
Architectural-Space Exploration of Approximate Multipliers
Semeen Rehman1, Walaa El-Harouni2, Muhammad Shafique3, Akash Kumar1, Jörg Henkel2

1 Chair for Processor Design, Technische Universität Dresden (TUD), Dresden, Germany
2 Chair for Embedded Systems, Karlsruhe Institute of Technology (KIT), Germany

3 Vienna University of Technology (TU Wien), Austria
Corresponding Authors’ Email: semeen.rehman@tu-dresden.de, muhammad.shafique@tuwien.ac.at

ABSTRACT
This paper presents an architectural-space exploration methodology for
designing approximate multipliers. Unlike state-of-the-art, our
methodology generates various design points by adapting three key
parameters: (1) different types of elementary approximate multiply
modules, (2) different types of elementary adder modules for summing
the partial products, and (3) selection of bits for approximation in a
wide-bit multiplier design. Generation and exploration of such a design
space enables a wide-range of multipliers with varying approximation
levels, each exhibiting distinct area, power, and output quality, and
thereby facilitates approximate computing at higher abstraction levels.
We synthesized our designs using Synopsys Design Compiler with a
TSMC 45nm technology library and verified using ModelSim gate-
level simulations. Power and quality evaluations for various designs are
performed using PrimeTime and behavioral models, respectively. The
selected designs are then deployed in a JPEG application. For
reproducibility and to facilitate further research and development at
higher abstraction layers, we have released the RTL and behavioral
models of these approximate multipliers and adders as an open-source
library at https://sourceforge.net/projects/lpaclib/.

Keywords: Approximate Computing, Multiplier, Adder, Arithmetic,
Design Space Exploration, Performance, Area, Power, Configurable
Accuracy, Low Power Image Processing, Open Source, Library.

1 INTRODUCTION
Alleviating the bounds of accuracy and precision in the exact
computing offers new avenues for improving the area, power, and
performance of on-chip systems at the cost of reduced output quality
[1]-[9]. Recent research efforts by IBM [1], Intel [3], Microsoft [4]-[6],
and various research groups [2], [7]-[9], [13]-[25] have demonstrated
that there is a variety of error resilient applications from different
domains that can tolerate approximation errors and still produce useful
results. Examples of such applications are: image/video processing,
computer vision, RMS (recognition, mining and synthesis),
communication and networking, big data analytics, etc. Applications’
resilience is typically attributed to different factors, for instance,
psycho-visual perception limits, redundancy and noise in real-world
data (images, sensors, etc.), statistical nature and error attenuation
characteristics of processing algorithms, etc. [1]-[3], [6][7].

Approximate Computing exploits these resilience properties to
trade the computation accuracy loss due to the approximate errors
(within an acceptable range) for power, area, and performance savings.
There are several individual works on circuit-/arithmetic level [10]-
[22], approximate accelerators [13], application-level approximations
[24], programming language support for approximations [4]-[6], [8],
and approximate caches [25][26]. However, for efficiently enabling
approximate computing across the complete computing stack (e.g., at
architecture, high level synthesis, and system levels) with high
flexibility and configurability, there is a need for a wide-range of

power-quality configuration options for approximate arithmetic
modules (i.e., multipliers and adders) [2]. This instantiates the need for
architectural space generation and exploration of such approximate
modules as targeted in this paper.

1.1 State-of-the-Art and Open Research Problems
In error resilient (application-specific) systems, two important
arithmetic blocks are adders and multipliers, where large-sized
multipliers even use adder trees for summing the partial products.
Therefore, designing approximate versions of these modules has
received significant research interest [10]-[22]. Typically, approximate
adders either truncate the carry propagation chain for reducing the
latency / critical-path [12]-[17], or eliminate carry computation and
circuit parts to save power consumption [10][11][18]. In general, these
adders define a fixed scheme for approximation that hampers
exploration of quality-power tradeoffs. The Gracefully-Degrading
Adder (GDA) [17] and the Generic Accuracy Configurable Adder
(GeAR) [12] target reduced latency configurable approximate adders
by combining several sub-adder units in overlapping fashion to reduce
the length of carry prediction, thus incur a significant area/power
overhead. Therefore, such adders cannot be used for building low-
power approximate multipliers. The works in [10][11] provide four
designs of approximate 1-bit full adders (FAs), which will serve as an
input to this paper as the elementary adder modules.

In contrast to adders, there is a limited work on approximate
multipliers [19]-[22]. The work on Error Tolerant Multiplication
(ETM) [21] splits the input operands to improve the delay, power, and
area overheads for certain input combinations. A power aware 2x2
block approximate multiplier is designed in [19]. A truncated error
correction technique is proposed in [20] to selectively correct errors in
an approximate multiplier design. The work in [22] only employs bit-
width approximation. These works on approximate multiplier explore
either a fixed approximate multiplier design or a limited number of
selections in terms of bit-width approximations only. However, in
general, these techniques do not jointly explore the selection of
approximation type of elementary multiply/add modules and bit-widths
for approximate addition of partial products, thus cannot traverse the
full architectural space of quality, area, and power. Moreover, these
techniques focus on manual optimizations in the circuit to meet the
error criteria such as error magnitude or error rate. However, these
works lack a systematic methodology for designing a wide-range of
approximate multipliers and leave several questions open, for instance,
which type of approximate adder, multiplier and bit-width combination
to select to fulfill the quality/power/area requirements. This paper aims
at addressing these open research questions while targeting area and
power reduction. Improving performance through decreasing delay is
not the focus of this work, but performance improvements can be
achieved implicitly through circuit simplification of elementary adder
and multiplier modules. Therefore, we also provide latency results for
the discussed circuits for a comprehensive evaluation.

Before moving to the novel contributions of this paper, we present
a motivational case study on approximate multipliers to highlight the
limited design space of existing works and the available potential.

1.2 Motivational Case Study: Design Space Coverage of
Existing Approximate Multipliers

Fig.1 presents the area, power, and output error plots for an accurate
version and different approximate versions of an 8x8 multiplier. The
output error cases are recorded by permuting over all possible
combinations of 8x8 input operands. We employ the following three
well-adopted quality metrics [10][19][22]:

(1) Number of Error Occurrences,
(2) Maximum Error, and
(3) Number of Maximum Error Case Occurrences.

