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ABSTRACT 
This paper presents an architectural-space exploration methodology for 
designing approximate multipliers. Unlike state-of-the-art, our 
methodology generates various design points by adapting three key 
parameters: (1) different types of elementary approximate multiply 
modules, (2) different types of elementary adder modules for summing 
the partial products, and (3) selection of bits for approximation in a 
wide-bit multiplier design. Generation and exploration of such a design 
space enables a wide-range of multipliers with varying approximation 
levels, each exhibiting distinct area, power, and output quality, and 
thereby facilitates approximate computing at higher abstraction levels. 
We synthesized our designs using Synopsys Design Compiler with a 
TSMC 45nm technology library and verified using ModelSim gate-
level simulations. Power and quality evaluations for various designs are 
performed using PrimeTime and behavioral models, respectively. The 
selected designs are then deployed in a JPEG application. For 
reproducibility and to facilitate further research and development at 
higher abstraction layers, we have released the RTL and behavioral 
models of these approximate multipliers and adders as an open-source 
library at https://sourceforge.net/projects/lpaclib/. 

Keywords: Approximate Computing, Multiplier, Adder, Arithmetic, 
Design Space Exploration, Performance, Area, Power, Configurable 
Accuracy, Low Power Image Processing, Open Source, Library. 

1 INTRODUCTION 
Alleviating the bounds of accuracy and precision in the exact 
computing offers new avenues for improving the area, power, and 
performance of on-chip systems at the cost of reduced output quality 
[1]-[9]. Recent research efforts by IBM [1], Intel [3], Microsoft [4]-[6], 
and various research groups [2], [7]-[9], [13]-[25] have demonstrated 
that there is a variety of error resilient applications from different 
domains that can tolerate approximation errors and still produce useful 
results. Examples of such applications are: image/video processing, 
computer vision, RMS (recognition, mining and synthesis), 
communication and networking, big data analytics, etc. Applications’ 
resilience is typically attributed to different factors, for instance, 
psycho-visual perception limits, redundancy and noise in real-world 
data (images, sensors, etc.), statistical nature and error attenuation 
characteristics of processing algorithms, etc. [1]-[3], [6][7]. 

Approximate Computing exploits these resilience properties to 
trade the computation accuracy loss due to the approximate errors 
(within an acceptable range) for power, area, and performance savings. 
There are several individual works on circuit-/arithmetic level [10]-
[22], approximate accelerators [13], application-level approximations 
[24], programming language support for approximations [4]-[6], [8], 
and approximate caches [25][26]. However, for efficiently enabling 
approximate computing across the complete computing stack (e.g., at 
architecture, high level synthesis, and system levels) with high 
flexibility and configurability, there is a need for a wide-range of 

power-quality configuration options for approximate arithmetic 
modules (i.e., multipliers and adders) [2]. This instantiates the need for 
architectural space generation and exploration of such approximate 
modules as targeted in this paper. 

1.1 State-of-the-Art and Open Research Problems 
In error resilient (application-specific) systems, two important 
arithmetic blocks are adders and multipliers, where large-sized 
multipliers even use adder trees for summing the partial products. 
Therefore, designing approximate versions of these modules has 
received significant research interest [10]-[22]. Typically, approximate 
adders either truncate the carry propagation chain for reducing the 
latency / critical-path [12]-[17], or eliminate carry computation and 
circuit parts to save power consumption [10][11][18]. In general, these 
adders define a fixed scheme for approximation that hampers 
exploration of quality-power tradeoffs. The Gracefully-Degrading 
Adder (GDA) [17] and the Generic Accuracy Configurable Adder 
(GeAR) [12] target reduced latency configurable approximate adders 
by combining several sub-adder units in overlapping fashion to reduce 
the length of carry prediction, thus incur a significant area/power 
overhead. Therefore, such adders cannot be used for building low-
power approximate multipliers. The works in [10][11] provide four 
designs of approximate 1-bit full adders (FAs), which will serve as an 
input to this paper as the elementary adder modules. 

In contrast to adders, there is a limited work on approximate 
multipliers [19]-[22]. The work on Error Tolerant Multiplication 
(ETM) [21] splits the input operands to improve the delay, power, and 
area overheads for certain input combinations. A power aware 2x2 
block approximate multiplier is designed in [19]. A truncated error 
correction technique is proposed in [20] to selectively correct errors in 
an approximate multiplier design. The work in [22] only employs bit-
width approximation. These works on approximate multiplier explore 
either a fixed approximate multiplier design or a limited number of 
selections in terms of bit-width approximations only. However, in 
general, these techniques do not jointly explore the selection of 
approximation type of elementary multiply/add modules and bit-widths 
for approximate addition of partial products, thus cannot traverse the 
full architectural space of quality, area, and power. Moreover, these 
techniques focus on manual optimizations in the circuit to meet the 
error criteria such as error magnitude or error rate. However, these 
works lack a systematic methodology for designing a wide-range of 
approximate multipliers and leave several questions open, for instance, 
which type of approximate adder, multiplier and bit-width combination 
to select to fulfill the quality/power/area requirements. This paper aims 
at addressing these open research questions while targeting area and 
power reduction. Improving performance through decreasing delay is 
not the focus of this work, but performance improvements can be 
achieved implicitly through circuit simplification of elementary adder 
and multiplier modules. Therefore, we also provide latency results for 
the discussed circuits for a comprehensive evaluation.  



