
XNoC: A Non-intrusive TDM Circuit-Switched
Network-on-Chip

Tuan D. A. Nguyen
Department of Electrical & Computer Engineering

National University of Singapore
4 Engineering Drive 3, Singapore 117583

Email: tuann@u.nus.edu

Akash Kumar
Center for Advancing Electronics Dresden

Technische Universität Dresden
Dresden 01187, Germany

Email: Akash.kumar@tu-dresden.de

Abstract—Network-on-Chip (NoC) is known as a scalable
and high performance interconnect in Systems-on-Chip (SoCs)
with multiple processing elements (PEs). Recently, the design
paradigm of SoCs has shifted from static to dynamic run-
time reconfigurable system. In these systems, the PEs can be
loaded/unloaded on demand. Therefore, the NoC should be able
to adapt as quickly as possible to the changes to maintain
the performance of the systems. In this work, we present a
non-intrusive runtime reconfigurable time-division-multiplexed
circuit-switched NoC, XNoC, which offers the following benefits
(1) it switches between different routes within a predictable
latency that is strictly determined by the length of the route
and the number of time slots; (2) the configuration process can
be masked effectively by overlapping with communication and (3)
the multi-cast service is supported with aggregate feedback from
sink nodes. We propose an XSwitch which requires 3.5X less
resource than the conventional switch with similar features. The
overall resource cost of XNoC is also smaller than the most known
NoC and the clock timing is up to 50% better. We also propose
a novel distributed control plane to accelerate the reconfiguration
process and to improve the scalability of NoC. The achieved
reconfiguration speedup compared to the centralized control unit
is up to 7.6X in certain conditions. On average, it takes only 74
clock cycles to activate a 12-hop connection.

Keywords—NoC, TDM, multi-cast, distributed control, FPGA

I. INTRODUCTION

Network-on-Chip (NoC) is a very heavily mined topic in
the research community [1], [2]. However, with the advent
of the partially reconfigurable (PR) FPGA-based System-on-
Chip (SoC) consisting of runtime interchangeable and hetero-
geneous processing elements (PEs) [3], [4], many applications
can be multiplexed on the same system. This becomes a
challenge because the communication pattern as well as the
behavior of the combinations of applications cannot be known
entirely at design time. Therefore, the NoC must be designed
efficiently to quickly adapt to the changing communication
patterns as well as keeping up with the bandwidth requirements
of the various applications at runtime.

Circuit-switched (CSw) NoC is known to perform better
than packet switched (PktSw) NoC in real-time embedded
systems [5], [6]. Some researchers proposed hybrid PktSw-
CSw NoCs to inherit the advantages of both types such as
[7], [8]. However, they do not provide much benefit in terms
of cost-performance ratio and they break the composability of
the system [5]. CSw NoCs are classified into Spatial Division
Multiplexing (SDM) [9]–[11] or Time Division Multiplexing
(TDM) [12]–[15] or both [16]. However, TDM is preferred to
SDM because of lower data latency, less complex switch and
cheaper network interfaces/switches (NIs/SWs) [17].

PE00  PE03

PE10  PE13

PE11  PE23

Unoccupied

Fully occupied

SW00

SW10

SW20

SW01

SW11

SW21

SW02

SW12

SW22

NI NI NI

NI NI NI

NI NI NI

SW03

SW13

SW23

NI

NI

NI

Fig. 1. Modifying path. PEs are attached to NIs and are numbered after
their SW. PE00→PE03 is the path from PE00 to PE03. There are 4 time slots
represented by 4 arrows. One more time slot is requested for PE00→PE03 to
increase the bandwidth.

SW00

SW10

SW20

SW01

SW11

SW21

SW02

SW12

SW22

NI NI NI

NI NI NI

NI NI NI

SW03

SW13

SW23

NI

NI

NI

Multi-cast 
Data

Collective 
Feedback

Fig. 2. Multi-cast. PE00 sends data to PE01, PE02, PE03, PE10, PE11,
PE12 and PE21. SW01 collects feedbacks from PE01, SW02 and SW11 before
sending to SW00 then PE00.

Therefore, we focus on the TDM CSw NoC. We address
the following research gaps which we believe are very im-
portant for the applications nowadays. First, the path (de)-
activation happens very frequently in the PR SoCs and it is
expected to increase because of the dynamic nature of the
systems (reconfiguring PEs at runtime). The latency of this
process should be kept at minimum and predictable. Second,
the reconfiguration process in the aforementioned NoCs is
based on the assumption that it does not overlap with the
data transfer. This is not the case in a scenario when the
user changes from a low quality video to a higher one. The
bandwidth of the existing path needs to be adjusted as shown
in Fig. 1. This example is elaborated in Section III-D. Third,
although it is trivial to provide the multi-cast service in CSw
NoC [14], the feedback from the receiving nodes are ignored.
To the best of our knowledge, there is no mechanism so far
in CSw NoC to aggregate them back to the source node as
illustrated in Fig. 2. Lastly, despite the benefits of centralized
control unit over the decentralized one as discussed in Section
II-B, it suffers from the scalability issues in the systems with
up to thousand of PEs connected by one NoC.

Contributions. We propose a runtime reconfigurable TDM
CSw NoC, XNoC, equipped with the XSwitch to tackle all of
the above issues. Our contributions are following.



• Low-latency and predictable path (de)-activation.
(De)-activating a single-slot path takes at most N +
D + 2 clock cycles (D is the length of that path, N
is the number of time slots of the NoC).

• Non-intrusive reconfiguration process. It does not in-
terfere with the current operation of the switch at all.

• Multi-cast service with aggregate feedback. Any bit-
wise combinational logic can be done at any SW with-
out extra latency and dedicated logic. The scheduling
of the feedback from the receiving nodes is directly
inferred from the data path.

