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Abstract—Multiplication is one of the most extensively used arithmetic
operations in a wide range of applications. In order to provide resource-
efficient and high-performance multipliers, previous works have pro-
posed different designs of accurate and approximate multipliers—mainly
for ASIC-based systems. However, the architectural differences be-
tween ASICs and FPGA-based systems limit the effectiveness of these
multipliers for FPGA-based systems. Moreover, most of these multi-
plier designs are valid only for unsigned numbers. To bridge this gap,
we propose a novel implementation technique for designing resource-
efficient and low-power accurate and approximate signed multipliers
which are optimized for FPGA-based systems. Compared to Vivado’s
area-optimized multiplier IPs, the designs obtained using our proposed
technique occupy 47% to 63% less area éLookup Tables). To accel-
erate further research in this direction and reproduce the presented
results, the RTL and behavioral models of our proposed methodology
are available as an open-source library at https:// cfaed.tu-dresden.de/
pd-downloads.

Index Terms—Signed Multiplier, Booth’s Multiplication, Accurate, Ap-
proximate Computing, FPGA, Energy Efficiency.
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1 INTRODUCTION

State-of-the-art field-programmable gate arrays (FPGAs), such
as Intel Stratix-10 and Xilinx UltraScale+, use hard digital signal
processing (DSP) blocks to provide high-performance multipli-
ers and accumulators for a wide range of DSP applications.
These DSP blocks are manually optimized, like an application-
specific integrated circuit (ASIC), to provide energy and per-
formance gains for different applications. However, the fixed
locations and fixed bit-widths of these DSP blocks may result
in de%raded performance for some applications. We have pre-
viously reported the results of two different implementations—
with and without DSP blocks—for different DSP applications,
such as Nova and Viterbi decoder, in [10]. Our results show
that the fixed locations of the allotted DSP blocks results in
increasing the routing and critical path delays for some applica-
tions. For small applications, it may be possible to improve the
critical path delays of the applications by performing manual
floorplanning. However, for larger applications with competing
resource requirements, such as contentions for DSP blocks and
Block RAMs, it might not be possible to take significant ad-
vantage of the manual floorplanning for optimizing the overall
erformance of an application. Further, we have also reported
in [10] that the implementation of some applications may con-
sume a large number of the available DSP blocks for performing
different arithmetic operations. An exhaustive utilization of
DSP blocks, by a single ag{)hcation, will result in utilizing
logic-based soft arithmetic blocks for other concurrently run-
ning applications (or functions) on the same FPGA. Moreover,
the utilization of DSP blocks having MxM multipliers for
obtaining YxY and ZxZ multipliers, where M>Y and M<Z,
can degrade the performance of overall implementations [3].
Similar results about the potential limitations associated with
DSP blocks utilization are also reported in [2]. Therefore, it is
always advantageous to have low area and high performance
logic-based soft multipliers along with DSP blocks, as provided
by modern FPGAs vendor, such as Xilinx [4].
Among famous multiplier options, the Wallace [5] and
Dadda [6] multipliers have high resource requirements for

e S. Ullah, H. Schmidl, S. S. Sahoo and A. Kumar are with Technische
Universitit Dresden, Germany.

o S. Rehman is with Technische Universitit Wien, Austria.

]Z\/é%uscript received 20 Mar. 2019; revised 29 Mar. 2020; accepted 5 Apr.
(Corresponding author: Salim Ullah.)

Recommended for acceptance by G. Constantinides.

The work presented in this article is supported by the German Research
Foundation (DFG) funded project ReAp (Project Number: 380524764).
Digital Object Identifier no. 10.1109/TC.2020.2988404

achieving high performance by parallel summation of partial
products. The Booth’s multiplication algorithm [7] reduces
the number of partial products by encoding multiplier bits
to achieve performance gains and area efficiency. The Baugh-
Wooley’s algorithm [8] focuses on the elimination of sign exten-
sion of partial products to obtain low-area and reduced power
multipliers for ASICs. Utilizing Booth’s algorithm, Kumm et
al. have presented an area efficient radix-4 unsigned accurate
multiplier implementation for Xilinx FPGAs [9]. Their imple-
mentation can also support the multiply-accumulate (MAC)
operation. Walters has also used 6-input LUTs to implement
signed multipliers for Xilinx FPGAs [30], [31]. However, these
implementations do not discuss the possibility of supporting
MAC operations. Parandeh-Afshar et al. have used Booth’s
and Baugh-Wooley’s multiplication algorithms for area-efficient
multiplier implementation using Altera (now Intel) FPGAs [12].
The authors of [32] have also used the adaptive logic module
(ALM) of Intel FPGAs for implementing soft multipliers. How-
ever, the implementation results only describe LUTs utilization.
The critical path delay and the energy consumption of the
implementations have not been discussed.

For a wide range of applications, the exactness of intermediate
operations can be compromised without significantly degrad-
ing the quality of final output to obtain area, energy and
performance gains [13]. Such applications can have inherent
resilience to approximations in input data and intermediate
operations. Exam}l)les of such applications are mostly in the
domain of digital signal processing, machine learning and
data mining. Error-resilient applications such as deep neural
networks have millions of multiply-accumulate operations. For
example, Deep Residual Learning (ResNet-152) [33] has 11.3
billions MAC operations per forward pass for the processing of
a single image. Therefore, for these applications, approximate
multipliers can be utilized for obtaining area-optimized and
energy-efficient implementations. Utilizing the inherent error-
resilience of such applications, previous works have proposed
different approximate multiplier designs. The authors of [14],
[15], [20], [21] have proposed different approximate partial
products reduction trees for performance and energy gains.
Similarly, a method to generate approximate partial products
for radix-4 Booth multiplication has been proposed in [28].
Utilizing the concept of modular implementation of multipliers
[22], the authors of [16], [17], [18] have presented approximate
4x4 and 2x2 multipliers for generating higher order multi-
pliers. The work in [11] proposed approximate 4x2 and 4x4
multipliers for efficiently utilizing the 6-input lookup tables of
modern FPGAs such as Xilinx Ultrascale+. Utilizing different
approximate adders and multipliers from literature, an open
source library of 8-bit approximate adders and multipliers,
EvoApprox8b, has been presented in [19]. Using the dom-
inating design points of EvoApprox8b, a library of FPGA-
optimized approximate multipliers—SMApproxLib—has been
presented in [10]. However, due to the following limitations,
these works cannot be considered for designing approximate
signed multipliers for FPGA-based systems.