0

50

100

150

200

250

300

350

400

450

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

A B C1 C2

20

0

4

8

12

16

A B C1 C2
0

100

200

300

400

Po
w

er
 [μ

W
]

Ar
ea

 [G
E]

A: Accurate Design C1: Ref. [19] + Non-Configurable
B: Ref. [22] C2: Ref. [19] + Configurable

0

5

10

15

20

25

30

35

0

10000

20000

30000

40000

50000

60000

70000

A B C1 C2

60

0

20

40

A B C1 C2
0

10

20

30

of

 e
rr

or
 ca

se
s

[x
10

3]
M

ax
. e

rr
or

 v
al

ue
 [

x1
03]

O
cc

ur
r.

of
 m

ax
. e

rr
or

Power Area

Number of error cases
Maximum error value
Occurrences of max. error value

Er
ro

r R
ed

uc
tio

n
Po

te
nt

ia
l

Power Reduction
Potential

Fig.1: Restricted Design Space of Existing Approximate Multipliers.

The 8x8 multiplier design is based on recursive multiplier construction,
where 2x2 elementary multiply modules are employed to generate
partial products, and an adder tree is used to add the partial products
and obtain the product result for 8x8 multiply operation. The accurate
version A contains both 2x2 multiply and adder tree with accurate
multiply/add hardware modules. The multiplier B is based on the
design of [22], where 2x2 multiplier is accurate, but adders for x-LSBs
(Least Significant bits; in this case x=4) related partial products are
approximate while all other adders are accurate. C1 and C2 are based
on the non-configurable and configurable designs of 2x2 approximate
multiplier of [19], while the adder tree is accurate for summing the
partial products. B is better in terms of power, while Cs are better in
terms of number of error cases. Fig.1 illustrates that the sparse design
space of state-of-the-art approximate multipliers is primarily due to
their constraints on one or more design parameters, and their fixed
architectures. The design space will completely change, if only the type
of the approximate adder is changed. However, such a selection will
influence the final quality, power, and area results. Fig.1 shows that
there is a huge potential for filling the missing points in the
architectural design space of approximate multipliers.

1.3 What is Required and What are the Associated
Research Challenges?

Given several approximate designs for elementary adders and
multipliers modules, there is a need for a methodology for generation
and exploration of a huge number of approximate multiplier design
alternatives with varying tradeoff points for area, power, and
accuracy. However, exploration of the architectural design space
becomes more challenging for large-sized multiplier, where decisions
on the following customizable parameters need to be taken.

(1) Employing accurate, approximate, or configurable 2x2
multiplication units;

(2) Employing accurate or approximate adders, when computing the
sum of partial products in recursive multiplier designs;

(3) How many LSBs need to be approximated in the adder tree?

Size of Design Space: Let NapproxAdd is the number of different types of
elementary approximate adders, NapproxLSB is the number of options for
LSBs approximation, NapproxMul is the number of different types of
elementary approximate multipliers and NMM is the number of
elementary multiply modules. The total number of design-space points
Dsp can be calculated using the following equation:

 (1)

An Example Calculation for the Design Space Size: Let us consider
a 4x4 multiplier with the elementary multiply module (used for the
partial product generation) of size 2x2. Given one accurate and four
approximate designs of 2x2 multiply, we have 5 different types of
elementary multiply modules. Similarly, let us also consider that we
have 4 different types of elementary add modules (1 accurate, and 3
approximate designs) and 3 possibilities for LSB-approximations
(0-, 2-, or 4-bits). According to the Eq. 1, we will have 4 x 3 x 54
= 7500 possible configurations for building a 4x4 multiplier. Similarly,
for an 8x8 multiplier, the design space includes 1.831x1012 possible
points. Note that in this case, the assumption was that the selection for
the adder type and the approximate LSBs will apply to the whole adder
tree. Therefore, configuring each adder separately will further expand
the design space.

1.4 Our Novel Contributions
In this paper, we present a novel methodology for generation and
exploration of the architectural design-space of approximate
multipliers, and thereby enabling various approximate versions as
tradeoff points with diverse power, output quality, and area
properties. Different multiplier designs are synthesized using
Synopsys Design Compiler for a 45nm TSMC technology library and
functionally verified using ModelSim gate-level simulations. The
power is estimated using PrimeTime. Selected multiplier designs are
applied to a JPEG application with different combinations of
approximate and accurate DCT / IDCT.

Configuration coverage for state-of-the-art approximate multipliers:
our methodology covers numerous combinations of different design
parameters and thereby enables covering the configurations of state-
of-the-art approximate multipliers like [19][22]. As a result, we can
even evaluate the efficacy of those designs w.r.t. the new design
points in terms of power, area, and output quality.

1.5 Open-Source Library
The RTL and behavioral models of these approximate multipliers and
adders are released as part of the open-source library at
https://sourceforge.net/projects/lpaclib/ [23]. This will not only
facilitate reproducing and comparing the results, but will also enable
further research and development at higher abstraction layers. For
instance, (i) architects can use this library for building approximate
hardware accelerators manually or using high-level synthesis tools;
or (ii) different design points can be exploited by variable resilience
applications/functions to meet specific system requirements.

2 EXPLORATION OF APPROXIMATE MULTIPLIERS

2.1 Methodology Overview
Fig.2 presents an overview of our methodology for generation and
exploration of the architectural design-space of approximate
multipliers. It consists of the following four key steps (discussed in
detail in the following sections).

1) Library Building (Section 2.2): First, we build a library of
elementary approximate adder and multiplier modules. Besides

re-using the existing designs, we developed another 2x2
approximate multiplier in both configurable1 and non-
configurable designs to expand the design space [2].

2) Characterization (Section 2.3): Afterwards, we perform area,
power, and quality characterization of different elementary
approximate modules and filter out non-Pareto points.

3) Building Large-Sized Modules (Section 2.4): Various approximate
multipliers are generated using combinations of (i) elementary
approximate multiplier modules, (ii) elementary approximate
adder modules, and (iii) number of approximated LSBs.