• Distributed control plane. All the benefits of the
centralized control approach are retained while the
reconfiguration overhead is greatly reduced. The long
control links spanning across all SWs in the network
are no longer needed.

We adopt a centralized management approach with dis-
tributed control plane to configure the NoC. The mesh topology
is used throughout the paper but it is not restricted to that. The
implementation results show that the XSwitch takes much less
resources, 3.5X lower, than the conventional SW which offers
the similar features. The whole XNoC also scales linearly
with the number of time slots and the number of nodes. The
minimum clock period obtained after placement and routing is
50% better than the well-known previous work; the resource
cost is also lower. Moreover, the distributed control plane
performs much faster than the centralized control unit. In some
conditions, the speedup is up to 7.6X . For a connection of
which length is 12 and requires 8 time slots, it takes an average
of 74 clock cycles to activate. The resource overhead of the
distributed control plane is also negligible.

The remainder of this paper is organized as follows. The
related work and motivation are discussed in Section II. The
proposed XNoC and distributed control plane are presented
in Section III and IV respectively. The experimental results
are provided in Section V. Finally, the conclusion and future
works are presented in Section VI.

II. RELATED WORK AND MOTIVATION

A. Related Work

One of the highly regarded TDM CSw NoCs in literature
is Æthereal [12]. It offers both PktSw for best-effort (BE)
services and CSw for guaranteed services (GS). In a later
article [5], the authors stated that the extra resources required
by BE were not worth the trade-off of the overall performance
of the NoC. Therefore, the subsequent NoCs inherited from
Æthereal completely removed the BE service such as aelite
[13] and dAElite [14]. aelite is the lite version of Æthereal
without BE service. In dAElite, the configuration process is
done without intervening with the current applications as long
as the existing paths are not affected. dAElite utilizes end-to-
end credit-based flow control for one-to-one transactions, but
none for one-to-many.

In [16], the SDM-TDM CSw NoC was suggested to take
advantage of SDM and TDM techniques to increase the num-
ber of possible paths between PEs. The path setup/tear-down
operations are decentralized by integrating a small Control
Unit in every router to process the request packets from PEs
using the XY routing algorithm. However, there is no flow
control in the proposed NoC.

Likewise, Liu et al. [15] proposed a distributed dynamic
connection setup in their CSw TDM NoC using the parallel
probing path searching algorithm. It was proved to be more
effective than the XY routing. However, they do not support
multi-time-slot path. The flow control for one-to-one connec-
tion is end-to-end ready-to-receive signal. The one-to-many
and many-to-one connections are not supported.

B. Motivation

The disadvantages of using decentralized compared to
centralized control unit in [15], [16] are (1) it cannot establish
a multi-cast domain because the sender needs to wait for the
acknowledged signals from all receivers to make sure that the
paths are setup; the control units would become much more
complex to handle the responses from the neighbors; (2) the
routing algorithm cannot be changed at runtime unless the
routers are partially reconfigurable; (3) it does not have the
global view of the current state of the network to adapt to
changes at runtime; (4) it only allocates one slot for one path
at a time; there is no guarantee that the data in multi-time-slot
path arrive at the destination in order.

The most concerned problem of CSw NoC with centralized
control unit is the path setup and tear-down overhead. They
can be over 1000 clock cycles in [12] or about 100 cycles for
one short path in [14]. Having a predictable path setup/tear-
down latency as low as possible is the first step in making it
feasible to interleave multiple paths that share the same links
and time slots. It is similar to the context switching in multi-
threaded software environment. Another drawback of conven-
tional centralized control unit is scalability. For large NoCs
with hundreds or even thousand of PEs, the reconfiguration
process becomes a bottleneck. Moreover, having the control
links span the whole network severely affects the timing of
the design. One may insert the buffers along the links but it
again increases the reconfiguration latency.

CSw NoC also suffers from the obstruction of the reconfig-
uration process to the data communication. All of the existing
non-static TDM CSw NoCs mentioned above suffer from the
lengthy disruption of current traffic when they have to modify
the existing flows as in the example shown in Fig. 1. The
main reason is that they have to wait for the data in a path to
clear up before tearing it down or adding more time slots to
it. For the TDM CSw NoCs with decentralized control unit, it
is not possible to do so because they do not have the global
knowledge of the system.

Lastly, the multi-cast (one-to-many) with reduction opera-
tion (AND, OR, XOR, etc.) (many-to-one) as shown in Fig. 2
is not supported by the NoCs above. The multi-cast operation
is provided implicitly by the CSw NoC [14]. In case of PktSw
NoCs, the application running on the source node has to send
the data to multiple destinations if the NoC does not support
it natively. For the reduction operation, the SWs must perform
logical operations on the incoming feedback signals before
forwarding to the sender. Currently, there is no CSw NoC that
supports this operation. The PktSw NoC proposed by [18] has
addressed this issue. Nevertheless, it requires extra logic for
each of the logical operations.

III. XNOC

A. Overview

Fig. 3 illustrates the general architecture of XNoC. We start
with the centralized approach to explain our techniques and



SW

SW

SW

SW

SW

SW

SW

SW

SW

NI NI NI

NI NI NI

NI NI NI

Control 
Unit

Master 
Proc

Fig. 3. The 3x3 XNoC. The SWs and NIs are in Data Plane. The PEs
(not shown for simplicity) are attached to the NIs. The Control Unit receives
instructions from the Master Processor (Master Proc) to control the Data Plane.

design considerations. After that, the distributed control plane
is presented in Section IV which can preserve all advantages
of our centralized control unit. The Control Unit takes and
processes instructions sent by the Master Processor (Master
Proc) to control all of the operational aspects of the XNoC.
These instructions are: configuring the routing tables inside the
SWs, enabling/disabling their outputs, suspending/resuming
the NIs at a specific time slot or all time slots. Except the
routing tables which are stored inside the SWs, all other
configurations reside in this plane. The NIs, SWs and all the
connections between them make up the Data Plane.