Before moving to the novel contributions of this paper, we present 
a motivational case study on approximate multipliers to highlight the 
limited design space of existing works and the available potential. 

1.2 Motivational Case Study: Design Space Coverage of 
Existing Approximate Multipliers 

Fig.1 presents the area, power, and output error plots for an accurate 
version and different approximate versions of an 8x8 multiplier. The 
output error cases are recorded by permuting over all possible 
combinations of 8x8 input operands. We employ the following three 
well-adopted quality metrics [10][19][22]: 

(1) Number of Error Occurrences, 
(2) Maximum Error, and 
(3) Number of Maximum Error Case Occurrences. 
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Fig.1: Restricted Design Space of Existing Approximate Multipliers. 

The 8x8 multiplier design is based on recursive multiplier construction, 
where 2x2 elementary multiply modules are employed to generate 
partial products, and an adder tree is used to add the partial products 
and obtain the product result for 8x8 multiply operation. The accurate 
version A contains both 2x2 multiply and adder tree with accurate 
multiply/add hardware modules. The multiplier B is based on the 
design of [22], where 2x2 multiplier is accurate, but adders for x-LSBs 
(Least Significant bits; in this case x=4) related partial products are 
approximate while all other adders are accurate. C1 and C2 are based 
on the non-configurable and configurable designs of 2x2 approximate 
multiplier of [19], while the adder tree is accurate for summing the 
partial products. B is better in terms of power, while Cs are better in 
terms of number of error cases. Fig.1 illustrates that the sparse design 
space of state-of-the-art approximate multipliers is primarily due to 
their constraints on one or more design parameters, and their fixed 
architectures. The design space will completely change, if only the type 
of the approximate adder is changed. However, such a selection will 
influence the final quality, power, and area results. Fig.1 shows that 
there is a huge potential for filling the missing points in the 
architectural design space of approximate multipliers. 

1.3 What is Required and What are the Associated 
Research Challenges? 

Given several approximate designs for elementary adders and 
multipliers modules, there is a need for a methodology for generation 
and exploration of a huge number of approximate multiplier design 
alternatives with varying tradeoff points for area, power, and 
accuracy. However, exploration of the architectural design space 
becomes more challenging for large-sized multiplier, where decisions 
on the following customizable parameters need to be taken. 

(1) Employing accurate, approximate, or configurable 2x2 
multiplication units; 

(2) Employing accurate or approximate adders, when computing the 
sum of partial products in recursive multiplier designs; 

(3) How many LSBs need to be approximated in the adder tree? 

Size of Design Space: Let NapproxAdd is the number of different types of 
elementary approximate adders, NapproxLSB is the number of options for 
LSBs approximation, NapproxMul is the number of different types of 
elementary approximate multipliers and NMM is the number of 
elementary multiply modules. The total number of design-space points 
Dsp can be calculated using the following equation: 

 (1) 

An Example Calculation for the Design Space Size: Let us consider 
a 4x4 multiplier with the elementary multiply module (used for the 
partial product generation) of size 2x2. Given one accurate and four 
approximate designs of 2x2 multiply, we have 5 different types of 
elementary multiply modules. Similarly, let us also consider that we 
have 4 different types of elementary add modules (1 accurate, and 3 
approximate designs) and 3 possibilities for LSB-approximations  
(0-, 2-, or 4-bits). According to the Eq. 1, we will have 4 x 3 x 54  
= 7500 possible configurations for building a 4x4 multiplier. Similarly, 
for an 8x8 multiplier, the design space includes 1.831x1012 possible 
points. Note that in this case, the assumption was that the selection for 
the adder type and the approximate LSBs will apply to the whole adder 
tree. Therefore, configuring each adder separately will further expand 
the design space. 

1.4 Our Novel Contributions 
In this paper, we present a novel methodology for generation and 
exploration of the architectural design-space of approximate 
multipliers, and thereby enabling various approximate versions as 
tradeoff points with diverse power, output quality, and area 
properties. Different multiplier designs are synthesized using 
Synopsys Design Compiler for a 45nm TSMC technology library and 
functionally verified using ModelSim gate-level simulations. The 
power is estimated using PrimeTime. Selected multiplier designs are 
applied to a JPEG application with different combinations of 
approximate and accurate DCT / IDCT. 

Configuration coverage for state-of-the-art approximate multipliers: 
our methodology covers numerous combinations of different design 
parameters and thereby enables covering the configurations of state-
of-the-art approximate multipliers like [19][22]. As a result, we can 
even evaluate the efficacy of those designs w.r.t. the new design 
points in terms of power, area, and output quality. 

1.5 Open-Source Library 
The RTL and behavioral models of these approximate multipliers and 
adders are released as part of the open-source library at 
https://sourceforge.net/projects/lpaclib/ [23]. This will not only 
facilitate reproducing and comparing the results, but will also enable 
further research and development at higher abstraction layers. For 
instance, (i) architects can use this library for building approximate 
hardware accelerators manually or using high-level synthesis tools; 
or (ii) different design points can be exploited by variable resilience 
applications/functions to meet specific system requirements. 