1) The approximation techniques presented in most of
these works, such as [17], [18] and [28], ignore the
architectural specifications of FPGAs; therefore, these
techniques are less effective in gaining ASIC like en-
ergy, dperformance and area gains when used for FPGA-
based systems. Fig. 1 shows the comparison of ASIC
and FPGA-based implementation results for four mul-
tipliers, D1-D4, randomly selected from EvoApprox8b
library [19] and an 8x8 approximate multiplier D5
from [17]. These results describe the performance gains
of different approximate multipliers with respect to an
accurate multiplier implementation. The ASIC-based
implementation results for D1-D4 and D5 are obtained
from [19] and [17] respectively. For obtaining FPGA-
based implementation results, D1-D4 and D5 multi-
pliers are implemented on Kintex-7 FPGA using Xil-
inx Vivado 17.4 tool. As shown in Fig. 1, the per-
formance gains, reported for ASIC-based implemen-
tations, are not proportionally translated for FPGA-
based implementations. The architectural differences
between ASICs and FPGAs are the main reasons for this


https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads

IEEE TRANSACTIONS ON COMPUTERS (AUTHOR-READY VERSION)

FPGA-Based [\ D1 02 [EJos D4 Eios
AsicBased [ D1 [ |p2  [[]os [ o4 [os
10 10 N

Ll | el |2

1T 0

-10 -20 -10

o

Gains [%]

i}

Latency Area Power

Fig. 1. Implementation results of five state-of-the-art approximate muilti-
pliers on ASICs and FPGAs

dissimilar performance gains for FPGA-based imple-
mentations. FPGAs consist of lookup tables (LUTs) and
carry chains. Any approximation techniques, optimized
for FPGA-based systems, must consider the structure
and configurations of these LUTs and carry chains.

2) Most of these techniques are for unsigned numbers
only. For example, the hundreds of approximate mul-
tipliers presented in EvoApprox8b Fl9] and SMAE—
proxLib [10] focus on unsigned numbers only. The
4x2 and 4x4 approximate multipliers in [11] and the
2x2 approximate multiplier modules used in [17] and
[18] are for unsigned numbers only. The inaccurate
4:2 counter [16] and the partial products reduction
techniques in [14], [15], [20] and [21] do not discuss the

a%plicability of their approaches for signed numbers.

Therefore, these techniques cannot be directly used for
the approximate multiplication of signed numbers.

3) The modular approach of designing bigger multipli-
ers using smaller multipliers, used %y [11], [16], [17],
[18], is advantageous for designing smaller multipliers
only. Our empirical results show that this technique
consumes more FPGA resources for higher bit-width
multipliers.

Our Novel Contributions

To address the above limitations of state-of-the-art multipliers,
we present a novel methodology for implementing accurate
and approximate signed array-multipliers for FPGA-based sys-
tems. Fig. 2 presents an overview of the different stages of our
proposed methodology. Our contributions include:

o Accurate signed multiplier implementation: Utilizing the 6-
input LUTs and associated fast carry chains of modern
FPGAs, we present an area-optimized implementation
of radix-4 accurate Booth multiplier—that we refer to
as Booth-Mult. The proposed M x N Booth-Mult further
sugports the addition of an M — bit number to pro-
vide a sort of Multiplg’/—Accumulate (MAC) functionality.
We then analyze Booth-Mult and perform FPGA-specific
area optimizations to propose Booth-Opt multiplier with
further reduction in the overall area of the multiplier.
Our implementation of a 24x24 Booth-Opt multiplier
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Fig. 2. Overview of proposed methodology

offers 47% reduction in the area when compared with
the area-optimized multiplier IP provided by Vivado [4].

o Analysis for possible approximation: We present an analysis
of our Booth-Opt multiplier for identitication of possible
venues for approximations to achieve area, energy and
performance gains. One of the challenges during this
exploration is the preservation of correct sign-bit in
the final product to reduce the maximum output error.
Based on the work of [23], we identify the starting ele-
ments of each partial product row as possible positions
for approximations. This choice ensures the preservation
of correct sign-bit in the final product during multiplica-
tion by reducing the propagation of erroneous carry bits
to higher order bits.

o Approximate signed multiplier: Based on our analysis, we
then present an approximate signed array multiplier
Booth-Approx with further area, energy and performance

ains. When compared with the Vivado area-optimized
multiplier IP, the proposed Booth-Approx implementa-
tion of a 24x24 signed multiplier provides 49% and
38% gains in terms of resource utilization and energ
consumption, respectively. To the best of our knowl-
edge, this is the first attempt towards implementation
of FPGA-based approximate signed array multipliers.

o High-level application testing environment: We provide a
high-level application environment for testing the effi-
cacy of different accurate and approximate arithmetic
components. Our application environment utilizes Ge-
netic Algorithm-based multi-objective design space explo-
ration, and it is applicable for convolution based signal
ﬁrocessing applications. Utilizing the environment, we

ave tested our accurate and approximate multipliers
for Gaussian Image Smoothing application and evalu-
ated the trade-off between output quality and area re-
ductions. The approximate multiplier-based implemen-
tation of Gaussian Image Smoothing application results
in up to 57.9% reduction in resource utilization, with
minimal degradation in the image output quality, when
compared with the Vivado’s area-optimized multiplier
IP-based implementations.

The rest of the paper is organized as follows: Section 2
briefly discusses the preliminaries required for understanding
the paper, followed by the proposed methodology in Section 3.
Section 4 discusses the experimental setur, implementation
results and behavioral outputs for real-world applications. Fi-
nally, Section 5 concludes the paper.