In our current implementation, the time slot counter and
clocks are distributed globally to all components. The Control
Unit manages the NIs and SWs via direct control signals.
By this way, it can manipulate NIs and SWs at the precise
timing when the paths are (de-)activated or at whatever time
slot the Master Proc wants. The path (de-)activation processes
are presented in Section III-D. The signals used to update the
content of the routing tables are broadcasted to all SWs. Each
of them only accepts the updates when the value of the address
signals matches its pre-configured value.

In general, XNoC works similar to other TDM CSw NoCs
with a central control unit [14]. The novelties of XNoC lie
in the design of the switch, the connection (de-)activation
mechanisms, the schedule of the feedback signal and the
many-to-one operation. These are discussed in the subsequent
sections. During the discussion, N denotes the number of time
slots, D represents the length of a path.

B. XSwitch

Unlike the conventional 5-port switch which is im-
plemented by multiplexers with configurable selectors, our
XSwitch is designed from a different point of view. Fig. 4
depicts the architecture of our XSwitch. We make use of
the intrinsic idea of FPGA in implementing digital circuits
using arrays of small memory elements (MEs) (lookup-table
in Xilinx FPGA). As shown in Fig. 4a, there is one set of N
5-input MEs per output direction per output bit. The inputs are
from the North, East, West, South and Local ports. They are
connected to the asynchronous address read port of the ME.
The output port, connected to the read data output, is therefore
the result of any 5-input combinational circuit. Multiplexer
is just one of them. Fig. 4b shows how a multiplexer is
implemented by changing the content of the ME.

The MEs are exposed to the software level to offer full
controls over the functionality of the SWs at runtime. All
signals in gray are originated from the Control Unit. The

In Local

In South

In West

In East

In North

Out Local

Out South

Out West

Out North
Time_Slot*

Flip_Table

U
p

_
S

el_
O

u
t

U
p

_S
el_S

lo
t

U
p

_S
el_

Flip

U
p

_
A

d
d

r

U
p

_D
a

ta

0

0

:

0

0

Out 
Local

1

0

:

1

1

Out 
South

1

0

:

0

1

Out 
West

1

1

:

0

1

Out 
East

1

0

:

0

0

Out 
North

Switch

E
n

[4
:0

]

a)

WrClock*
Up_Sel_Out

Up_Data

Up_Addr[2]
Up_Addr[1]
Up_Addr[0]

RdAddr2(InEast)
RdAddr1(InSouth)
RdAddr0(InLocal)

1

0

1

0

1

0

1

0

Out East

7

6

5

4

3

2

1

0

b)

0

0

1

En

R
e
g

Clock*

Time_Slot*
Flip_Table

Up_Sel_Slot
Up_Sel_Flip

Fig. 4. (a) The 5-input XSwitch. It consists of a set of 5-input memory
elements (MEs). The gray signals are from the Control Unit. The ones with
asterisk are global. (b) Example of how a multiplexer is realized by changing
the content of the ME. The ME is simplified to 3-input for illustration.

update signals (Up Data, Up Addr, etc.) are connected to the
synchronous write port of the MEs to update their content.
The signal Up Sel Out selects which output port to configure.
There are N MEs per output port bit. Each corresponds to one
time slot and is selected based on the global Time Slot signal
during the data communication.

In XNoC, the configuration process does not interfere with
the existing data flow even when it is done at the same time
slot on the same output of the switch. It is possible thanks to
the ping-pong technique in which the number of MEs of the
switch is doubled resulted in two separate sets of MEs. At one
time, the configuration is taken place at one set which is not
in use (selected by the signal Up Sel Flip). When the process
is done, the SW can switch to the newly configured set in one
clock cycle. This flipping process is managed by the Control
Unit via the signal Flip Table. Even though this method is not
novel, XNoC is the first that applies it to the context of NoC.
The incurred overhead is discussed in Section V-A.

C. Flow Control - Feedback

XNoC employs the end-to-end flow control with ready-
to-receive feedback. The feedback from the sink node to the
source node must arrive at the same time slot when the
data is sent. This requirement ensures that no extra buffer
at the NIs or other credit-based flow control is required to
compensate for the design-time-unpredictable feedback arrival
time. As a result, less memory and link resources are needed.
Liu et al. [15] claim that their double orientation time wheel
can assure this requirement. It is not entirely true. In their
approach, the counter used for the feedback signal runs in the
reversed direction of the main counter of data, both starting
at 0. The problem is that the feedback will certainly arrive
at the source node at the time slot when the data is sent,
but with respect to (w.r.t) the reversed counter, not the main
counter. For example, say if a path of length 6 starts at time
1, the time slot sequence of data (w.r.t the main counter) is
1→2→3→0→1→2. The time slot sequences of feedback w.r.t
the reversed and main counter are 2→1→0→3→2→1 and
2→3→0→1→2→3 respectively. The feedback arrives at the
source node when the main counter is 3.

In XNoC, only one counter is needed; the schedule of
the feedback is directly inferred from the data as shown
below. In the equations, startdat/startfb is the slot when the
data/feedback is injected into the network. enddat/endfb is the
slot when the data/feedback reaches the destination.