2 EXPLORATION OF APPROXIMATE MULTIPLIERS 

2.1 Methodology Overview 
Fig.2 presents an overview of our methodology for generation and 
exploration of the architectural design-space of approximate 
multipliers. It consists of the following four key steps (discussed in 
detail in the following sections). 

1) Library Building (Section 2.2): First, we build a library of 
elementary approximate adder and multiplier modules. Besides 



re-using the existing designs, we developed another 2x2 
approximate multiplier in both configurable1 and non-
configurable designs to expand the design space [2]. 

2) Characterization (Section 2.3): Afterwards, we perform area, 
power, and quality characterization of different elementary 
approximate modules and filter out non-Pareto points. 

3) Building Large-Sized Modules (Section 2.4): Various approximate 
multipliers are generated using combinations of (i) elementary 
approximate multiplier modules, (ii) elementary approximate 
adder modules, and (iii) number of approximated LSBs. 

4) Selection of Design Points (Section 2.5): An exploration heuristic 
is employed that selects a subset of power-efficient design points 
considering the quality constraints. 
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Fig.2: Methodology Overview. 

2.2 Building the Library of Approximate Modules 
Building 2x2 Approximate Multipliers: The constitutional building 
blocks of the multiplication circuits are the 2-bitx2-bit multipliers to 
generate the partial products and the adder trees for summing the 
partial products. First, we implemented the accurate 2x2 multiplier 
module (see AccuMul in Fig.3(a)), and the state-of-the-art 2x2 
approximate multiplier module from [19] (see ApproxMul1 in Fig.3(b)), 
which supersedes existing low-power approximate multiplier designs. 
It reduces the output to 3-bits by approximating the 3x3 case to give a 
product of a value=7, instead of 9. This leads to the maximum error 
magnitude of 2. The work in [19] also proposed an accuracy-
configurable version that adds 2 to the approximate result when 
signaled for accurate computation. In order to expand the design space 
and to obtain a design with a reduced amount of maximum error (that 
may be required by certain applications), we developed four new 
designs of 2x2 approximate multipliers; see ApproxMul2 – ApproxMul5 
in Fig.3(c-f). The characterization results for different multiplier 
modules are discussed in Table I. 

Out of our four designs, we finally selected the design of ApproxMul2 
(Fig.3(c)) for building the large-sized multiplier modules, because it 
lies on the Pareto-optimal curve as shown in Table I. This design 
reduces the maximum error magnitude compared to state-of-the-art 
design [19]. Unlike the design of ApproxMul1 in [19], our 
ApproxMul2 does not reduce the output to 3-bits. Rather, we use the 
concept of equating similar output bits. The truth table in Fig.3(c) 
shows that the MSB and the LSB are equal except in the highlighted 
cases. If we remove the logic for LSB evaluation and then connect 
the MSB to the LSB, we get the following three approximation cases, 
all of which have an absolute error magnitude of 1: (I) 01x01 = 
0000; (II) 01x11 = 0010; and (III) 11x01 = 0010. This has 
the advantage that, if accurate computation is signaled, the error 
correction of a product requires only inverting the LSB. Therefore, 
                                                                 
1 Note: a configurable version indicates an accuracy-configurability, i.e., the 
approximate multiplier has an additional error correction unit, which can be  
activated and deactivated through an enable signal. This is not to be confused 
with hardware re-configurability of FPGAs. 

our configurable design exhibits an area-/power-efficient error 
correction logic. On the contrary, the state-of-the-art ApproxMul1 [19] 
requires an extra adder logic to correct the result that undermines the 
savings of approximations. Note: the error cases in both types of 
multipliers are known at design time (e.g., as shown in Fig.3(c)) and 
the results for configurable versions in Table I consider both error 
detection and correction. 
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Fig.3: 2x2 Multiplier Designs (a) Accurate; (b) State-of-the-Art Approximate 
Multiplier of [19]; (c-f) Our Approximate Multiplier Designs with Truth 
Table of the Selected Pareto-Optimal Design. 
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Fig.4: 1-bit Adder Designs (a) Accurate; (b-f) State-of-the-Art Approximate 
Adders of [10][11]; (g-h) Additionally Tested Approximate Adder Designs. 

Implementing Approximate 1-bit Full-Adders: First, we 
implemented (1) the accurate 1-bit full-adder (see AccuAdd in 
Fig.4(a)), and (2) five state-of-the-art approximate 1-bit full-adder 
modules from [11] (see ApproxAdd1 – ApproxAdd5 in Fig.4(b-f)), 
which supersede existing low-power approximate adder designs. These 
designs exhibit transistor-level approximations, and we implemented 
the gate-level circuits according to their reported truth-tables. 
ApproxAdd5 simplifies the logic of Sum evaluation and exhibit two 
error cases. ApproxAdd1 computes the Sum bit by simply inverting the 
Cout bit. ApproxAdd2 and ApproxAdd3 are obtained by having different 
combinations of the above two types of approximations. An aggressive 
approximation is done in ApproxAdd4 by simply rewiring, i.e., Cout = A, 
and Sum = B. In order to expand the design space, we additionally 
designed and tested two new designs of 1-bit approximate adders (see 
ApproxAdd6 and ApproxAdd7 in Fig.4(g-h)). The characterization 
results for different adder modules are discussed in Table II. It shows 
that designs like ApproxAdd3, ApproxAdd5, ApproxAdd6, and 
ApproxAdd7 do not lie on the Pareto-optimal curve, and therefore 
filtered out in the early design-space reduction step. Other variable 



latency adders like [12]-[17] can also be used in the adder tree for 
partial product summation, but due to carry chain breaking, they may 
lead to a higher error magnitude, which may not be desirable. Our 
methodology is orthogonal to the use of low-power or high-
performance variable latency adders for partial product summation. 