4) Selection of Design Points (Section 2.5): An exploration heuristic
is employed that selects a subset of power-efficient design points
considering the quality constraints.

Step 1: Building Library
of Elementary

Approximate Modules

C
Behavioral

Model

Approximate
Adder

Modules
VHDL
Files

C
Behavioral

Model

Approximate
Multiplier
Modules
VHDL
Files

Step 2: Characterization and
Early Design Space Reduction

Synthesize
(Synopsys

Design Compiler)
Validation

(ModelSim)

Power Estimation
(PrimeTime)

Area, Power,
Quality Statistics

Design
Space

Reduction
Behavioral
Simulation

Step 3:
Building
Larger

Approxi-
mate

Modules

Step 4:
Selection
Method-

ology

Input
Data

Application Program

Fig.2: Methodology Overview.

2.2 Building the Library of Approximate Modules
Building 2x2 Approximate Multipliers: The constitutional building
blocks of the multiplication circuits are the 2-bitx2-bit multipliers to
generate the partial products and the adder trees for summing the
partial products. First, we implemented the accurate 2x2 multiplier
module (see AccuMul in Fig.3(a)), and the state-of-the-art 2x2
approximate multiplier module from [19] (see ApproxMul1 in Fig.3(b)),
which supersedes existing low-power approximate multiplier designs.
It reduces the output to 3-bits by approximating the 3x3 case to give a
product of a value=7, instead of 9. This leads to the maximum error
magnitude of 2. The work in [19] also proposed an accuracy-
configurable version that adds 2 to the approximate result when
signaled for accurate computation. In order to expand the design space
and to obtain a design with a reduced amount of maximum error (that
may be required by certain applications), we developed four new
designs of 2x2 approximate multipliers; see ApproxMul2 – ApproxMul5
in Fig.3(c-f). The characterization results for different multiplier
modules are discussed in Table I.

Out of our four designs, we finally selected the design of ApproxMul2
(Fig.3(c)) for building the large-sized multiplier modules, because it
lies on the Pareto-optimal curve as shown in Table I. This design
reduces the maximum error magnitude compared to state-of-the-art
design [19]. Unlike the design of ApproxMul1 in [19], our
ApproxMul2 does not reduce the output to 3-bits. Rather, we use the
concept of equating similar output bits. The truth table in Fig.3(c)
shows that the MSB and the LSB are equal except in the highlighted
cases. If we remove the logic for LSB evaluation and then connect
the MSB to the LSB, we get the following three approximation cases,
all of which have an absolute error magnitude of 1: (I) 01x01 =
0000; (II) 01x11 = 0010; and (III) 11x01 = 0010. This has
the advantage that, if accurate computation is signaled, the error
correction of a product requires only inverting the LSB. Therefore,

1 Note: a configurable version indicates an accuracy-configurability, i.e., the
approximate multiplier has an additional error correction unit, which can be
activated and deactivated through an enable signal. This is not to be confused
with hardware re-configurability of FPGAs.

our configurable design exhibits an area-/power-efficient error
correction logic. On the contrary, the state-of-the-art ApproxMul1 [19]
requires an extra adder logic to correct the result that undermines the
savings of approximations. Note: the error cases in both types of
multipliers are known at design time (e.g., as shown in Fig.3(c)) and
the results for configurable versions in Table I consider both error
detection and correction.

A(0)
A(1)

B(0)

B(1)

Out(0)
Out(1)

Out(2)

Out(3)

A(0)
A(1)

B(0)

B(1)

Out(0)

Out(1)

Out(2)
Out(3)

(a) AccuMul (b) ApproxMul1

A(0)

A(1)

B(0)

B(1)

Out(0)

Out(1)

Out(2)
Out(3)

(c) ApproxMul2

00 01 10 11
00 0000 0000 0000 0000
01 0000 0001 0010 0011
10 0000 0010 0100 0110
11 0000 0011 0110 1001

A(0)

A(1)

B(0)

B(1)

Out(0)

Out(1)

Out(2)

(d) ApproxMul3

A(0)
A(1)

B(0)

B(1)

Out(0)

Out(1)

Out(2)
Out(3)

(e) ApproxMul4

A(0)
A(1)

B(0)

B(1)

Out(0)

Out(1)

Out(2)

(f) ApproxMul5
Fig.3: 2x2 Multiplier Designs (a) Accurate; (b) State-of-the-Art Approximate
Multiplier of [19]; (c-f) Our Approximate Multiplier Designs with Truth
Table of the Selected Pareto-Optimal Design.

A
B

Cin

Cout

Sum

(a) AccuAdd

A
B

Cin

Cout

Sum

(b) ApproxAdd1

A
B

Cin

Cout

Sum

(c) ApproxAdd2

(d) ApproxAdd3

A

B
Cin

Cout

Sum

(e) ApproxAdd4

A
B

Cin
Cout
Sum

(f) ApproxAdd5

A

B
Cin

Cout

Sum

(g) ApproxAdd6

A
B

Cin

Cout

Sum

(h) ApproxAdd7

A
B

Cin

Cout

Sum
Selected Adders

Accu Add, ApproxAdd1
ApproxAdd2, ApproxAdd4

Fig.4: 1-bit Adder Designs (a) Accurate; (b-f) State-of-the-Art Approximate
Adders of [10][11]; (g-h) Additionally Tested Approximate Adder Designs.