2 PRELIMINARIES
2.1 Xilinx FPGA Slice Structure

The configurable logic block (CLB) is the main computational
block of FPGAs for implementing any kind of circuits on
FPGAs. The CLB of a modern Xilinx FPGA, such as Xilinx
UltraScale+, consists of one slice having eight 6-input lookup
tables (referred to as LUT6_2), 8-bit long carry chain and sixteen
flip-flops [24]. The same resources are arranged in two slices in
a Xilinx 7 series FPGA [25]—which has been used for all imple-
mentations in this paper. As shown in Fig. 3, a LUT6_2 can be
used to implement either a single 6-input combinational circuit
or two 5-input combinational circuits. For the configuration of
LUT6_2, a 64-bit INIT value is assigned to it. This INIT value
denotes all the input combinations of LUT6_2 for which a “1”
is received at the output. Utilizing O5 as carry-generate signal
and O6 as the carry-propagate signal, a carry-lookahead adder
can be implemented using the associated carry chain. However,
O5 can be bypassed by the external IX signal for providing
the carry-generate signal. The input carry, “CIN”, can be either
assigned to constant ‘0/1" or to “COUT” of another carry chain
from a different slice.

2.2 Booth’s Multiplication Algorithm

Booth’s multiplication algorithm reduces the number of partial
products to enhance the performance of a multiplier. A radix-4
Booth’s multiplier halves the total number of partial products
for an M x N signed multiplier. Equation (15) shows the 2’s
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TABLE 1
Booth’s Encoding
S.No. bn+1 bn bn.l BE S C z
0 0 0 0 0 [0[01I
1 0 0 1 1 0(0]|O0
2 0 1 0 1 0[0] 0
3 0 1 1 2 1/0]|0
4 1 0 0 2 1|10
5 1 0 1 1 0[1]0
6 1 1 0 1 0(1]0
7 1 1 1 0 J]0OJO]1

complement representations of multiplicand A and multiplier B,
and the corresponding radix-4 booth’s multiplication is sum-
marized in (2).

A=—apy 12"+ a2’ + a2 +ao

1
B=—by 12V b 45222+ 012" + by W
N/2
A-B=Y B-BFE;,2™"
2B BE: e
where BFEa2, = —2a2n41 + G2n + a2n—1

The values of Booth’s encoding (BE) in (2) are in the range
of +0, £1, £2 and can be computed as shown in Table 1. These
values are computed by LUT6_2s in our proposed designs. A
gartial product is shifted left if BE = 2 (denoted by s = 1).

imilarly, for a negative value of BE (denoted by ¢ = 1), the 2’s
complement of the corresponding partial product is calculated
by initially taking 1’s complement of the partial product and
adding a ‘1’ to the LSB position. For BE = 0 (denoted by z =
1), the corresponding partial product is replaced by a string of
Zeros.

Our proposed implementation and the implementations
presented by Kumm [9] and Walters [30], [31] have utilized
similar configurations of the 6-input LUTs to realize the radix-
4 booth-encoding. However, Kumm has considered unsigned
numbers only and, therefore, has used a different configuration

TABLE 2
Sign Extension for Booth’s Multiplier

bni1 | bn | bna | BE | MSB Multiplicand | SE
0 0 0 0 0 0
0 0 0 0 1 0
0 0 1 1 0 0
0 0 1 1 1 1
0 1 0 1 0 0
0 1 0 1 1 1
0 1 1 2 0 0
0 1 1 2 1 1
1 0 0 2 0 1
1 0 0 2 1 0
1 0 1 1 0 1
1 0 1 1 1 0
1 1 0 1 0 1
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 0 1 0

000000000000
Fig. 4. Sign extension of partial products in Booth’s multiplier [26]

for the most significant LUTs in each partial product row. Ours
and Walters’ designs have considered signed numbers, and the
most significant LUTs are responsible for computing the correct
sign of a partial product row. However, both implementations
have used different LUT configurations. The technique used by
our implementation is discussed in Section 2.3. Moreover, these
state-of-the-art works do not present any analysis for possible
approximations to obtain performance gains. We present a
methodology for obtaining approximate multipliers, the re-
guired LUTs configurations for approximations, and an in-

epth analysis of these approximations on the output accuracy.

2.3 Sign Extension for Booth’s Multiplier

All the partial products, in a signed multiplication, must be
properly sign extended before reducing them to a final product.
As shown by rows number 4, 5 and 6 in Table 1, the Booth’s
encoding can result in negative partial products. However, the
correct sign of a partial product in Booth’s multiplier depends
on the BE and the MSB of the multiplicand. If the MSB of the
multiplicand is ‘0" and the BE is either a positive number or ‘0’,
the partial product will be 0-extended. Similarly, if the MSB of
the multiplicand is “1” and the BE is a non-zero positive number,
the partial product will be extended with ‘1”. A complete list of
all possible sign extension cases, denoted by ‘SE’, is presented
in Table 2. Utilizing the method presented by Bewick in [26],
Fig. 4 shows an efficient technique for sign extension in 6 x 6
Booth’s multiplier. The Cy, C; and C; will be “1” for negative
partial products to represent them in 2’s complement notation.
The ‘E’ bits are the complement of corresponding ‘SE’ bits in
Table 2. This technique significantly reduces the sign extension
of each partial proguct row to a maximum of two more bit-
positions.
Our proposed accurate (Booth-Mult and Booth-Opt) and

approximate (Booth—Aﬁprox) implementations do not solely

epend on FPGA synthesis and implementation tools for the
optimization of multipliers. We efficiently utilize the character-
istics of LUT6_2s and associated carry chains for the proposed
implementations. The accurate multiplier design presented b
Kumm in [9] underutilizes the least significant LUTs in eac

artial product row of a multiplier. Our proposed LUT con-
igurations efficiently utilize the LUT6_2s to reduce the total
number of utilized LUTs. Moreover, the designs presented
in [9], [30], and [31] have used a separate LUT6_2, at the
most significant bit location of each partial product row, for
forwarding the sign extension information to succeeding partial

roduct row. The design presented in [31] has shown this LUT
ocation by providing a constant ‘1’ to the carry chain. However,
our proposed accurate multiplier Booth-Opt does not require
such configurations and reduces the total LUTs utilization. The
proposed Booth-Approx further improves the utilization of the
configurable logic block.