2.3 Characterization and Early Design Space Reduction 
Area, power, and accuracy for all library components are examined 
separately using the tool flow in Fig.8 (see tool-flow in Section 3.1). 
The output accuracy is quantified as (1) number of error cases,  
(2) maximum error magnitude, and (3) occurrences of the maximum 
error, compared to the accurate adder. For output quality testing, all 
possible combinations of inputs were applied to the elementary 
adder/multiplier modules. Table I and Table II illustrate the area, 
power, latency, and output quality results of approximate and 
accurate multiplier modules. Based on the characterization results we 
performed the design-space reduction. 

Table I Area, Latency, Power, and Quality Characterization of 
Elementary Approximate 2x2 Multiplier Modules. 

 Area 
[GE] 

Latency 
[ns] 

Power 
[nW] 

Number 
of Error 

Cases 

Max  
Error 

Magnitude 

Occ. of 
Max 

Error 
AccuMul 6.880 0.10 543 - - - 
ApproxMul1 3.704 0.06 363 1 2 1 
ApproxMul2 4.939 0.10 262 3 1 3 
ApproxMul1C 7.232 0.17 525 - - - 
ApproxMul2C 6.350 0.13 379 - - - 
ApproxMul3 5.645 0.10 464 1 8 1 
ApproxMul4 5.292 0.10 422 1 4 1 
ApproxMul5 5.645 0.10 467 1 8 1 

Table I shows that only AccuMul, ApproxMul1 [19], and ApproxMul2 
lie on the Pareto-optimal curve, and all other designs can be filtered 
out to reduce the design space. The reason of selection of 
ApproxMul1 is the reduced number of error cases, and ApproxMul2 is 
selected due to the reduced maximum error value. These three 2x2 
multiplier modules are used in the next step of building large-sized 
multipliers. Table II shows that, out of 7 design options, only 
AccuAdd, ApproxAdd1, ApproxAdd2, and ApproxAdd4 lie on the 
Pareto-optimal curve, and all other designs can be filtered out to 
reduce the design space. Note, in order to speedup the design space 
exploration process and to avoid inefficient design points of bigger 
multi-bit multiplier modules, only Pareto-optimal points are 
beneficial. Non-Pareto-optimal points will most likely be pruned in 
the design space exploration process. 

Table II Area, Latency, Power, and Quality Characterization of 
Elementary Approximate 1-Bit Full-Adder Modules. 

 Area 
[GE] 

Latency 
[ns] 

Power 
[nW] 

Number 
of Error 

Cases 

Max  
Error 

Magnitude 

Occ. of 
Max 

Error  
AccuAdd 4.41 0.12 1130 0 0 0 
ApproxAdd1 1.94 0.07 294 2 1 2 
ApproxAdd2 1.59 0.05 198 3 1 3 
ApproxAdd3 1.76 0.06 416 3 1 3 
ApproxAdd4 0 0.00 0 4 1 4 
ApproxAdd5 4.23 0.10 771 2 1 2 
ApproxAdd6 3.18 0.10 409 2 1 2 
ApproxAdd7 3.18 0.13 709 2 2 2 
 

The key considerations during the selection are:  

1) ApproxAdd4 offers the best area and power results, but the lowest 
accuracy in terms of number of error cases. ApproxAdd5 has the 

worst area/power results among all approximate designs, so it is 
ignored. 

2) ApproxAdd2 is selected as it offers good power and area, and 
reasonable accuracy (maximum value of 1, and 3 error cases). 

3) ApproxAdd1 and ApproxAdd3 have very similar area results, but 
ApproxAdd1 offers reduced power consumption and better 
accuracy, and is therefore selected. Accordingly, ApproxAdd3 is 
pruned. 

2.4 Building Large-Sized Adder and Multiplier Modules 
Larger components are built using the elementary 1-bit full-adders 
and 2x2-bits multipliers. Following the design principles of recursive 
multipliers, in order to obtain large-size approximate multipliers, we 
need multi-bit adders to sum up the partial products. 

Building a Multi-Bit Approximate Adder Chain: Building a multi-
bit adder chain is illustrated in Fig.5. FAAA denotes a 1-bit accurate 
full-adder while FAXA refers to an approximate 1-bit full-adder. An N-
bit adder can be composed of K approximate adders and N – K 
accurate adders, such that K≤N. Fig.5 presents an example using 
K=2.  

Cin
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A(n-1) B(n-1)
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Cout cout2 cout1
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Fig.5: Multi-Bit Adder Chain using Accurate or Approximate 1-Bit Adders. 