Implementing Approximate 1-bit Full-Adders: First, we
implemented (1) the accurate 1-bit full-adder (see AccuAdd in
Fig.4(a)), and (2) five state-of-the-art approximate 1-bit full-adder
modules from [11] (see ApproxAdd1 – ApproxAdd5 in Fig.4(b-f)),
which supersede existing low-power approximate adder designs. These
designs exhibit transistor-level approximations, and we implemented
the gate-level circuits according to their reported truth-tables.
ApproxAdd5 simplifies the logic of Sum evaluation and exhibit two
error cases. ApproxAdd1 computes the Sum bit by simply inverting the
Cout bit. ApproxAdd2 and ApproxAdd3 are obtained by having different
combinations of the above two types of approximations. An aggressive
approximation is done in ApproxAdd4 by simply rewiring, i.e., Cout = A,
and Sum = B. In order to expand the design space, we additionally
designed and tested two new designs of 1-bit approximate adders (see
ApproxAdd6 and ApproxAdd7 in Fig.4(g-h)). The characterization
results for different adder modules are discussed in Table II. It shows
that designs like ApproxAdd3, ApproxAdd5, ApproxAdd6, and
ApproxAdd7 do not lie on the Pareto-optimal curve, and therefore
filtered out in the early design-space reduction step. Other variable

latency adders like [12]-[17] can also be used in the adder tree for
partial product summation, but due to carry chain breaking, they may
lead to a higher error magnitude, which may not be desirable. Our
methodology is orthogonal to the use of low-power or high-
performance variable latency adders for partial product summation.

2.3 Characterization and Early Design Space Reduction
Area, power, and accuracy for all library components are examined
separately using the tool flow in Fig.8 (see tool-flow in Section 3.1).
The output accuracy is quantified as (1) number of error cases,
(2) maximum error magnitude, and (3) occurrences of the maximum
error, compared to the accurate adder. For output quality testing, all
possible combinations of inputs were applied to the elementary
adder/multiplier modules. Table I and Table II illustrate the area,
power, latency, and output quality results of approximate and
accurate multiplier modules. Based on the characterization results we
performed the design-space reduction.

Table I Area, Latency, Power, and Quality Characterization of
Elementary Approximate 2x2 Multiplier Modules.

 Area
[GE]

Latency
[ns]

Power
[nW]

Number
of Error

Cases

Max
Error

Magnitude

Occ. of
Max

Error
AccuMul 6.880 0.10 543 - - -
ApproxMul1 3.704 0.06 363 1 2 1
ApproxMul2 4.939 0.10 262 3 1 3
ApproxMul1C 7.232 0.17 525 - - -
ApproxMul2C 6.350 0.13 379 - - -
ApproxMul3 5.645 0.10 464 1 8 1
ApproxMul4 5.292 0.10 422 1 4 1
ApproxMul5 5.645 0.10 467 1 8 1

Table I shows that only AccuMul, ApproxMul1 [19], and ApproxMul2
lie on the Pareto-optimal curve, and all other designs can be filtered
out to reduce the design space. The reason of selection of
ApproxMul1 is the reduced number of error cases, and ApproxMul2 is
selected due to the reduced maximum error value. These three 2x2
multiplier modules are used in the next step of building large-sized
multipliers. Table II shows that, out of 7 design options, only
AccuAdd, ApproxAdd1, ApproxAdd2, and ApproxAdd4 lie on the
Pareto-optimal curve, and all other designs can be filtered out to
reduce the design space. Note, in order to speedup the design space
exploration process and to avoid inefficient design points of bigger
multi-bit multiplier modules, only Pareto-optimal points are
beneficial. Non-Pareto-optimal points will most likely be pruned in
the design space exploration process.

Table II Area, Latency, Power, and Quality Characterization of
Elementary Approximate 1-Bit Full-Adder Modules.

 Area
[GE]

Latency
[ns]

Power
[nW]

Number
of Error

Cases

Max
Error

Magnitude

Occ. of
Max

Error
AccuAdd 4.41 0.12 1130 0 0 0
ApproxAdd1 1.94 0.07 294 2 1 2
ApproxAdd2 1.59 0.05 198 3 1 3
ApproxAdd3 1.76 0.06 416 3 1 3
ApproxAdd4 0 0.00 0 4 1 4
ApproxAdd5 4.23 0.10 771 2 1 2
ApproxAdd6 3.18 0.10 409 2 1 2
ApproxAdd7 3.18 0.13 709 2 2 2

The key considerations during the selection are:

1) ApproxAdd4 offers the best area and power results, but the lowest
accuracy in terms of number of error cases. ApproxAdd5 has the

worst area/power results among all approximate designs, so it is
ignored.

2) ApproxAdd2 is selected as it offers good power and area, and
reasonable accuracy (maximum value of 1, and 3 error cases).

3) ApproxAdd1 and ApproxAdd3 have very similar area results, but
ApproxAdd1 offers reduced power consumption and better
accuracy, and is therefore selected. Accordingly, ApproxAdd3 is
pruned.

2.4 Building Large-Sized Adder and Multiplier Modules
Larger components are built using the elementary 1-bit full-adders
and 2x2-bits multipliers. Following the design principles of recursive
multipliers, in order to obtain large-size approximate multipliers, we
need multi-bit adders to sum up the partial products.

Building a Multi-Bit Approximate Adder Chain: Building a multi-
bit adder chain is illustrated in Fig.5. FAAA denotes a 1-bit accurate
full-adder while FAXA refers to an approximate 1-bit full-adder. An N-
bit adder can be composed of K approximate adders and N – K
accurate adders, such that K≤N. Fig.5 presents an example using
K=2.

Cin

B0A0

Sum0

A1 B1

cout0

Sum1

FAAA

B2A2

Sum2

FAAA

A(n-1) B(n-1)

cout(n-2)

Sum(n-1)

Cout cout2 cout1
FAXA FAXA

Fig.5: Multi-Bit Adder Chain using Accurate or Approximate 1-Bit Adders.

Without loss of generality, in this paper, we consider a ripple carry
adder design where carry chain is not broken. However, other
techniques to break the carry chain to explore another dimension of
approximation, like the works of [12]-[17], can also be employed and
is orthogonal to the contributions of this paper. Note that, to avoid
high error magnitudes, we consider that LSBs are the first candidate
for approximations, while MSBs should be accurate. Therefore, we
consider K-consecutive approximate adders in our multi-bit adder
design, such that K can also be seen as the number of LSBs added
with 1-bit approximate adders. Also, for the ease of discussion and
evaluation, we consider only one particular type of elementary
approximate adder module (ApproxAdd1 or ApproxAdd2, but not
both) in one design. However, our methodology is not restricted to
this assumption. Our experience is that, such homogeneity is
important for early reduction of the design space size, and shortening
the development and testing time.

Table III Area, Latency, Power, and Quality Characterization of
Approximate 8-Bit Adders.