2 3 0 1 2 3 0 1 2
n/a n/a 10-0A n/a n/a n/a disable n/a n/a

n/a n/a 10-0A n/a n/a n/a disable n/a
00-0A 00-0B 10-0A n/a 00-0C 00-0D disable

00-0A 00-0B 10-0A 11-0A 00-0C 00-0D
00-0A 00-0B 10-0A 110A 00-0C

3 0 1 2 3 0 1 2 3

00-1A 00-1B n/a n/a 00-1C 00-1D 00-1E n/a 00-1F

00-1A 00-1B n/a n/a 001C 00-1D 00-1E n/a

00-1A 00-1B n/a 11-1A 00-1C 00-1D 00-1E

00-1A 00-1B n/a 11-1A 00-1C 00-1D

00-1A 00-1B n/a n/a 00-1C

CLK
Time Slot
NI10 - Out
SW10 – North
SW00 – East
SW01 – East
SW02 – East

CLK

Time Slot

NI00 - Out

SW00 – East

SW01 – East

SW02 – East

3 0 1 2
n/a n/a n/a n/a
n/a n/a n/a n/a
n/a 00-0E 00-0F n/a

disable 11-0B 00-0E 00-0F
00-0D disable 11-0B 00-0E

0 1 2 3

00-2A 00-2B n/a n/a

00-1F 00-2A 00-2B n/a

11-1B 00-1F 00-2A 00-2B

00-1E 11-1B 00-1F 00-2A

00-1D 00-1E n/a 00-1FSW03 – Local

a)

b)

Fig. 5. (a) The deactivation process of PE10→PE13 and (b) the path activation process to add one more slot for PE00→PE03 in Fig. 1. The data flows
belong to PE00→PE03, PE10→PE13 and PE11→PE23 are represented in blue, green and purple texts respectively. The red bars indicate the times when the
Control Unit starts (de-)activating the paths. The texts in red denote the changes to the paths.

enddat ≡ startdat +D (mod N) (1)
endfb ≡ startfb +D (mod N) (2)
endfb = startdat (3)

(2, 3)⇒ startfb ≡ startdat −D (mod N) (4)
(1, 4)⇒ startfb + enddat ≡ 2 ∗ startdat (mod N) (5)

(5) is true for all D:
⇒ slotfb + slotdat ≡ 2 ∗ startdat (mod N)� (6)

Equation 6 indicates that for a particular data flow that
starts at startdat, the time slot of the feedback signal, slotfb
at any intermediate nodes (SWs/NIs) can be calculated based
only on the startdat and the corresponding time slot of data
at that node, slotdat. The feedback signal always arrives at the
startdat time slot at the source node.

There are cases that the feedback signals of two different
paths (start at start1dat and start2dat) that share the same link
at two different time slots (slot1dat and slot2dat) may overlap
with each other. Therefore, the data path scheduling algorithm
needs to perform one simple check as shown in Equation 7 to
make sure that this issue does not happen.

slot1dat − slot2dat 6≡ 2 ∗ (start1dat − start2dat) (mod N) (7)

Proof: Equations 8 and 9 for two paths are derived from Equa-
tion 6. The above issue only occurs when slot1fb = slot2fb.
Subtracting Equation 9 from Equation 8, the condition shown
in Equation 7 is obtained. �

slot1fb + slot1dat ≡ 2 ∗ start1dat (mod N) (8)
slot2fb + slot2dat ≡ 2 ∗ start2dat (mod N) (9)

When the overlapping problem occurs between two paths,
if it is possible to shift the start time slot of any one path in
the odd/even number of slots, we only have to shift at most
two/one times to resolve all the conflicts. Otherwise, the path
finding algorithm needs to find another route. The proof is
not provided because of the space constraints. The effect of
Equation 7 on the number of paths that can be allocated is
explored in Section V-C.

D. (De)-Activating Connection

In this section, the processes of (de-)activating the connec-
tion between PEs are presented for the example in Fig. 1. First,

it is assumed that all necessary changes are loaded into the not-
in-used ping-pong set of MEs of the SWs. After receiving the
commands from the Master Proc to deactivate PE10→PE13
starting at time slot 0 at NI10, the Control Unit waits until
the global Time Slot is 3 (1 slot ahead of the designated slot).
Right after that, it starts the deactivating process along the path
as shown in Fig. 5a. The waveforms for SW03 and SW13
are not shown for simplicity. The red vertical bars indicate
the time at which the Control Unit disables the output of the
NIs/SWs without having to wait for the data to clear off the
NoC. PE00→PE03 and PE11→PE23 are kept intact.

After that, the Master Proc decides whether to activate
the new path for PE10→PE13 or the additional time slot for
PE00→PE03. Suppose it does the latter first. The activating
process is demonstrated in Fig. 5b. Similar to the deactivating
process, the Control Unit only starts when the global Time Slot
is one slot ahead of the desired slot, in this case, 0. What it
does are to (1) flip the signal Flip Table to switch to the new
configuration and (2) activate the NIs/SWs. As shown, the new
slot is assigned to PE00→PE03 while the data is still flowing
between the PEs/SWs and the order of the data is not affected.
Likewise, the new path for PE10→PE13 is activated.

For every time slot of every path, the Control Unit needs
2 clock cycles to decode the first word of the (de)-activating
instructions sent from the Master Proc. It takes 6 clock cycles
to deactivate PE10→PE13 which is its length, D. The Control
Unit waits for at most N clock cycles to begin execution. In
total, the path deactivating process takes N + D + 2 clock
cycles. For the path activation process, on the other hand, the
NI can transfer the data as soon as the Control Unit starts
the process. Hence the delay is N + 2. The feedback path is
activated together with the data path.

Generally, if the number of time slots that is (de)-activated
for a path is T , the number of clock cycles required to fully
deactivate and activate are T ∗ (N + D + 2) and T ∗ (N +
D + 2) − D respectively. However, it still takes only N + 2
clock cycles for the NI to inject data into the network. This
mechanism is better than the previous works because the NI
is not suspended until the whole path is configured.