Without loss of generality, in this paper, we consider a ripple carry 
adder design where carry chain is not broken. However, other 
techniques to break the carry chain to explore another dimension of 
approximation, like the works of [12]-[17], can also be employed and 
is orthogonal to the contributions of this paper. Note that, to avoid 
high error magnitudes, we consider that LSBs are the first candidate 
for approximations, while MSBs should be accurate. Therefore, we 
consider K-consecutive approximate adders in our multi-bit adder 
design, such that K can also be seen as the number of LSBs added 
with 1-bit approximate adders. Also, for the ease of discussion and 
evaluation, we consider only one particular type of elementary 
approximate adder module (ApproxAdd1 or ApproxAdd2, but not 
both) in one design. However, our methodology is not restricted to 
this assumption. Our experience is that, such homogeneity is 
important for early reduction of the design space size, and shortening 
the development and testing time. 

Table III Area, Latency, Power, and Quality Characterization of 
Approximate 8-Bit Adders. 

 Area 
[GE] 

Latency 
[ns] 

Power 
[nW] 

Number 
of Error 

Cases 

Max 
Error 

Magnitude 

Occ. of 
Max 

Error  
AccuAdd 48.157 1.03 3250 0 0 0 
ApproxAdd1, 4 LSBs 38.279 0.93 2040 89600 15 512 
ApproxAdd1, 8 LSBs 28.400 0.89 1680 117950 255 2 
ApproxAdd2, 4 LSBs 36.868 0.72 1730 108288 15 768 
ApproxAdd2, 8 LSBs 25.578 0.49 1350 126891 255 3 
ApproxAdd4, 4 LSBs 29.988 0.52 926 122880 8 8192 
ApproxAdd4, 8 LSBs 12.348 0.06 480 130560 128 512 

Table III presents area, power, latency, and accuracy results for 8-bit 
adder designs with different amounts of LSBs approximated using 
ApproxAdd1, ApproxAdd2, and ApproxAdd4 as elementary 1-bit full-
adders. For the number of LSBs to approximate, we decided to go for a 



step size of 4 bits; (i) 0 LSBs (fully accurate), (ii) 4 LSBs (half the bit-
width), and (iii) 8 LSBs (fully approximate). The total number of tested 
cases is 131,072 cases; (256*256) combinations *2 for Cin = 0 or 1. 

Building a Large-Sized Approximate Multiplier: A large-sized 
multiplier can be recursively partitioned into multiple small-sized 
multiplication operations, such that, each of these operations can be 
processed in parallel in the same cycle. Fig.6 illustrates the process of 
recursive partitioning and partial product addition. Let us assume a 
number X is multiplied with another number Y, each is 2W-bit wide, 
such that W . X and Y can be written as (XH,XL) and (YH,YL), 
respectively, where L=H=W-bits. Fig.6 shows how a 2Wx2W 
multiplication is broken into multiple WxW multiplications, and the 
partial products at appropriate bit-positions are added using multi-bit 
adders. XLxYL, XHxYL, XLxYH, and XHxYH are the partial products and 
require four WxW multipliers. There can be different design options, 
for instance, XLxYL can carried out using approximate multipliers, 
while all other partial products are obtained using accurate 
multipliers. Or, XLxYL, XHxYL, and XLxYH are carried out using 
approximate multipliers, while XHxYH is obtained using an accurate 
multiplier. Similarly, for different partial products, different types of 
elementary 2x2 multipliers can be employed. 

XL x YL

XH x YL W

XL x YH W

2WXH x YH

4W-bit Product

2W-bits
WxW blocks

Legend:
X  : 2W-bit Multiplicand
Y  : 2W-bit Multiplier
XL : W LSBs of X
XH: W MSBs of X
YL : W LSBs of Y
YH : W MSBs of Y

 
Fig.6: Building larger multipliers. 

An Example: If W=4-bits, then the operation corresponds to 8x8 
multiplier, and partial products are generated using 4x4 multipliers, 
which in turn can be broken down into multiple 2x2 multiplications. 

Requirement of Elementary Multiplier Modules: The following 
equation calculates the number of elementary multiplier blocks for 
building a larger multiplier of 2Lx2L size. For instance, a 16x16 
multiplier consists of 64 2x2 blocks. This lead to the questions: how 
many elementary approximate multiplier modules to use and what 
should be their distribution in a large-sized approximate multiplier 
architecture? In case the approximate adders are also considered, the 
challenge will be to first find out if it will be better to use an accurate 
multiplier and an approximate adder-tree or vice-versa, or a mixture. 

 (2) 

As seen from Table I, the approximate version from [19] results in 
more savings than the proposed approximation. It also offers better 
accuracy as only one out of the 16 possible outputs is inaccurate, 
while 3 out of 16 are inaccurate in the proposed approximation. 
However, the accuracy configurable version proposed out-performs 
its counter-part suggested in [19]. We then build larger multipliers 
(4x4, 8x8, and 16x16) out of the available 2x2 blocks while keeping 
the adder tree accurate. In doing so, we applied the same choice of 
multiplier type to all constituent 2x2 blocks. However, any other type 
of multiplier can also be used, but it is avoided in the implementations 
to simplify the exploration and development effort. However, our 
methodology and framework are orthogonal to this decision and can 
cover both cases. Table IV and Table V present the results for 4x4 and 
8x8 multipliers. 