3 PROPOSED METHODOLOGY

Utilizing the concepts of Booth’s multiplication (Section 2.2)
and the efficient sign extension technique (Section 2.3), we
present our technique for optimization of resource utilization
and energy efficiency for both accurate and approximate signed
multipliers. The Booth’s encoding scheme, shown in Table 1,
is implemented by the LUT configuration type-A shown in
Fig. 5(a). It receives six inputs i.e. am, am1 (from multiplicand),
bnt1, bn, bna (from multiplier) and ppin (partial product sum
from previous row). Depending upon the shift flag ‘s’, either
am Or am.; will be forwarded. Similarly, depending upon the
complement flag ‘c’, the 1’s complement of a partial product
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Fig. 5. Configuration of LUTs used in proposed methodology

can be forwarded. The third MUX, controlled by zero flag ‘z’,
can make partial product zero if the ‘z" flag =1. The output
of the third MUX is XORed with the partial sum (ppin) and
forwarded to associated carry chain as carry propagate signal.
The carry generate signal for the carry chain is provided by the

II)“Ee sign extension of each partial product is implemented by
the LUT configurations type-B and type-Z, shown in Fig. 5(b)
and (c) resgectively. LUT type-B performs XOR operation be-
tween the SE and ppi, signals. The output of this operation is
forwarded as propagate signal to the carry chain. The ppiy is
also used as the carry-generate signal. LUT type-Z represents
the most significant constant ‘1’ in a partial product row, as
shown in Fig. 4 and is used for forwarding the sign extension
information to higher order partial product rows using sum
and carry output bits of the carry chain.

3.1 Accurate Signed Multiplier: Booth-Mult

Utilizing LUTs of type A, B and Z, Fig. 6 shows the imple-
mentation of a 6x6 signed multiplier. As described in Fig. 4,
a Cx is added at the LSB position of each partial product for
representing it in 2’s complement format. This task of finding
the correct Cy is performed by the ri%htmost LUT in each partial
product row in Fig. 6. This carry will be used by the carry chain
element of next LUT of type-A. The most significant two LUTSs,
LUT type-B and LUT type-Z, in each partial product row are
responsible for implementing correct sign extension. LUT type-
B computes the correct sign bit, and the LUT type-Z is used for
adding the constant ‘1" as shown in Fig. 4. However, the last
partial product row does not contain a LUT of type-Z. Due to
the very regular pattern of our proposed multiplier implemen-
tation, the LUTs required for implementing an MxN multiplier
can be estimated by (3), where ‘M’ is the multiplicand and ‘N” is
the multiplier. Since ‘N’ defines the number of partial product
rows in an implementation, mutual swapping of multiplicand
and multiplier for, Multiplicand < Multiplier, can result in a
more resource efficient design. As shown in Fig. 6, the ‘ppin’
signals of LUT type-A have been initialized to constant ‘0’
in the first partial product row. For an MxN implementation
of the proposed multiplier, an M-bit number can be further
added using these ‘ppin” signals of the first partial product row
to achieve the MAC operation. Since digital signal processing
applications frequently utilize MAC operations, our proposed
accurate multiplier can be very useful for such applications to
obtain significant area gains.

LUTs for M x N multiplier = (M +4) x [g-‘ -1 (3

3.2 Area Optimized Accurate Signed Multiplier: Booth-Opt

The analysis of the implementation shown in Fig. 6 reveals the
following observations:

o The first two LUTs in each partial product row are un-
derutilized. The first LUT has three constant ‘0’ inputs,
and only the carry output of its associated carry chain
is used. Similarly, the second LUT has also a constant
‘0’ input. It is possible to achieve the functionalities of
these two LUTs, in each partial product row, using a
single modified LUT shown in Fig. 7(a). The non-shaded
MUXes and XOR gate perform similarly to those in LUT
type-A. However, the shaded MUXes are responsible
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Fig. 7. Modified configuration of LUTs

for generating and forwarding the correct carry to the
next LUT type-A in the same partial product row. The
generated carry is also used for producing the least
significant product bit, of the respective partial product
row, using the shaded XOR gate.

o LUT type-Z, in each partial product row, is used for
forwarding sign extension information to other partial
product rows. It forwards a constant ‘1" as the carry-
propagate signal to the associated carry chain. As shown
in Fig. 3, this will result in SUM = CIN and COUT
= CIN. The CIN is then used by a LUT type-A in
the succeeding partial product row. However, instead of
using LUT type-Z for generating CIN, the LUT type-A
can be modified to invert an incoming signal internally.
This results in LUT type-A2 shown in Fig. 7(b).

Utilizing LUTs type-Al and type-A2, Fig. 8, shows an area-
optimized implementation of a 6 X 6 accurate signed multiplier.
Each partial product row starts with LUT type-Al. The LUT
type-A2, in first partial product row, with inputs a5 and con-
stant 1" is identical to LUT-type A with inputs as and constant
‘0’. The LUT type-A in first partial product row is replaced with
LUT type-A2 for making the first partial product row identical
to other partial product rows. A carry out of carry chain element
associated with a LUT type-B is forwarded to LUT type-A2
and type-B in succeeding partial product row. For this area
optimized multiplier implementation, the total number of LUTs
fe;:_{uired for implementing an M xN multiplier is represented in
4).