 Area
[GE]

Latency
[ns]

Power
[nW]

Number
of Error

Cases

Max
Error

Magnitude

Occ. of
Max

Error
AccuAdd 48.157 1.03 3250 0 0 0
ApproxAdd1, 4 LSBs 38.279 0.93 2040 89600 15 512
ApproxAdd1, 8 LSBs 28.400 0.89 1680 117950 255 2
ApproxAdd2, 4 LSBs 36.868 0.72 1730 108288 15 768
ApproxAdd2, 8 LSBs 25.578 0.49 1350 126891 255 3
ApproxAdd4, 4 LSBs 29.988 0.52 926 122880 8 8192
ApproxAdd4, 8 LSBs 12.348 0.06 480 130560 128 512

Table III presents area, power, latency, and accuracy results for 8-bit
adder designs with different amounts of LSBs approximated using
ApproxAdd1, ApproxAdd2, and ApproxAdd4 as elementary 1-bit full-
adders. For the number of LSBs to approximate, we decided to go for a

step size of 4 bits; (i) 0 LSBs (fully accurate), (ii) 4 LSBs (half the bit-
width), and (iii) 8 LSBs (fully approximate). The total number of tested
cases is 131,072 cases; (256*256) combinations *2 for Cin = 0 or 1.

Building a Large-Sized Approximate Multiplier: A large-sized
multiplier can be recursively partitioned into multiple small-sized
multiplication operations, such that, each of these operations can be
processed in parallel in the same cycle. Fig.6 illustrates the process of
recursive partitioning and partial product addition. Let us assume a
number X is multiplied with another number Y, each is 2W-bit wide,
such that W . X and Y can be written as (XH,XL) and (YH,YL),
respectively, where L=H=W-bits. Fig.6 shows how a 2Wx2W
multiplication is broken into multiple WxW multiplications, and the
partial products at appropriate bit-positions are added using multi-bit
adders. XLxYL, XHxYL, XLxYH, and XHxYH are the partial products and
require four WxW multipliers. There can be different design options,
for instance, XLxYL can carried out using approximate multipliers,
while all other partial products are obtained using accurate
multipliers. Or, XLxYL, XHxYL, and XLxYH are carried out using
approximate multipliers, while XHxYH is obtained using an accurate
multiplier. Similarly, for different partial products, different types of
elementary 2x2 multipliers can be employed.

XL x YL

XH x YL W

XL x YH W

2WXH x YH

4W-bit Product

2W-bits
WxW blocks

Legend:
X : 2W-bit Multiplicand
Y : 2W-bit Multiplier
XL : W LSBs of X
XH: W MSBs of X
YL : W LSBs of Y
YH : W MSBs of Y

Fig.6: Building larger multipliers.

An Example: If W=4-bits, then the operation corresponds to 8x8
multiplier, and partial products are generated using 4x4 multipliers,
which in turn can be broken down into multiple 2x2 multiplications.

Requirement of Elementary Multiplier Modules: The following
equation calculates the number of elementary multiplier blocks for
building a larger multiplier of 2Lx2L size. For instance, a 16x16
multiplier consists of 64 2x2 blocks. This lead to the questions: how
many elementary approximate multiplier modules to use and what
should be their distribution in a large-sized approximate multiplier
architecture? In case the approximate adders are also considered, the
challenge will be to first find out if it will be better to use an accurate
multiplier and an approximate adder-tree or vice-versa, or a mixture.

 (2)

As seen from Table I, the approximate version from [19] results in
more savings than the proposed approximation. It also offers better
accuracy as only one out of the 16 possible outputs is inaccurate,
while 3 out of 16 are inaccurate in the proposed approximation.
However, the accuracy configurable version proposed out-performs
its counter-part suggested in [19]. We then build larger multipliers
(4x4, 8x8, and 16x16) out of the available 2x2 blocks while keeping
the adder tree accurate. In doing so, we applied the same choice of
multiplier type to all constituent 2x2 blocks. However, any other type
of multiplier can also be used, but it is avoided in the implementations
to simplify the exploration and development effort. However, our
methodology and framework are orthogonal to this decision and can
cover both cases. Table IV and Table V present the results for 4x4 and
8x8 multipliers.

The 4x4 multiplier based on the approximation from [19] results in
more savings than our proposed approximation, while our accuracy
configurable version offer better results in comparison. As for
accuracy, ApproxMul1 results in less number of error cases, on the
other hand, the maximum error value for ApproxMul2 is half
compared to that of ApproxMul1, but occurs more frequently (see
Table IV). An appropriate approximate version can be selected based
on the quality constraints, i.e., maximum error value or number of
error occurrences. Number of test cases are 256 and 65536 for 4x4
and 8x8 multipliers, respectively.

Note, in the current work, we do not consider reuse of 2x2 multiplier
modules within one large-sized multiplier, which will lead to a multi-
cycle design. The reason is to achieve faster implementations.
However, if a multi-cycle design is desired, reusing of 2x2 multiplier
modules can also be considered. In this case, a new decision about
which 2x2 multiplier module to reuse, accurate or approximate one,
would be required for different bits, for which design space
exploration algorithm needs to be extended accordingly.

Table IV Area, Latency, Power, and Quality Characterization of
Approximate 4x4 Multiplier Modules.

 Area
[GE]

Latency
[ns]

Power
[nW]

Number of
Error Cases

Max Error
Value

Occ. of
Max Error

AccuMul 62.45 0.72 4110 - - -
ApproxMul1 37.04 0.51 2670 49 50 1
ApproxMul2 56.80 0.75 2830 119 25 7
ApproxMul1C 63.86 0.81 4000 - - -
ApproxMul2C 61.39 0.79 3630 - - -

Table V Area, Latency, Power, and Quality Characterization of
Approximate 8x8 Multiplier Modules.