The 4x4 multiplier based on the approximation from [19] results in 
more savings than our proposed approximation, while our accuracy 
configurable version offer better results in comparison. As for 
accuracy, ApproxMul1 results in less number of error cases, on the 
other hand, the maximum error value for ApproxMul2 is half 
compared to that of ApproxMul1, but occurs more frequently (see 
Table IV). An appropriate approximate version can be selected based 
on the quality constraints, i.e., maximum error value or number of 
error occurrences. Number of test cases are 256 and 65536 for 4x4 
and 8x8 multipliers, respectively. 

Note, in the current work, we do not consider reuse of 2x2 multiplier 
modules within one large-sized multiplier, which will lead to a multi-
cycle design. The reason is to achieve faster implementations. 
However, if a multi-cycle design is desired, reusing of 2x2 multiplier 
modules can also be considered. In this case, a new decision about 
which 2x2 multiplier module to reuse, accurate or approximate one, 
would be required for different bits, for which design space 
exploration algorithm needs to be extended accordingly.  

Table IV Area, Latency, Power, and Quality Characterization of 
Approximate 4x4 Multiplier Modules. 

 Area 
[GE] 

Latency 
[ns] 

Power 
[nW] 

Number of 
Error Cases 

Max Error 
Value 

Occ. of 
Max Error 

AccuMul 62.45 0.72 4110 - - - 
ApproxMul1 37.04 0.51 2670 49 50 1 
ApproxMul2 56.80 0.75 2830 119 25 7 
ApproxMul1C 63.86 0.81 4000 - - - 
ApproxMul2C 61.39 0.79 3630 - - - 

Table V Area, Latency, Power, and Quality Characterization of 
Approximate 8x8 Multiplier Modules. 

 Area 
[GE] 

Latency 
[ns] 

Power 
[nW] 

Number of 
Error Cases 

Max Error 
Value 

Occ. of 
Max Error 

AccuMul 324.22 1.75 16500 - - - 
ApproxMul1 222.62 1.60 12500 30625 14450 1 
ApproxMul2 302.70 1.81 12600 53375 7225 31 
ApproxMul1C 329.87 1.83 14600 - - - 
ApproxMul2C 321.05 1.83 15300 - - - 

2.5 Selection methodology 
Each design point in the architectural space has different 
characterizing properties like area, power, and accuracy/quality. 
State-of-the-art works (like [10]) typically employ the metric QAP 
(the product of quality/output error, area, and power) as a cost 
function to evaluate different design options, where a smaller value 
of QAP denotes a better design. However, our analysis showed that 
this metric lacks distinctiveness. For instance, let us assume that we 
want to compare the accurate adder AccuAdd with the ApproxAdd4 
(see Table II). Using the number of error cases as a metric, it is clear 
that ApproxAdd4 has the lowest accuracy, however, if we calculate 
the QAP=4*0*0, the result is 0. The QAP for the AccuAdd is 
QAP=0*4.41*1130, which will also result in 0. For this reason, the 
cost function QAP cannot be used for evaluation of distinctive design 
points in the architectural space of approximate multipliers. 

In our methodology, we consider the quality constraint as an input 
from the system designer. Therefore, our methodology determines the 
cost of a design point as a function of only the area and power. Since 
the product of power and area may again lead to multiple points with 
a cost of 0, we formulate the cost function as a weighted sum of 
power and area (i.e., WAP); see Eq. 2. wA and wP denote the weights 
for area and power factors. AX and PX denote the area and power 
consumption of a given design point X. 



 (3) 

The designer can specify which of the two (i.e., area or power) is of 
more importance for the design under consideration. Of course, area 
has an impact on the power consumption. However, our design space 
shows that, even two design points with similar area values could 
have very different power consumption, which is primarily due to 
more switching activity. Fig.7 shows the recursive partitioning tree 
for a large-sized multiplier until it reaches the leaf node, which 
corresponds to the elementary 2x2 multiply module. The figure 
shows the multiplier tree of a 16x16 multiplier as an example. The 
right-most-branch always represents the block of highest 
significance. As we move to the left, the significance decreases until 
we reach the least significance at the left-most-branch. In the above 
tree, if level 0 is the root, the most significant block is the right-most 
2x2 block at the highest level (level 3). For this reason, a depth-first 
traversal of the multiplier tree (starting on the right) is used when 
exploring the possibilities of approximating the 2x2 modules. 

Algorithm 1: Design Selection using DFS (Depth-First Search) 
INPUT: (i) QMetric: the quality criteria, for example, the highest error 
magnitude; (ii) QConstraint: the condition to satisfy for the given metric 
(for example, QMetric < 5; QConstraint=5); (iii) WA: area weight; (iv) 
WP: power weight. 
OUTPUT: (i) the selected configuration of 2-bit multipliers, adders, and 
LSBs; (ii) the associated quality metric 
BEGIN 
1.  //Evaluate WAP for all 

considered 1-bit FAs 
2.  
3.  //Evaluate WAP for 

all considered 2x2 multipliers 
4.   
5.  
 