E. Multi-cast operation

Multi-cast is one-to-many operation in which the same data
is sent simultaneously from one node to a set of nodes. The



InFeedback_East 
(2)

InFeedback_South 
(1)

InFeedback_Local 
(0)

1
1
0
0
0
0
0
0

OutFeedback 
Local

SW00

OutFeedback 
Local

InFeedback_East
InFeedback_South

7
6
5
4
3
2
1
0

InFeedback_East 
(2)

InFeedback_West 
(1)

InFeedback_Local 
(0)

1
0
1
0
0
0
0
0

OutFeedback 
West

SW02

OutFeedback 
West

InFeedback_East
InFeedback_Local

7
6
5
4
3
2
1
0

Fig. 6. The configuration for the feedback signals at SW00 and SW02 for
the example in Fig. 2.

aggregation of the feedback signals from the receiving nodes
in the multi-cast tree is the example of many-to-one. Setting
up the multi-cast tree for TDM CSw NoC is straight forward
as described in [14]. However, the aggregate feedback is not
supported in that work and any other CSw NoC.

In XNoC, since the XSwitch can implement any 5-input
combinational circuit for a particular output, aggregating feed-
back signal becomes trivially doable. In Fig. 2, SW00 performs
the bit-wise AND operation to the feedbacks from SW10
and SW01 before forwarding them to the NI00. This can
be denoted as follows: Out Local = In South ∧ In East.
Similarly, at SW02: Out West = In Local∧ In East. Fig.
6 shows the corresponding data for the MEs at SW00 and
SW02. In other words, the MEs are the truth tables of any
one-output combinational circuit of five inputs. Besides, the
aggregation only performs as intended when the feedbacks
from the receiving nodes arrive at the SWs at the same
time slot. This condition is easily satisfied if the schedule
of the feedbacks follows Equation 6. The time taken by the
aggregated feedback to propagate to the source node equals to
the longest path from the source node to the sink nodes.

IV. DISTRIBUTED CONTROL PLANE

A. Overview

As discussed in Section II-B, the centralized control unit
cannot scale well with large networks. In this section, a
distributed control plane is presented to handle such networks.
Fig. 7 shows our control plane with 4 Sub-Controllers (SubC-
trls). Each SubCtrl manages one sub-region of the network.
The Control Agent forwards the instructions received from
the Master Proc to the respective SubCtrl to reconfigure the
SWs or (de)-activate the paths. The Control Agent is also
responsible for synchronizing the SubCtrls in some specific
operations. In our architectural model, we adopt the centralized
management system [3], [4]. The Master Proc has the knowl-
edge of the current status of the system as well as the privilege
of managing the applications, loading the partial bitstreams to
the PEs and reconfiguring the network. The Master Proc is
not necessarily a single core processor nor a single processor;
it can be a multi-core processor or a set of processors in
the runtime management domain. Therefore, the bottleneck of
generating the configurations for the large system at runtime
is not a big concern.

B. (De)-activate Connection — Inter-SubCtrl Synchronization

In the proposed distributed control plane, the instructions
used to configure the routing tables inside the SWs, en-
abling/disabling their outputs, suspending/resuming the NIs at

Control 
Agent

Master 
Proc

Fig. 7. Example of distributed control plane in a 4x4 NoC with 4 Sub-
Controllers and 1 Control Agent. Each Sub-Controller controls 4 SWs. The
Master Proc sends instructions to the Sub-Controllers via the Control Agent.

a specific time slot are called single configuration. These in-
structions are executed independently at their destined SubCtrl.
In the connection (de)-activation mechanisms in Section III-D,
the SubCtrls must communicate with each other to execute the
instructions at the correct time slot. These connection (de)-
activation instructions are called chain configuration because
they have to be executed in sequence. In Fig. 7, it can be seen
that the SubCtrls are connected together by a small network.
This network is used to synchronize the SubCtrls.

The detailed micro-architecture of the synchronizer inside
each SubCtrl is shown in Fig. 8. A connection between source
SW and destination SW can span multiple SubCtrls. The
SubCtrl where the source SW and destination SW resides are
called head-SubCtrl and tail-SubCtrl respectively. Any SubCtrl
in the middle of the path is called mid-SubCtrl.

The basic idea of the synchronization is that the head-
SubCtrl must wait for all involved SubCtrls to be ready before
(de)-activating the connection. The Ready signal propagates
from the tail-SubCtrl toward the head-SubCtrl. After that, the
head-SubCtrl starts (de)-activating the SWs in its region in the
same way as presented Section III-D. When the head-SubCtrl
reaches the last SW, it triggers the Handover signal to the
succeeding SubCtrl to continue the operation. At this time,
the head-SubCtrl can start processing the next instructions
from its FIFO. The succeeding SubCtrl de-asserts the Ready
signal as soon as it detects the Handover. The same process is
repeated in the subsequent mid-SubCtrls until the tail-SubCtrl.
The directions at which the SubCtrls should read the Ready

‘1’

Ready In South

Ready In West

Ready In East

Ready Out South

Ready Out West

Ready Out East

Ready Out North

Instructions

Chain 
Cfg?

Head? Initiate 
Chain Cfg

Selector 1

Selector 2

Handover In South

Handover In West

Handover In East

Handover In North

Handover Out South

Handover Out West

Handover Out East

Handover Out North

‘0’

Continue 
Chain Cfg!Head?

Finish Chain Cfg?

!Tail?

Chain Cfg Selector 1 Selector 2 Head/Tail
Instruction n - 1

Instruction n

Fig. 8. The synchronizer inside each SubCtrl. It is used to synchronize the
connection (de)-activating processes.



signal from and send the Handover signal to are indicated by
the Master Proc in two fields Selector 1 and 2 in the header
of the chain configuration.

There might be a concern about deadlock when
the SubCtrls are waiting for the Ready signal in a
cycle. It occurs when the path from the source to the
destination contains a cycle in terms of SubCtrl, eg.,
SubCtrl1→SubCtrl2→SubCtrl3→SubCtrl4→SubCtrl1. This
can be avoided by the deadlock avoidance routing algorithms.