 Area
[GE]

Latency
[ns]

Power
[nW]

Number of
Error Cases

Max Error
Value

Occ. of
Max Error

AccuMul 324.22 1.75 16500 - - -
ApproxMul1 222.62 1.60 12500 30625 14450 1
ApproxMul2 302.70 1.81 12600 53375 7225 31
ApproxMul1C 329.87 1.83 14600 - - -
ApproxMul2C 321.05 1.83 15300 - - -

2.5 Selection methodology
Each design point in the architectural space has different
characterizing properties like area, power, and accuracy/quality.
State-of-the-art works (like [10]) typically employ the metric QAP
(the product of quality/output error, area, and power) as a cost
function to evaluate different design options, where a smaller value
of QAP denotes a better design. However, our analysis showed that
this metric lacks distinctiveness. For instance, let us assume that we
want to compare the accurate adder AccuAdd with the ApproxAdd4
(see Table II). Using the number of error cases as a metric, it is clear
that ApproxAdd4 has the lowest accuracy, however, if we calculate
the QAP=4*0*0, the result is 0. The QAP for the AccuAdd is
QAP=0*4.41*1130, which will also result in 0. For this reason, the
cost function QAP cannot be used for evaluation of distinctive design
points in the architectural space of approximate multipliers.

In our methodology, we consider the quality constraint as an input
from the system designer. Therefore, our methodology determines the
cost of a design point as a function of only the area and power. Since
the product of power and area may again lead to multiple points with
a cost of 0, we formulate the cost function as a weighted sum of
power and area (i.e., WAP); see Eq. 2. wA and wP denote the weights
for area and power factors. AX and PX denote the area and power
consumption of a given design point X.

 (3)

The designer can specify which of the two (i.e., area or power) is of
more importance for the design under consideration. Of course, area
has an impact on the power consumption. However, our design space
shows that, even two design points with similar area values could
have very different power consumption, which is primarily due to
more switching activity. Fig.7 shows the recursive partitioning tree
for a large-sized multiplier until it reaches the leaf node, which
corresponds to the elementary 2x2 multiply module. The figure
shows the multiplier tree of a 16x16 multiplier as an example. The
right-most-branch always represents the block of highest
significance. As we move to the left, the significance decreases until
we reach the least significance at the left-most-branch. In the above
tree, if level 0 is the root, the most significant block is the right-most
2x2 block at the highest level (level 3). For this reason, a depth-first
traversal of the multiplier tree (starting on the right) is used when
exploring the possibilities of approximating the 2x2 modules.

Algorithm 1: Design Selection using DFS (Depth-First Search)
INPUT: (i) QMetric: the quality criteria, for example, the highest error
magnitude; (ii) QConstraint: the condition to satisfy for the given metric
(for example, QMetric < 5; QConstraint=5); (iii) WA: area weight; (iv)
WP: power weight.
OUTPUT: (i) the selected configuration of 2-bit multipliers, adders, and
LSBs; (ii) the associated quality metric
BEGIN
1. //Evaluate WAP for all

considered 1-bit FAs
2.
3. //Evaluate WAP for

all considered 2x2 multipliers
4.
5.

6.
7.
8.
9.
10.

11.
12.
13.
14.
15.
16.
17.
END

16x16

8x8(LxL)

4x4
2x22x2 2x2 2x2

4x4
. . . .

4x4
. . . .

4x4
. . . .

8x8(HxL) 8x8(LxH) 8x8(HxH)

4x4
2x22x2 2x2 2x2

4x4
. . . .

4x4
. . . .

4x4
. . . .

Fig.7: Recursive Partitioning for Building Large-Sized Multipliers.

For each 2x2 module combination selected while traversing the tree,
we first need to select the elementary 2x2 approximate multiplier.
This is done by evaluating all alternatives in the MultiplierList (see
Algo.1) which is already sorted ascendingly, meaning that the WAP-
wise best alternative is always at the top. For each multiplier
alternative, all adder types are then tested for different LSB-
combinations. The AdderList is also sorted ascendingly and having
the WAP-wise best approximation at the top. On the contrary, the
higher the LSB, the higher the approximation level (i.e., WAP-wise
best). That is why those are sorted in a descending order. In

Summary, the algorithm starts using the highest approximation
available and moves toward a more accurate solution. The first
configuration that satisfies the quality criteria is selected as the
solution. Each combination is evaluated using an appropriate error
model, which computes the quality of this specific combination
(QCurrent). This QCurrent is then checked against QConstraint (the
designer requirement given as input).

Note, the algorithm stops at the first solution that satisfies the
constraints. It can alternatively, be left to run to provide an ordering
of all possible points of the design-space.

Complexity Analysis: It is well-known that a DFS has a variable
complexity according to the data structure used for the tree
representation. A common approach is to use an adjacency list; in this
case the complexity of DFS is O(V+E); where V and E are the
number of vertices and edges respectively. Since the multiplier
structure is fixed (see figure), a 64x64 multiplier would have 337
vertices and 336 edges. Assuming we have D adders, M multipliers,
and B LSBs combinations, then the complexity would be
O(D*M*B). For our library, this exploration process takes only a few
minutes on an Intel Core i7 PC.

It is important to note that the focus is not to find an optimal
multiplier, rather to find the best possible configuration given a
certain quality metric and an instance of the library of blocks. It
would be obvious that changing the metric or the library of
components may/will change the selection.

Generalization: The above exploration is made for recursive
multipliers that use adders for partial product summation. In case a
fast multiplier does not need an adder tree, the decision will be based
on the selection of elementary multiplier modules and the number of
bits for approximation. Depending upon a particular design of a fast
multiplier, selection methodology may need to be customized to
achieve the best possible results.

3 RESULTS AND DISCUSSION

3.1 Experimental Setup and Tool Flow
Fig.8 presents our integrated tool flow and evaluation setup for
designing and validating the approximate computing modules. Both
structural description (VHDL) and behavioral description (C) were
developed for each approximate design. Synopsys Design Compiler
(DC) synthesizes the given VHDL design, and generates a netlist file
and reports about area, latency, and power.

Synthesis Flow

Logic
Synthesis
(Synopsys

Design
Compiler) Gate-Level

Netlist

VHDL Files

Initial Power
Estimates

Area
Reports

SAIF File
.VCD File

PrimeTime
Power

Estimation
Test

Cases

Power Report

Compiled
Executables

Statistics &
Accuracy analysis

Logic
Simulation

(Model Sim)

C-Based
Behavioural Model

Fig.8: Tool Flow and Experimental Setup.