6.      
7.    
8.             
9.                  
10.       

     
11.                
12.           
13.         
14.             
15.                
16.        
17.  
END 
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Fig.7: Recursive Partitioning for Building Large-Sized Multipliers. 

For each 2x2 module combination selected while traversing the tree, 
we first need to select the elementary 2x2 approximate multiplier. 
This is done by evaluating all alternatives in the MultiplierList (see 
Algo.1) which is already sorted ascendingly, meaning that the WAP-
wise best alternative is always at the top. For each multiplier 
alternative, all adder types are then tested for different LSB-
combinations. The AdderList is also sorted ascendingly and having 
the WAP-wise best approximation at the top. On the contrary, the 
higher the LSB, the higher the approximation level (i.e., WAP-wise 
best). That is why those are sorted in a descending order. In 

Summary, the algorithm starts using the highest approximation 
available and moves toward a more accurate solution. The first 
configuration that satisfies the quality criteria is selected as the 
solution. Each combination is evaluated using an appropriate error 
model, which computes the quality of this specific combination 
(QCurrent). This QCurrent is then checked against QConstraint (the 
designer requirement given as input). 

Note, the algorithm stops at the first solution that satisfies the 
constraints. It can alternatively, be left to run to provide an ordering 
of all possible points of the design-space. 

Complexity Analysis: It is well-known that a DFS has a variable 
complexity according to the data structure used for the tree 
representation. A common approach is to use an adjacency list; in this 
case the complexity of DFS is O(V+E); where V and E are the 
number of vertices and edges respectively. Since the multiplier 
structure is fixed (see figure), a 64x64 multiplier would have 337 
vertices and 336 edges. Assuming we have D adders, M multipliers, 
and B LSBs combinations, then the complexity would be 
O(D*M*B). For our library, this exploration process takes only a few 
minutes on an Intel Core i7 PC. 

It is important to note that the focus is not to find an optimal 
multiplier, rather to find the best possible configuration given a 
certain quality metric and an instance of the library of blocks. It 
would be obvious that changing the metric or the library of 
components may/will change the selection. 

Generalization: The above exploration is made for recursive 
multipliers that use adders for partial product summation. In case a 
fast multiplier does not need an adder tree, the decision will be based 
on the selection of elementary multiplier modules and the number of 
bits for approximation. Depending upon a particular design of a fast 
multiplier, selection methodology may need to be customized to 
achieve the best possible results. 

3 RESULTS AND DISCUSSION 

3.1 Experimental Setup and Tool Flow 
Fig.8 presents our integrated tool flow and evaluation setup for 
designing and validating the approximate computing modules. Both 
structural description (VHDL) and behavioral description (C) were 
developed for each approximate design. Synopsys Design Compiler 
(DC) synthesizes the given VHDL design, and generates a netlist file 
and reports about area, latency, and power.  

Synthesis Flow
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Netlist

VHDL Files

Initial Power
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Reports

SAIF File
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Fig.8: Tool Flow and Experimental Setup. 

We ran the Synopsys Design Compiler using WCCOM (Worst-Case 
Commercial) operating conditions. Wire_load_model was set to 
segmented and the area optimization option was enabled. The 
generated netlist is then used as input to the gate-level simulation tool 



(ModelSim). Once the correct behavior of the hardware is tested and 
confirmed, VCD (Value Change Dump) and SAIF (Switching 
Activity Interchange Format) files are generated and fed into the 
Primetime tool to generate more accurate power reports. In order to 
evaluate the quality of each approximate design, we developed an 
equivalent behavioral model in C and performed extensive test to 
permute over all possible combinations of input operands. 
Afterwards, number of error cases, maximum error magnitude, and 
occurrences of maximum error cases are recorded for each design. 
Since studying the evaluation of weights is not the focus of this 
paper, and we consider it as a given input from the system designer, 
we use wA=0.5 and wP=0.5, i.e., treating both area and power equally 
important. 

3.2 Evaluating the Design Space Points 
Fig.9 illustrates a subset of the architectural space of an 8x8 
approximate multiplier design along with the power, area, latency, 
and quality characterizations of different designs. There are 19 
design-points using variants of multiplier type, adder type, and 
number of approximated LSBs. Some of these points also cover 
state-of-the-art approximate multipliers, for instance the ones that use 
ApproxMul1. Under different constraint values, our methodology 
outputs 8 design points (A, B3, B6, C1, C3, D6, D7, and D8) that we 
then applied to a JPEG application for further quality assessment. 
Important points on the selection are discussed below. 

1. The first selected design is the fully-accurate one, which also 
serves as the baseline.  

2. Two out of the six “accurate multiplier with approximate adder” 
combinations are chosen, i.e., B3 and B6. As shown, B4 and B5 
have the highest maximum error in the B–category, so they are 
both excluded. On the other hand, B1 and B2 have the highest 

power and area attributes, they are also filtered-out. In the B–
category, B6 has the lowest area and power while having a high 
number of error cases with low occurrences. In contrast, B3 has 
the least maximum error value and least occurrences but has high 
area/power characteristics. Therefore, B3 and B6 were favored 
since they offer interesting trade-offs between power and quality. 