The state machine inside each SubCtrl is also designed to
avoid a critical issue when a new chain configuration arrives
at a SubCtrl which has just triggered the Handover signal for
the previous chain configuration. That SubCtrl may be head
and the subsequent SubCtrl in the new chain configuration
may also be the same as the previous one. If the Ready signal
from the succeeding SubCtrl has not been de-asserted yet, that
head-SubCtrl will accidentally start executing the instructions
instead of waiting for other SubCtrls to finish the previous
one. It is because of the latency from the de-multiplexer and
multiplexer. The state machine takes this latency into account,
which is 5 clock cycles, before parsing the next instruction.

C. Activate Connection — Out-of-Order Execution

The synchronization method shown in Section IV-B retains
the predictability as well as the benefits of the (de)-activating
method presented in Section III-D. Some speedup can still
be achieved. However, it cannot exploit the full potential of
the distributed control plane, especially when multiple data
channels are used to feed instructions directly to SubCtrls as
discussed in Section IV-D. Therefore, we propose an out-of-
order execution technique to activate connections. The out-of-
order connection deactivation is not supported in this work
because the activation process is more crucial to the perfor-
mance of the system. We decide to keep the synchronization
method for it and leave this as a future work.

To achieve out-of-order connection activation, each in-
volved SubCtrl must be able to activate its SWs independently
and the data must not be injected into the network during
this time. However, it is impossible for the Master Proc to
know exactly when the operation is finished to issue the enable
instructions to the source NI. Thus, we design a synchronizer
inside the Control Agent (illustrated in Fig. 9) to handle this
issue at the hardware level. Each SubCtrl can independently
activate the SWs that belong to its region without having to
wait for the others. The NI is not enabled at the start of the
chain configuration as before. It will be activated at the head-
SubCtrl after all other SubCtrls finish their operations. With
this method, head-SubCtrl is the only SubCtrl that is blocked.

As can be seen in Fig. 9, there are two types of request
coming from SubCtrls: update Header ID and check Header
ID. These two requests are executed independently by the
Control Agent. The SubCtrls are selected to be served by a
Round Robin selector. Inside each chain configuration header,
there is a field called Header ID. It is to distinguish multiple
chain configurations that are being executed. For all SubCtrls
in a chain configuration, they are assigned the same Header
ID. The status of the chain configuration is stored inside the
true dual-port BRAM indexed by its Header ID.

When any of the mid-and-tail-SubCtrls has already recon-
figured its SWs, it issues the update Header ID to increment
the status value of the Header ID. That SubCtrl waits until its

Hdr_ID

Update_Hdr_ID
ACK

Expeced_Status

Hdr_ID

Check_Hdr_ID

Match

Hdr_ID

Update_Hdr_ID

Expeced_Status

Hdr_ID

Check_Hdr_ID

ACK

Match

S
C_

1
o

o
o

SC
_n

SC
_1

o
o

o
S

C_
n

Round Robin Selector

m
e
m
.

a
r
r
a
y

Port A

Port B

Din

WrE

Ena

Addr

Din

WrE

Ena

Addr

Dout

Dout

Hdr_ID

Update_Hdr_ID

Inc 1

Hdr_ID
Check_Hdr_ID

Expected_Status

Round Robin Selector

SC
_1

oo
o

S
C_

n
S

C_
1

oo
o

S
C_

n

Fig. 9. The synchronizer at the Control Agent to support out-of-order
connection activation.

turn to get the request served, then it is free to process the
next instructions. The chain configuration header for the head-
SubCtrl contains an Expected Status field which is the number
of mid-and-tail-SubCtrls in the chain configuration. The head-
SubCtrl keeps checking the current status of the Header ID
until it matches the Expected Status. Only after that, the status
value in BRAM is cleared, the NI is activated and finally, the
data is injected into the network.

D. Discussion about the Speedup

It is worth noting that the reconfiguration speedup gained
from the distributed control plane depends on how the instruc-
tions are fed to the SubCtrls. If the SubCtrls are not getting
instructions fast enough, the speedup will be very modest. This
problem happens when the Master Proc only uses one data
channel to send instructions to the Control Agent. The Control
Agent, in its turn, decodes the instructions, then forwards
them to the corresponding SubCtrl instruction FIFO. In this
case, the Control Agent becomes the bottleneck of the whole
reconfiguration process.

Additionally, the size of the instruction FIFOs in SubCtrls
also affects the speedup. Consider the case when one of the
FIFOs gets full while its SubCtrl is synchronizing with other
SubCtrls. The Control Agent must wait until there is available
space in that FIFO to push the instruction in before proceeding
to the next one. This is similar to the head-of-line blocking
phenomenon. One solution to this problem is to use virtual
output queues at output ports which is already implemented
implicitly (the instruction FIFOs in SubCtrls). An efficient run-
time scheduling algorithm for the instructions may mitigate the
problem, but it would be quite complicated. Another solution
is to increase the buffer size. The experiments carried out
in Section V-D investigate this solution. Nevertheless, this
requires large FPGA on-chip memory resources.