We ran the Synopsys Design Compiler using WCCOM (Worst-Case
Commercial) operating conditions. Wire_load_model was set to
segmented and the area optimization option was enabled. The
generated netlist is then used as input to the gate-level simulation tool

(ModelSim). Once the correct behavior of the hardware is tested and
confirmed, VCD (Value Change Dump) and SAIF (Switching
Activity Interchange Format) files are generated and fed into the
Primetime tool to generate more accurate power reports. In order to
evaluate the quality of each approximate design, we developed an
equivalent behavioral model in C and performed extensive test to
permute over all possible combinations of input operands.
Afterwards, number of error cases, maximum error magnitude, and
occurrences of maximum error cases are recorded for each design.
Since studying the evaluation of weights is not the focus of this
paper, and we consider it as a given input from the system designer,
we use wA=0.5 and wP=0.5, i.e., treating both area and power equally
important.

3.2 Evaluating the Design Space Points
Fig.9 illustrates a subset of the architectural space of an 8x8
approximate multiplier design along with the power, area, latency,
and quality characterizations of different designs. There are 19
design-points using variants of multiplier type, adder type, and
number of approximated LSBs. Some of these points also cover
state-of-the-art approximate multipliers, for instance the ones that use
ApproxMul1. Under different constraint values, our methodology
outputs 8 design points (A, B3, B6, C1, C3, D6, D7, and D8) that we
then applied to a JPEG application for further quality assessment.
Important points on the selection are discussed below.

1. The first selected design is the fully-accurate one, which also
serves as the baseline.

2. Two out of the six “accurate multiplier with approximate adder”
combinations are chosen, i.e., B3 and B6. As shown, B4 and B5
have the highest maximum error in the B–category, so they are
both excluded. On the other hand, B1 and B2 have the highest

power and area attributes, they are also filtered-out. In the B–
category, B6 has the lowest area and power while having a high
number of error cases with low occurrences. In contrast, B3 has
the least maximum error value and least occurrences but has high
area/power characteristics. Therefore, B3 and B6 were favored
since they offer interesting trade-offs between power and quality.

3. In the C–category (i.e., approximate multiplier with accurate
adder), C1 and C3 are the approximate multipliers while C2 and
C4 are their corresponding accuracy-configurable versions. C1
has lower area than C3 but higher maximum error value. We
chose to include the approximate versions.

4. D8 has the least power and area among the D–category (i.e.,
approximate multiplier with approximate adder). D4 also
warrants low area and power but has higher inaccuracies, so D8
was preferred. D3 is similar to D4 regarding quality but has
higher area and power, for this reason, it is not selected. D5 and
D6 have the lowest maximum error value but D6 exhibits better
area and power characteristics. D7 is an excellent trade-off in
terms of area, power, and accuracy attributes.

3.3 Quality Evaluation of Selected Approximate
Multipliers when Employed in a JPEG Application

Table VI illustrates the image quality and compression efficiency
comparison when applying different design points to the DCT and
IDCT functions of a JPEG application in different
accurate/approximate combinations. When evaluating the efficiency
of the selected approximation variants in terms of the size of the
compressed file, we notice that for both images, when approximate
DCT is employed, the selected variants always result in the same
order of [D8, B6, D7, C1, C3, B3, D6]. Here, D8 has the highest
reduction in compressed file size of more than 50% for both test

Fig.9: Evaluating the Area, Power, and Quality Architectural-Design Space of Approximate Multipliers; also showing the Legend of Multiplier Designs.

Table VI Comparing the Image Quality and Compression Efficiency when Applying Selected Approximate Multipliers to the JPEG Application.
X1 [Accurate DCT and IDCT], X2 [Only DCT Approximated], X3 [Only IDCT Approximated], X4 [Approximated DCT and IDCT].

 X1 X2 X3 X4
 B3 B6 C1 C3 D6 D7 D8 B3 B6 C1 C3 D6 D7 D8 B3 B6 C1 C3 D6 D7 D8

PSNR [dB] 31.42 20.5 20.43 31.05 22.72 19.79 20.15 20.49 22.32 21.26 31.15 27.31 22.34 21.12 21.4 17.38 21.68 30.92 20.26 16.28 21.37 21.68
Compressed

file size [Bytes] 9,810 12,229 5,485 9,788 11,407 12,630 6,964 4,762 9,810 12,229 5,485 9,788 11,407 12,630 6,964 4,762

 X1 X2 X3 X4
 B3 B6 C1 C3 D6 D7 D8 B3 B6 C1 C3 D6 D7 D8 B3 B6 C1 C3 D6 D7 D8

PSNR [dB] 30.56 21.97 21.47 30.18 23.94 21.2 21.08 21.52 23.22 21.99 30.44 26.39 22.74 21.53 21.97 18.61 22.29 30.12 26.37 17.47 22 22.15
Compressed

file size [Bytes] 27013 33,343 13,927 26,689 29,635 34,462 17,802 11,806 27,013 33,343 13,927 26,689 29,635 34,462 17,802 11,806

images. C1 at the borderline, where the compressed file size is nearly
equal to the accurate version. This shows that combining several
approximations, such as D8, can result in power and area savings
(see Fig.9) and increased performance when compared to
approximating either the adder or the multiplier.

When evaluating those variants for PSNR values, observations are, to
a certain extent, contradicting. When sorting the approximate variants
in order of decreasing PSNR, we get a different order for X2, X3, and
X4. And also for the same X, the order differs with different images.
For example, B3 and B6 are two counter cases, B3 having higher
power and area while having lower error. The PSNR values are
almost equal, while there is a huge difference observed in the
compressed file size to the extent that B3 is worse than the accurate
case with an increase of 23% in the compressed file size. Also, in
contrast to the design-space results, when using PSNR as an
indication D8 always performs better than D7 and D7 performing in
turn better than D6. In summary, the results show that simply using
the PSNR metric is not sufficient, because amounts of bits also
matter. Therefore, a designer needs to account for both PSNR and bit
rate for making a power-efficient decision.