LUTs for M x N multiplier = (M +2) x [%—‘ 4)

1 3 13 034083 0 aa 0 a3a; () 313 O 3
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Fig. 8. A 6x6 area-optimized accurate multiplier (Booth-Opt)
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Fig. 9. A 6x6 approximate multiplier implementation (Booth-Approx)

3.3 Approximate Signed Multiplier: Booth-Approx

Utilizing the proposed area optimized accurate signed
multiplier—Booth-Opt— as a base architecture, we perform a
detailed analysis of the possible trade-offs between final output
accuracy, latency and energy gains. For describing the accuracy
of the t>i’na1 product of the approximate multipliers, we have
used a variety of quality metrics, such as the number of error
occurrences, maximum error magnitude, average error, average
relative error, and the normalized mean error distance. These

uality metrics are commonly used in the literature for the
characterization of the approximate arithmetic circuits [11],
[17], [18], [19]. Multiple uniform distributions of all input
combinations for an NxN multiplier, are used to estimate
the power dissipation in each of the instantiated LUTs of the
implementation. Our analysis reveals that the first two LUTs in
each partial product row contribute more to the dynamic power
consumption and critical path delay of the multiplier. For
instance, for an 8 x 8 multiplier the highest power dissipation of
170uW is observed for the first LUT compared to 84uW for the
fourth LUT in the fourth partial product row. Further, three of
the four first-placed LUTs in the partial product rows contribute
to all of the top five worst critical path delays. Therefore,
approximating the functionalities of the first two LUTs in each
partial product row can lead to significant power and latency
gains. We recommend the following modifications/suggestions
to an N xN base architecture for achieving a latency and power-
optimized approximate signed multiplier.

o We propose truncation of the first LUT, for the LSB, in
each partial product row of an NxN multiplier to static
‘0’. This truncation results in a significant decrease in
dynamic power consumption.

« To aj)proximate the output of second LUT in each partial
product row, we propose LUT configuration type-Am,
shown in Fig. 7(c). LUT type-Am does not use the
associated carry chain and predicts the missing input
carry, using signal ‘i’, to generate an approximate out-
put. The detailed error-analysis of the outputs gener-
ated by second LUTs in each partial product row of
our base architecture, reveals that in the absence of an
input carry, most errors are generated for the Booth’s
Encoding 1,2, 2. To reduce the number of these wrong
outputs, LUT type-Am predicts the missing input carry
as constant ‘1" for Booth’s Encoding 1, 2, 2 and uses it for
comﬁuting the approximate output.

o As shown by [23], the chances of errors in higher order
output bits, produced by an initial incorrect input carry,
decreases with the increasing length of the carry chain.
Our proposed approach recommends a constant ‘0/1’
input carry to the first LUT of type-A in a partial product
row. The exhaustive error analysis of a 8 x 8 multiplier
reveals that providing a constant 1" as input carry
results in a decreased relative error in the final output.
However, as the most significant partial product row has
the maximum contribution in the accuracy of the final
product, the carry generation in the most significant par-
tial product row should remain unaffected. Therefore,
the most significant partial product row utilizes a LUT

type-Al (denoted by A1") only for carry generation and
the ppout signal of AT is truncated to constant ‘0’.

Utilizing these guidelines, the architecture of a 6x6 approx-
imate signed multiplier is presented in Fig. 9. The resource
utilization for our proposed approximate signed multiplier can
be estimated by (5).

LUTs for M x N multiplier = (M + 1) x %W 1

4 RESULTS AND DISCUSSION
4.1 Experimental Setup

We have used VHDL, Xilinx Vivado 17.4 and XC7V585T device
of Virtex-7 FPGA (unless stated otherwise) for the implementa-
tion of all presented multipliers. Vivado Simulator and Power
Analyzer tools have been used for the calculation of dynamic
power values. We have compared our proposed accurate signed
multiplier with the accurate multiplier IPs provided by Xilinx
Vivado [4], “S4” [9], “S6” [30], “S7” [31], and “S8” [32]. Fur-
ther, the proposed signed approximate multiplier is compared
with the implementations presented in “S1” [17], “S2” [18],
“S§3” [11], a randomly selected 8 x8 multiplier from “S5” [19]"
and precision-reduced “Trunc” multipliers. For an M x N
“Trunc” multiplier, the two LSBs of each input operand have
been truncatec{), and an (M-2) x (N-2) multiplier has been used
to implement a precision-reduced multiplier. This technique
is diff}zerent from two other possible design approaches — (1)
truncating the four LSBs in the final product of an accurate
M x N multiplier to ‘0" after performing multiplication. This
method does not provide any reduction in overall resource
utilization, critical path delay, and energy consumption. (2)
Removing the logic for the computation of the four LSBs in the
final product of an M x N multiplier, and generating the rest of
the product bits (M + N — 4 MSBs) accurately. For example, to
implement accurate 12 MSBs in this second design for an 8 x 8
multiplier, 353 LUTs are utilized—an increase of 301% over the
88 LUTs of Vivado’s area optimized 8 x 8 design.

For the unsigned multipliers presented in [9], [11], [17], [18]
and [19], we have shown implementation results with/without
implementing signed-unsigned converters. These converters
have been used to provide 2’s complement signed numbers to
the unsigned multipliers. To produce precise area (LUTs) uti-
lization, critical path delay (CPD) and dynamic power con-
sumption values, we have implemented each design multiple
times with different timing constraint. In each iteration of the
design implementation, the critical path is adjusted according
to the worst negative slack from the previous iteration. For this
article, we have fixed the maximum number of iterations to
10. The accuracy of the proposed approximate multiplier has
been computed for multiple uniform distributions of all input
combinations. Moreover, the C and Python-based behavioral
models of proposed accurate/approximate multipliers are also
deployed in Gaussian Image gmoothing application and an
artificial neural network (ANN) for testing the effects of the
proposed multipliers in the real-world application.

4.2 Performance Characterization of Proposed Multipliers

Table 3 shows the comparison of the resource utilization, critical
ath delay and energy consumption of the proposed accurate
Booth-Opt) and approximate (Booth-Approx) multipliers with

different state-of-the-art accurate and approximate multipliers.

To compare Booth-Opt with “S6” and “S7” and “S8”, we have

used the implementation results presented in the respective

articles [30], [31] and [32] respectively. For “S6” and “S7”, the
total number of LUTs used has been computed considering the
carry chains required for implementing the designs. Booth-Opt
is more resource-efficient than “S6” across different bit-widths.

For example, compared to the 12 x 12 “S6”, Booth-Opt offers

a 13% reduction in the total utilized LUTs. “S7” has the same

LUTs utilization as offered by our proposed Booth-Opt imple-

mentation. However, the implementations in [30] and [31] have

used a target design period of 1ns, and the corresponding
results show that none of the implementations meets the target
design period. Nonetheless, to compare the performance of
our Booth-Opt design with “S6” and “S7”, we have used the

*A generic and open-source implementation for every size of mul-
tiplier was not available.
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TABLE 3
Implementation results of different multipliers. The ‘S1’, ‘S2’, ‘S3’, ‘S4’ and ‘S5’ multipliers are implemented with the signed-unsigned converters.