Therefore, instead of utilizing only one data channel to
send instructions to the SubCtrls, we use multiple data chan-
nels to push instructions directly to the SubCtrls. In our
implementation, these channels are AXI-Stream. This method
can be realized in Master Proc with multiple cores and multi-
threaded runtime manager. Each thread is responsible for
sending the instructions to one SubCtrl. This method may bear
some resemblance to the Wormhole run-time reconfiguration
[19] with the idea of distributed streams of reconfiguration.
However, in [19], each independent reconfiguration stream
is responsible for configuring a set of continuous functional
units. There is no need to synchronize and to make sure that
the reconfiguration process across different streams happen at



1

10

100

1000

C
o

n
v 

SW

X
sw

it
ch

C
o

n
v-

Ex
 S

w

C
o

n
v 

SW

X
sw

it
ch

C
o

n
v-

Ex
 S

w

C
o

n
v 

SW

X
sw

it
ch

C
o

n
v-

Ex
 S

w

C
o

n
v 

SW

X
sw

it
ch

C
o

n
v-

Ex
 S

w

C
o

n
v 

SW

X
sw

it
ch

C
o

n
v-

Ex
 S

w

C
o

n
v 

SW

X
sw

it
ch

C
o

n
v-

Ex
 S

w

1 2 4 8 16 32

O
cc

u
p

ie
d

 S
lic

es
 (

lo
g 

sc
al

e)
 

Data Width (in bit) 

4 Slots 8 Slots 16 Slots 32 Slots

Fig. 10. The resource costs of three SWs with varied numbers of time slots
and data widths. The number of slices is obtained after the Mapping phase.

the correct clock cycles. Therefore, that approach cannot be
applied to the case of XNoC where the most important thing
is to guarantee the timing of the reconfiguration process.

The speedups achieved in each of the above two approaches
are analyzed and compared in Section V-D.

V. EXPERIMENTS

In this section, we present the resource costs of XNoC.
The impact on the path scheduling imposed by the Equation
7 is discussed. All implementation results are obtained from
Xilinx ISE 14.7 with default settings and the target device is
Xilinx Virtex-6 XC6VLX240T (unless stated otherwise).

A. Resource Cost - XSwitch

XSwitch is a better alternative to the conventional 5-input
multiplexer-based SWs (Conv SW). Any 5-input combinational
circuit can be implemented in the XSwitch to perform the
reduction operations without any extra resource. Besides, every
output bit of the XSwitch can be configured independently. For
example, the first bit of the North output port selects the input
from the West port while the second bit selects the input from
the South port. Therefore, to have a fair comparison of the
XSwitch with the Conv SW, we implement the Conv-Ex SW.
It is the extension of the Conv SWs with the same features
as the XSwitch. Fig. 10 shows the resource consumptions of
these SWs. As expected, the XSwitch takes more resources
than the Conv SW. Nevertheless, on the average, the resource
requirement of the XSwitch is 3.5 times lower than the
Conv-Ex SW. However, we only implement 5 configurable
combinational circuits for the Conv-Ex SW which are AND,
NAND, OR, NOR and XOR. The cost of the XSwitch is
expected to be much better than the Conv-Ex SW when more
combinational circuits are integrated into the Conv-Ex SW.

It is worth noting that in the Conv SWs, the structure of
the multiplexer is fixed, the selector is configurable by using a
3-bit wide memory. This memory consumes only 2 slices for
up to 64-word depth. Thus, the resource cost of the Conv SWs
varies insignificantly when the ping-pong technique is utilized
(Section III-B). In contrast, in the XSwitch, the multiplexer is
just one of the combinational functions realized by the MEs. If
the ping-pong technique is used, the resources will be doubled.
Therefore, in this current implementation, we decide to utilize
the hybrid approach to inherit all the benefits of both SWs, i.e,
the Conv SW is used for the data path (to save the resource)

TABLE I. XNOC RESOURCE COST

XNoC Other works

2x2, 8-Slot, 39-bit link, area optimization

3073 (488) Slices, 4057ps [14] 3098 Slices, 8190ps
[13] 5500 Slices, 8379ps

2x2, 8-Slot, 39-bit link, timing optimization

3639 (581) Slices, 3985ps [14] 3655 Slices, 4968ps
[13] 5393 Slices, 4986ps

2x2, 32-Slot, 39-bit link, area optimization
3470 (697) Slices, 4753ps [14] 3483 Slices, 8840ps

2x2, 32-Slot, 39-bit link, timing optimization
4313 (777) Slices, 3988ps [14] 4425 Slices, 4850ps
4x4, 16-Slot, 54-bit link 4x4, 3 18-bit lanes, 5-slot
68454 ALUTs, 292MHz [16] 70815 ALUTs, 90MHz
4x4, 16-Slot, 90-bit link 4x4, 5 18-bit lanes, 3-slot
71698 ALUTs, 296MHz [16] 90141 ALUTs, 102MHz

and the XSwitch is used for the feedback path (to support the
reduction operations).

B. Resource Cost - XNoC

Since different NoCs have different features and architec-
tures, it is difficult to compare them directly. Additionally,
some works only report the ASIC implementation results.
Therefore, we only compare our work against the ones which
are similar to ours and are implemented on FPGA. Table I
shows the place and route results of XNoC in comparison with
dAElite [14] and aelite [13] with the same configurations. The
synthesis results of XNoC on the Altera Stratix III EP3SL340F
(using Quartus II 11.0sp1) are also presented to compare with
[16]. The major difference between our current implementation
and the closest NoC, dAElite, is the NI. Currently, we employ
the AXI-Stream interface for NI. The mapping from different
addresses to specific time slots is not yet supported. However,
we did project the expected resources of XNoC with full-
featured NIs based on the resource break-down information
provided in [14]. In Table I, the numbers in parentheses are
the slice resources of XNoC without the full-featured NIs.

As seen, XNoC requires less resources than dAElite while
offering more features. The minimum clock period of XNoC
is also better, which is up to 50% better than dAElite. In
TDM CSw NoCs, the throughput of a connection is always
guaranteed once it is set up. It only depends on the number
of assigned time slots and the clock speed of the NoC.
Therefore, 50% improvement in clock speed can be translated
to 50% faster throughput. It is worth noting that XNoC’s
timing performance should not be affected by the full-featured
NIs once implemented. It is because there are always buffers
between NIs and SWes inside NoC to store the packets. These
buffers set apart the path from NI to SW and SW to NoC.
As a result, the NI would be able to operate at a frequency
different from the NoC.