4 CONCLUSION
We presented a methodology to generate and explore the architectural
space of approximate multiplier using variants of
approximate/accurate elementary multiply/add modules and number
of approximated LSBs. We performed ASIC-synthesis and Primetime
power estimation for various designs using a 45nm technology, and
evaluated for area, power, latency, and output quality (in terms of
different error metrics). A subset of selected design points is applied
to a real-world application of JPEG in different combinations and
evaluated for output quality. We provide the complete library of
approximate multipliers and adders (including both RTL and
behavioral models) online at https://sourceforge.net/projects/lpaclib/.
This open-source library enables reproducing and comparing the
results and will enable further research and development on applying
approximate computing at higher abstraction layers of HW/SW
stacks.

This work is the first step towards the development of open-source
elementary approximate modules, and a generic selection
methodology for building large-sized multi-bit approximate
arithmetic module using smaller elementary approximate modules,
and selecting efficient configurations.

REFERENCES
[1] R. Nair, “Big data needs approximate computing: technical

perspective”, ACM Communications, 58(1): 104, 2015.
[2] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, J. Henkel,

“Cross-Layer Approximate Computing: From Logic to
Architectures”, ACM/EDAC/IEEE 53rd Design Automation
Conference (DAC), 2016.

[3] A. K. Mishra, R. Barik, S. Paul, “iACT: A Software-Hardware
Framework for Understanding the Scope of Approximate
Computing”, Workshop on Approximate Computing Across the
System Stack (WACAS), 2014.

[4] J. Bornholt, T. Mytkowicz, K. S. McKinley, “Uncertain<T>:
Abstractions for Uncertain Hardware and Software”, IEEE Micro
35(3): 132-143, 2015.

[5] J. Bornholt, T. Mytkowicz, K. S. McKinley, “Uncertain: a first-
order type for uncertain data”, ASPLOS, pp. 51-66, 2014.

[6] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger,
“Architecture support for disciplined approximate programming”,
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012.

[7] V. Chippa, S. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for
approximate computing”, Design Automation Conference (DAC),
2013.

[8] S. Misailovic, M. Carbin, S. Achour, Z. Qi, M. C. Rinard, “Chisel:
reliability- and accuracy-aware optimization of approximate
computational kernels”, OOPSLA, 309-328, 2014.

[9] G. Pekhimenko, D. Koutra, K. Qian, “Approximate computing:
Application analysis and hardware design”, Online available:
www.cs.cmu.edu/~gpekhime/Projects/15740/paper.pdf.

[10] V. Gupta, D. Mohapatra, S.P. Park, A. Raghunathan, “IMPACT:
IMPrecise adders for low-power approximate computing”,
International Symposium on Low Power Electronics and Design
(ISLPED), pp. 409 – 414, 2011.

[11] V. Gupta, D. Mohapatra, A. Raghunathan, K. Roy, “Low-Power
Digital Signal Processing Using Approximate Adders”, IEEE
Transaction on CAD of Integrated Circuits and Systems 32(1): 124-
137, 2013.

[12] M. Shafique, W. Ahmad, R. Hafiz, J. Henkel, “A Low Latency
Generic Accuracy Configurable Adder”, IEEE/ACM Design
Automation Conference (DAC), 2015.

[13] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, J. Henkel, “An Area-
Efficient Consolidated Configurable Error Correction for
Approximate Hardware Accelerators”, ACM/EDAC/IEEE 53rd
Design Automation Conference (DAC), 2016.

[14] A. K. Verma, P. Brisk, P. Ienne, “Variable Latency Speculative
Addition: A New Paradigm for Arithmetic Circuit Design”. Design,
Automation and Test in Europe (DATE), 2008.

[15] N. Zhu, W.-L. Goh, K.-S. Yeo, “An enhanced low-power high-speed
Adder for Error-Tolerant application”, 12th International
Symposium on Integrated Circuits (ISIC), 2009.

[16] A. B. Kahng, S. Kang, “Accuracy-configurable adder for
approximate arithmetic designs”, IEEE/ACM Design Automation
Conference (DAC), pp.820-825, 2012.

[17] R. Ye, T. Wang, F. Yuan, R. Kumar, Q. Xu, “On reconfiguration-
oriented approximate adder design and its application”,
International Conference on Computer-Aided Design (ICCAD),
pp.48-54, 2013.

[18] J. Miao, K. He, A. Gerstlauer, M. Orshansky, “Modeling and
synthesis of quality-energy optimal approximate adders”,
International Conference on Computer Aided Design (ICCAD), pp.
728-735, 2012.

[19] P. Kulkarni, P. Gupta, M. Ercegovac, “Trading Accuracy for Power
with an Underdesigned Multiplier Architecture”, 24th International
Conference on VLSI Design (VLSI Design), pp. 346 – 351, 2011.

[20] M. B. Sullivan, E. E. Swartzlander, “Truncated error correction for
flexible approximate multiplication”, ASILOMAR, pp. 355–359,
2012.

[21] K. Y. Kyaw, W.-L. Goh, K.-S. Yeo, “Low-power high-speed
multiplier for error-tolerant application”, IEEE International
Conference of Electron Devices and Solid-State Circuits (EDSSC),
2010.

[22] K. Bhardwaj, P. S. Mane, J. Henkel, “Power- and Area-Efficient
Approximate Wallace Tree Multiplier for Error-Resilience Systems”,
ISQED, 2014.

[23] Open-Source Library of Low-Power Approximate Computing
Modules: https://sourceforge.net/projects/lpaclib/.

[24] D. Palomino, M. Shafique, A. Susin, J. Henkel, “Thermal
Optimization using Adaptive Approximate Computing for Video
Coding”, IEEE/ACM 19th Design, Automation and Test in Europe
Conference (DATE), 2016.

[25] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, J. Henkel,
“Approximation-Aware Multi-Level Cells STT-RAM Cache
Architecture”, IEEE International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES), 2015.

[26] J. San Miguel, J. Albericio, A. Moshovos, N. E. Jerger,
“Doppelgänger: A Cache for Approximate Computing”, IEEE 48th
International Symposium on Microarchitecture (MICRO), 2015.