The CPD and PDP are in ns and pJ, respectively. The shaded rows show approximate designs.

Design Ix4 6x6 88 12 X 12 16 x 16 24 x 24

LUTs | CPD | PDP | LUTs | CPD | PDP | LUTs | CPD | PDP | LUTs | CPD | PDP | LUTs | CPD | PDP | LUTs | CPD | PDP
Booth-Opt. 2 | 215 | 1.09 24 309 | 267 | 40 425 | 514 | 84 631 | 1196 | 144 | 764 | 21.15 | 312 | 11.37 | 49.17
Booth-Approx. 11 194 | 081 22 264 218 | 37 | 341 | 422 | 79 530 | 1017 | 137 | 6.88 | 19.14 | 301 | 1099 | 4826
S1: Rehman [17] 18 223 | 0.86 19 482 378 | 92 | 499 | 710 | 228 | 698 | 20.80 | 404 | 7.03 | 2232 | 895 | 943 | 10L.63
S2: Kulkarni [18] | 20 212 | 0.87 52 483 491 8 | 489 | 742 | 189 | 637 | 2077 | 330 | 659 | 2039 | 777 | 945 | 9748
S3: Ullah [11] 22 334 | 1.19 16 503 398 | 81 519 | 741 | 185 | 7d1 | 2039 | 296 | 7.33 | 1858 | 697 | 9.69 | 9235
S4: Kumm [9] 24 | 384 | 2.00 49 510 | 687 | 73 6.08 | 969 | 138 | 7.65 | 21.65 | 217 | 952 | 3293 | 427 | 13.38 | 85.66
S5: Mrazek [19] - - - - - 110 | 443 | 975 - - - - - - -
Trunc 2 069 | 005 | 23 |157% 121 | 43 215 | 306 | 102 | 352 | 897 | 214 | 4107 | 1476 | 514 | 607 | 5397
S6: Walters [30] - - - - - - 43 - - 97 - - 155 - - - - -
S7: Walters [31] - - - 24 - - 40 - - 84 - - 144 - - 312 - -
Vivado speed 18 214 | 1.06 41 343 | 326 | 74 354 | 573 | 162 | 420 | 1979 | 286 | 427 | 3435 | 627 | 598 | 7725
Vivado area 30 291 | 225 47 339 | 473 | 88 345 | 907 | 175 | 500 | 1533 | 326 | 504 | 3525 | 592 | 555 | 7841

critical path delays of these designs normalized to the critical TABLE 4

path delay of Vivado speed-optimized IPs. For “S6” and “S7”,
the normalized values have been acquired from [30] and [31]
Booth-Opt provides better overall performance than “S7” by
offering a 5.4% reduction in the average normalized critical
path delay across different sizes of multipliers. Similarly, for
comparison with the Intel FPGA-based unsigned design “S8”,
we compare the reductions in resource utilization of “S8” over
the Intel Megafunction IP with Booth-Opt over Vivado speed-
optimized IP. Booth-Opt provides better resource utilization
than “S8” for all sizes of multipliers. Moreover, “S8” pro-
vides reductions in resource utilization for only some sizes
of multipliers. For example, for 4 x 4 and 8 x 8 multipliers,
“S8” offers 27% and 0% reductions in resources, respectively,
whereas Booth-Opt offers 33% and 46% reductions for the two
sizes of multipliers, respectively.

The results in Table 3 also incorporate the signed-unsigned
converters for the unsigned multipliers “S1”, “S2”, “S3”, “S4”
and “S5”. As discussed previously, the “S5” multiplier has
been implemented for obtaining only 8x8 approximate mul-
tiplication, and hence only a single point is shown for it in
Table 3. As shown by the results, the proposed Booth-Opt
and Booth-A fpprox always require less number of LUTs than
other state-of-the-art accurate and approximate multipliers for
different sizes of multipliers. The area reductions with respect
to the Vivado’s area-optimized multiplier IPs vary between 47%
(for 24x24) and 63% (for 4x4). For example, compared to the
8x8 multiplier IP, the proposed Booth-opt and Booth- Ap]prox
show 54.6% and 57.9% area reduction respectively. Similarly,
compared to the 24x24 accurate “S4” multiplier, the proposed
Booth-Opt offers 27% area reductions.

Compared to the state-of-the-art approximate multipliers
and Vivado’s area/speed optimized-IPs, the proposed accurate
and approximate multipliers offer comparable critical path
delays, as shown in Table 3. The small increase in the critical
path delays of the proposed multipliers is due to the sequential
computation of booth-encoded partial products as discussed in
Section 3.2. However, the proposed accurate and approximate
multipliers always offer reduced critical path delays than ac-
curate “S4” multiplier. Compared to the 8x8 “S4” multiplier,
Booth-Opt and Booth-Approx offer 30% and 44% reduction in
critical path delays respectively.

The energy consumption of the proposed multipliers has

l:| Booth-Opt. D Vivado Speed Opt.D S4[9] . Vivado Area Opt. . Trunc.

’s [ sooth-approx. [l s1i7 W2 [Wssny W s 00
2
15
1
0.5
0

4 x4 6x6 8x8 12 x 12 16 x 16 24 x 24

Fig. 10. Products of normalized performance metrics. Values are nor-
malized to Vivado area-optimized multiplier IP. A smaller value reflects
better performance. Approximate designs have shaded backgrounds.