3. In the C–category (i.e., approximate multiplier with accurate 
adder), C1 and C3 are the approximate multipliers while C2 and 
C4 are their corresponding accuracy-configurable versions. C1 
has lower area than C3 but higher maximum error value. We 
chose to include the approximate versions. 

4. D8 has the least power and area among the D–category (i.e., 
approximate multiplier with approximate adder). D4 also 
warrants low area and power but has higher inaccuracies, so D8 
was preferred. D3 is similar to D4 regarding quality but has 
higher area and power, for this reason, it is not selected. D5 and 
D6 have the lowest maximum error value but D6 exhibits better 
area and power characteristics. D7 is an excellent trade-off in 
terms of area, power, and accuracy attributes. 

3.3 Quality Evaluation of Selected Approximate 
Multipliers when Employed in a JPEG Application 

Table VI illustrates the image quality and compression efficiency 
comparison when applying different design points to the DCT and 
IDCT functions of a JPEG application in different 
accurate/approximate combinations. When evaluating the efficiency 
of the selected approximation variants in terms of the size of the 
compressed file, we notice that for both images, when approximate 
DCT is employed, the selected variants always result in the same 
order of [D8, B6, D7, C1, C3, B3, D6]. Here, D8 has the highest 
reduction in compressed file size of more than 50% for both test 

 
Fig.9: Evaluating the Area, Power, and Quality Architectural-Design Space of Approximate Multipliers; also showing the Legend of Multiplier Designs. 

Table VI Comparing the Image Quality and Compression Efficiency when Applying Selected Approximate Multipliers to the JPEG Application.  
X1 [Accurate DCT and IDCT], X2 [Only DCT Approximated], X3 [Only IDCT Approximated], X4 [Approximated DCT and IDCT]. 

 

 X1 X2 X3 X4 
  B3 B6 C1 C3 D6 D7 D8 B3 B6 C1 C3 D6 D7 D8 B3 B6 C1 C3 D6 D7 D8 

PSNR [dB] 31.42 20.5 20.43 31.05 22.72 19.79 20.15 20.49 22.32 21.26 31.15 27.31 22.34 21.12 21.4 17.38 21.68 30.92 20.26 16.28 21.37 21.68 
Compressed  

file size [Bytes] 9,810 12,229 5,485 9,788 11,407 12,630 6,964 4,762 9,810 12,229 5,485 9,788 11,407 12,630 6,964 4,762 

                        

 

 X1 X2 X3 X4 
  B3 B6 C1 C3 D6 D7 D8 B3 B6 C1 C3 D6 D7 D8 B3 B6 C1 C3 D6 D7 D8 

PSNR [dB] 30.56 21.97 21.47 30.18 23.94 21.2 21.08 21.52 23.22 21.99 30.44 26.39 22.74 21.53 21.97 18.61 22.29 30.12 26.37 17.47 22 22.15 
Compressed  

file size [Bytes] 27013 33,343 13,927 26,689 29,635 34,462 17,802 11,806 27,013 33,343 13,927 26,689 29,635 34,462 17,802 11,806 

 



images. C1 at the borderline, where the compressed file size is nearly 
equal to the accurate version. This shows that combining several 
approximations, such as D8, can result in power and area savings 
(see Fig.9) and increased performance when compared to 
approximating either the adder or the multiplier. 

When evaluating those variants for PSNR values, observations are, to 
a certain extent, contradicting. When sorting the approximate variants 
in order of decreasing PSNR, we get a different order for X2, X3, and 
X4. And also for the same X, the order differs with different images. 
For example, B3 and B6 are two counter cases, B3 having higher 
power and area while having lower error. The PSNR values are 
almost equal, while there is a huge difference observed in the 
compressed file size to the extent that B3 is worse than the accurate 
case with an increase of 23% in the compressed file size. Also, in 
contrast to the design-space results, when using PSNR as an 
indication D8 always performs better than D7 and D7 performing in 
turn better than D6. In summary, the results show that simply using 
the PSNR metric is not sufficient, because amounts of bits also 
matter. Therefore, a designer needs to account for both PSNR and bit 
rate for making a power-efficient decision. 

4 CONCLUSION 
We presented a methodology to generate and explore the architectural 
space of approximate multiplier using variants of 
approximate/accurate elementary multiply/add modules and number 
of approximated LSBs. We performed ASIC-synthesis and Primetime 
power estimation for various designs using a 45nm technology, and 
evaluated for area, power, latency, and output quality (in terms of 
different error metrics). A subset of selected design points is applied 
to a real-world application of JPEG in different combinations and 
evaluated for output quality. We provide the complete library of 
approximate multipliers and adders (including both RTL and 
behavioral models) online at https://sourceforge.net/projects/lpaclib/. 
This open-source library enables reproducing and comparing the 
results and will enable further research and development on applying 
approximate computing at higher abstraction layers of HW/SW 
stacks. 

This work is the first step towards the development of open-source 
elementary approximate modules, and a generic selection 
methodology for building large-sized multi-bit approximate 
arithmetic module using smaller elementary approximate modules, 
and selecting efficient configurations. 
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