTVM’s deployment was also limited
by the insertion of an additional reshape operation in front of the
initial convolutional layer, significantly increasing the inference
latency.

By combining model slimming with adaptive techniques, specifi-
cally the 0.5-width configuration and a temporal EENN,we achieved
a significant reduction in mean MAC operations per inference,
amounting to 87.1%, while maintaining accuracy levels within
2.7 p.p. of the original model on the sequential data. This, in turn,
led to substantial latency reductions, with TFLM experiencing a
81.8% and microTVM a 54% decrease in mean inference latency.

When applied to the original test set, combining slimming with
confidence-based EENN techniques, again using the 0.5-width con-
figuration, resulted in a 74.6% reduction in MAC footprint, while
maintaining an accuracy score within 1.8 p.p. of the original model.
This led to notable latency reductions, with TFLM experiencing a
65.5% decrease and microTVM a 42.9% decrease in mean inference
latency.

5 Conclusion and Future Work
The PEAX framework achieves significant performance improve-
ments for embedded deep learning models through dedicated aug-
mentations and optimizations tailored to unique scenarios in em-
bedded use-cases, such as temporally correlated input samples.
Existing deep learning compilers lack the backpropagation and
optimizing functionality required for such optimizations, but a
dedicated framework like PEAX addresses this gap despite hav-
ing a limited frontend compared to compilers like TVM [1]. The
inclusion of a compiler interface allows non-domain experts to
use different toolchains without needing specialized deployment
pipelines. Our evaluation demonstrated the benefits of targeting
various toolchains and deployment methods, as performance varies
significantly depending on the toolchain and model architecture.

As demonstrated in the evaluation, PEAX was able to reduced
the mean MAC operations by up to 74.4% and latency by up to
94.2% in the MI detection task, while maintaining accuracy within
2.9 p.p. of the original model. In the mini-speech commands task,
PEAX reduced MAC operations by up to 87.1% and latency by up
to 81.8%, with only a 2.7 p.p. drop in accuracy.

Future work could incorporate a Rewriter that automatically
selects the best compiler and target device based on performance
models created from profiling data and implementing more code
generation for the CompilerInterfaces to generate a wrapper
that unifies the interfaces of the available deployment toolchains.
This would further streamline the optimization process and ensure
optimal performance for a wide range of embedded deep learn-
ing applications. Another potential research direction is to further
explore the combination of different augmentations and optimiza-
tions, and how the search parameters for the chained optimizations
need to be adapted to further improve the inference footprint while
maintaining the prediction quality.
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