Comparison of implementation results of proposed multipliers with
unsigned multipliers

X8 T6x16
Desi
esign [ﬁ*éeTas] CPD[ns] | PDP [p]] [fée;;] CPD[ns] | PDP [p]]
Booth-Opt 0 125 514 141 764 2115
Booth-Approx 37 341 422 137 [ 688 1914
517 57 313 170 377 157 2403
5318 50 233 513 294 106 2173
5311 57 313 270 215 502 2077
S19] 51 387 6.26 167 687 2357

been compared to other multi})liers using Power-Delay product
(PDP). It can be observed from Table 3 that the proposed
multipliers offer better energy efficiency across different sizes of
multipliers. The proposed 24 x24 Booth-Opt and Booth-Approx
show 37% and 38% reduction in energy when compared to
Vivado’s area-optimized IP. Similarly, compared to the 24x24
“S4” multiplier, our Booth-Opt offers 42.5% reduction in en-
ergy.
g}{"o highlight the efficacy of our proposed accurate and ap-
proximate multipliers, Fig. 10 shows the product of normalized
values of total utilized LUTs, CPD, and PDP for each design
across different bit-widths. All values have been normalized to
the corresponding values of Vivado area-optimized multiplier
IP. A smalfer value of the product (LUTs x CPD x PDP) presents
an implementation with a better performance. The proposed
Booth-Opt provides better performance than state-of-the-art
accurate multipliers. Although for smaller designs, the “Trunc”
multiplier performs better than Booth-Approx, the performance
gains do not scale proportionally for higher-order “Trunc” mul-
tipliers. For example, in 24 x 24 multiphers, Booth-Approx pro-
vides a 5.2% reduction in the product of the normalized perfor-
mance metrics compared to the “Trunc” multiplier. Moreover,
the error analysis of the approximate multipliers, presented
in the next subsection, shows the lower accuracy of “Trunc”
multipliers across all error metrics.

We have also compared proposed designs with the state-of-
the-art unsigned designs “S1”, “S2” “S3” and “S4” without us-
ing signed-unsigned converters for them. As shown by the results
in Table 4, our proposed accurate and approximate signed de-
signs still offer better area reductions than all other implemen-
tations. The unsigned implementations have slightly reduced
critical path delays than the proposed multipliers. However,
the energy consumption of Booth-Opt and Booth-Approx is still
better than many of the state-of-the-art designs. For example,
compared to the unsigned 16x16 “S4” multiplier, the Booth-
Opt and Booth-Approx offer 10% and 19% energy reductions
respectively. Similarly, Booth-Opt and Booth-Approx offer 12%
and 20% reductions in energy consumption, respectively, when
compared with the 16x16 unsigned multiplier “S1”.

4.3 Error Analysis of Proposed Approximate Multiplier

Table 5 presents the error analysis of the proposed approx-
imate multiplier along with prec1s10n—reducecF “Trunc” and
other state-of-the-art approximate multipliers (using signed-
unsigned converters). Since the number “—128” cannot be
represented using s1gn—ma%mtude format for 8x8 multipliers
with 8-bit operands, the observed maximum error magnitude
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) TABLES o
Error analysis of 8 x8 approximate multipliers
Error Oc- : Max. Avg.
Design currences | Maximum | Average Relative Relaéve NMED
% Error Error Error Error

Booth-Approx 90.56 361 85.01 6 0.091 0.0051

S1[17 86.46 7225 1842.44 1 0.362 0.112

S2[18 34.19 882 118.875 1 0.0223 0.0072

S3[11 8.42 2312 101.94 1 0.0121 0.0062

S5 [19 84.43 544 127.11 5.6 0.049 0.0077

Trunc (6x6) 93 759 149.78 15 0.121 0.0091
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Fig. 11. Error probabilities in individual product bits (a) Inaccuracy bit

histogram (b) PMFs of error values (c) Relative error distribution

in “S1”, “S§2”, “S3” and “S5” is 16384. However, to show
a fair comparison, the 8-bit operands’ range for computing
the maximum error is limited to [—127, +127] for designs in
“S§17, “S2”, “S3” and “S5”. As shown by the highlighted
cells in the table, the Booth-Approx has the least maximum
error magnitude, average error and normalized mean error
distance (NMED) among all presented multipliers. Further, it
can be observed that Booth-Approx is better than the “Trunc”
multiplier across all the presented error parameters. To further
explore the error occurrences of the proposed approximate
multiplier, Fig. 11 presents the probabilistic error analysis for an
8x8 Booth-Approx multiplier. These results have been obtained
for a uniform distribution of all input combinations. As shown
by the bit inaccuracy histograms in Fig. 11(a), the probability
of errors in individual product bits reduces for higher order
product bits. The probagility mass functions (PMF) of errors,
depicted in Fig. 11(b), also show that the majority of occurred
errors have small values. This is also verified by the relative
error distribution plot shown in Fig. 11(c). As shown by the re-
sults, most of the final products have very small relative errors
(on average less than 0.1). This behavior is in accordance with
our design modifications discussed in Section 3.3. Since higher
order multipliers have long carry chains, therefore, the errors
generated by incorrect input carries diminish for higher order
product bits. Moreover, a constant ‘0" multiplicand /multiplier
results in an accurate ‘0" result.

Further, Fig. 12 shows the error metrics of our proposed
design compared to that of truncated and truthfully rounded
multipliers. The maximum, average and mean squared error of
each design is normalized with 2", 2™ and 2" respectively—
n being the input bit-width [34]. As seen in the figure, our
proposed design outperforms the other designs for normalized
maximum error for larger designs. The faithful rounding, after
truncation, usually involves some form of compensation to
reduce the error [38]. This additional compensation logic is
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Fig. 13. Design space showing the area-accuracy trade-off of different
designs for an 8 x 8 multiplier %Pareto points are in green).
TABLE 6

Comparison of all — accurate and all — approximate
multipliers-based FIR filters

Convolution Relative' area Iredu'ction PSNR SSIM
window size (w.r.t. Vivado’s IP in %)
Booth-Opt | Booth-Approx 2D 2S 2D 2S
3x3 54.6 57.95 50.50 | 45.72 | 0.98 | 0.96
5x5 54.6 57.95 51.85 | 45.19 | 0.99 | 0.97
7x7 54.6 57.95 5236 | 47.55 | 0.99 | 095

optimized for ASIC-based implementation and can result in
large overheads in FPGAs. For instance, the implementation
of the compensation logic used in [38] results in 90 LUTs being
used fora 8 x 8 multip%ier.

Fig. 13 shows the area and accuracy trade-offs for some
of the multiplier implementations discussed in this article. In
addition to truncation of two LSBs (Trunc) and the related state-
of-the-art approximate implementations, we show two design
points which are a combination of Trunc and the proposed
Booth-based designs—Trunc+Booth-Opt and Trunc+Booth-Approx.
As seen in the figure, the Pareto front in this design space com-
prises of the implementations based on our proposed designs.

4.4 High-level Application Testing

The proposed signed multiplier architectures were used in
the implementation of Finite Impulse Response (FIR) filter for
image processing applications. Typical hardware realization of
FIR filters involves the implementation of N multipliers and N
adders—N being the numger of taps in the filter—to implement
convolution. For our current work, we have used Gaussian
Smoothing as a test case for evaluating the efficiency of using the
proposed signed multipliers. Gaussian smoothing of an image
involves 2-dimensional (2D) convolution of the image with a
gaussian-kernel. This 2D convolution can also be achieved by a 2-
stage (25) method that entails successive one-dimensional (1D)
convolutions along each of the two directions—horizontal and
vertical. These two methods can have large differences in the
resource utilization of their realizations—O(n +m) and O(nm)
for a window size of n x m for 2S and 2D respectively.

We performed experiments for convolution window sizes of
3x3,5x5and 7x 7, and compared the effects of using accurate
and approximate signed multipliers (8 x 8) on the resource
utilization and the degradation in processed images quality.
We have used the resource utilization—in terms of LUT's used
for the multipliers only—of Vivado’s area-optimized multiplier
IP-based implementation and the corresponding output image

uality as the baseline for comparison. Two metrics were used
or processed image quality — (1) PSNR, an estimation of the
noise component in the image, and (2) SSIM-index, a measure
of the structural similarity between the two images.

TABLE 6 shows the comparison results for Gaussian
smoothing using all-accurate (Booth-Opt multipliers only) and
all-approximate (Booth-Approx multipliers only) FIR filters. The
table data denotes the average values from processing 15
miscellaneous images in USC-SIPI Database [29]F.) Area reduc-
tion estimates are similar to those presented in Section 4.2.
The PSNR and SSIM values correspond to the comparison
of processed images from the all-accurate and all-approximate
implementations. Average PSNR of up to 52.36 and 47.55 were
observed for 2D and 25 modes respectively. Similarly, SSIM
of up to 0.99 and 0.97 were observed respectively for the two
modes using the approximate multipliers.

The all-accurate and all-approximate implementations denote
the two extremes of the possible multiplier configurations in
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Fig. 14. Pareto-fronts for combinations of accurate and agproximate
multipliers in an FIR filter with 49 taps for processing of two benchmark

ima%es— (a) Lena (b) Cameraman. The metrics are relative to that of
an all-accurate Vivado multiplier based design

an FIR filter implementation. We have used Genetic Algorithm
(GA)-based multi-objective design space exploration (DSE) for
finding an appropriate combination of multiplier types with
a trade-off between resource utilization and processed image
quality. An individual of the population is denoted bﬁ a sequence
string specifying the type ot multiplier used at each position of
the FIR filter’s hardware implementation. Starting population
of 100 individuals, and a maximum of 25 generations have been
used for the DSE. Two-point crossover with a probability of 0.5
and a mutation probability of 0.1 are used for evolution. We
have used two sets of DSE-related experiments. In the first
case, the multiplier types are allowed to vary among either
Vivado’s signed multiplier IP type or our proposed Booth-
Approx type. Similarly, the choices in the second experiment
are restricted to both the proposed multiplier architectures
— Booth-Opt and Booth-Approx. Each possible combination
of the choices for the type of multiplier—Vivado’s IP-based,
Booth-Opt or Booth-Approx—used in the FIR filter’s hardware
implementation results in a unique point on the design space.
Fig. 14(a) and Fig. 14(b) shows the Pareto fronts generated from
the two DSE experiments—Vivado + Booth-Approx and Booth-
Opt + Booth-Approx for the images used in the experiment. The
results correspond to the 2D processing mode with a 7x7-sized
convolution window. As evident from the figure, using our
proposed multiplier architectures results in a large reduction in
resource utilization while still providing an equivalent number
of Pareto front design points. Therefore, using our proposed
multipliers can result in better application-level optimization.
The extent of application-level improvements depends upon
the number of operators in the design that can be approx-
imated. We performed experiments for estimating the effect
of the proposed approximate design on ANNs. As a case-
study, we implemented the proposed multiplier designs for
a single fully-connected layer of an ANN with 85 physical
artificial neurons. The resulting design with 8x8 approximate
multipliers resulted in significantly lesser resource utilization
(6825 CLBs compared to 8285 CLBs), critical path delay
(3.976 ns compared to 4.423 ns) and power (PDP of 10.88 nJ
compared to 12.31 nJ) than one using accurate multipliers.
On the other hand, the behavioral analysis of a sample ANN-
based inference of MNIST Fashion database showed only 0.04%
reduction in accuracy due to the usage of approximate multi-
pliers. Hence, in such applications, the resources saved using
the approximate-based design can be used to instantiate more
artificial neurons to provide improved parallelism without an
significant reduction in inference accuracy. Therefore, the small
improvements for a single approximate multiplier can result in
significant overall improvements for similar larger applications.
5 CONCLUSION ) )
In this paper, a design methodolog?/ for implementing accurate
and aplproximate signed array-multipliers has been presented.
By utilizing the 6-input LUTs and associated carry chains,
we presented an area-optimized and energy-efficient imple-
mentation of radix-4 Booth’s multiplier. We then analyze this
implementation and propose an approximate signed multiplier
with further improvements in area (LUTs), critical path delay
and energy gains. This analysis can be used for implementing
more approximate designs with different performance gains.
We observe area reductions varying between 47% and 63%
across multipliers of different bit-widths. Our proposed designs
are also implementable on the newer versions of Xilinx FPGAs,
such as Virtex UltraScale+, having 6-input LUTs. We have

also provided a high-level application environment for testing
accurate/approximate arithmetic functions. We used Gaussian
smoothing as a test-case for evaluating the benefits of using the
proposed multipliers in an application-scenario and observed
minimal degradation with up to 58% reduction in estimated
resource utilization.
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