Additionally, the aeltie consumes much more resources
than XNoC. The reason is that it requires a translator at each NI
to decode/encode the configuration data on the regular network
channels to update its path tables. In XNoC, the paths are
embedded inside the MEs of the XSwitch and they are updated
directly by the Control Unit or SubCtrls.

The resource cost of XNoC is slightly lower than [16] in
the 3-lane-5-slot configuration and much lower in the 5-lane-3-
slot configuration. In both cases, the reported Fmax for XNoC



270

271

272

273

274

275

276

277

0
1000
2000
3000
4000
5000
6000
7000
8000

2x2 2x3 3x3 3x4 4x4 4x5 5x5 5x6 6x6

M
ax

. F
re

q
. (

M
H

z)
 

R
e

q
u

ir
e

d
 S

lic
e

s 

Network Size 
4 Slots 8 Slots 16 Slots 32 Slots
Freq - 4 Slots Freq - 8 Slots Freq - 16 Slots Freq - 32 Slots
Linear (4 Slots) Linear (8 Slots) Linear (16 Slots) Linear (32 Slots)

Fig. 11. The synthesis results of XNoC with different configurations.

0

2000

4000

6000

8000

10000

12000

14000

16000

0

5

10

15

20

25

2x2 3x3 4x4 5x5 6x6 7x7 8x8

N
u

m
b

er
 o

f 
Li

n
ks

 

C
o

n
tr

o
l v

s.
 D

at
a 

Li
n

ks
 (

%
) 

Network Size 
32-bit, 8-Slot 32-bit, 32-Slot 64-bit, 8-Slot 64-bit, 32-Slot

Avg Data Link (32) Avg Ctrl Link (32) Avg Data Link (64) Avg Ctrl Link (64)

Fig. 12. The ratio between the number of control and data links in various
network sizes, data widths and numbers of time slots. The average number of
data links and control links are also reported.

is almost 3 times better than [16] thanks to the simple XSwitch
architecture and the update mechanism.

The synthesis results of XNoC in different sizes and num-
ber of time slots are presented in Fig. 11. In these experiments,
the data width is 32-bit and the feedback signal is 1-bit wide.
The synthesis process is configured to optimize the area. As
shown, the resource cost increases almost linearly with its size.
The average cost incurred by doubling the number of time
slots from 4 to 8, 8 to 16 and 16 to 32 are 9%, 18% and
28%, respectively. Besides, the size of the XNoC has a little
effect on the maximum achievable frequency. It only drops
1.5% when the number of nodes is more than 16.

Fig. 12 shows the ratios between the total number of
the control links managed by the control plane and the total
number of data links inside the Data Plane. It can be seen that
the ratio decreases from 22% to 13% (for the data width of
32-bit) as the network size increases. Furthermore, the ratio is
reduced by half when the data width is doubled. It is expected
because the number of control links per node is relatively
smaller than the data links and it is independent of the data
width as illustrated by the black lines in Fig. 12.

The overhead of the distributed control plane is negligible
in large network because of the following reasons. First, the
state machine used to process instructions inside each SubCtrl
is similar to the Control Unit. It takes 28 slices. Second, each
multiplexer, de-multiplexer and AND gate in Fig. 8 occupies
at most 1 slice since the Ready and Handover signals are only
1 bit each. Third, in Fig. 9, the size of the Header ID used
in our experiments is 8 bits. This is large enough to avoid
the roll-over effect where two headers have the same ID. The
Expected Status signal is 4 bits because we support at most 16
SubCtrls. The size of memory used to store the header status
is therefore 256x4 bits. This memory can be implemented with
only 1 Xilinx Virtex 6 true dual-port 18Kb BRAM. Finally, the
number of wires used to connect 4 SubCtrls together as shown

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

Fa
ilu

re
 R

at
e

 

NoC Size 
Util. 0.1 Util. 0.2 Util. 0.3 Util. 0.4 Util. 0.5

Fig. 13. The failure rate in allocating paths with feedback with varying
network utilization. The number of time slots is 32.

0

0.1

0.2

0.3

0.4

Fa
ilu

re
 R

at
e

 

NoC Size 
4 Slots 8 Slots 16 Slots 32 Slots

Fig. 14. The failure rate in allocating paths with feedback when the number
of time slots is varied. The network utilization is 0.5.

in Fig. 7 is 16. We need 10x4 wires for the update signals from
SubCtrls to Control Agent. Similarly, 14x4 wires are required
for the check signals. Adding all of the above resource costs,
the incurred overhead of 2x2 distributed control plane is less
than 0.5% of Xilinx Virtex 6 resources. Specifically, for the
6x6 XNoC reported in Fig. 11, the overhead of distributed
control plane is just 2% and it is inversely proportional to
the size of the network. More importantly, the configuration
speedup can be up to 3X as shown later in Section V-D.

C. Path Scheduling with Feedback

In this section, we evaluate the impact of the condition
presented in Equation 7 on the path scheduling. We develop
a TDM path scheduling tool which utilizes the classic XY
routing algorithm. The time slot allocations for the paths
are selected randomly following the uniform distribution until
the required number of slots is satisfied. We create a set of
requests in which the source nodes, destination nodes and
the required number of time slots are generated randomly in
uniform distribution. The path scheduling algorithm tries to
serve as many requests as possible until the total bandwidth
occupation of the whole NoC reaches a predefined value. The
bandwidth utilization of the network is the ratio of the total
bandwidth reserved for all paths against the total bandwidth
offered by the network. At this stage, the feedback scheduling
is ignored. After that, all paths that are successfully allocated
are used to create the requests (in the same order) for the new
empty network. At this time, Equation 7 is taken into account.
The number of requests that the algorithm cannot satisfy is
used to calculate the failure rate. Every experiment is repeated
1000 times and the reported results are the average of them.

Fig. 13 and Fig. 14 present the failure rates across differ-
ent network sizes, network utilizations and numbers of time
slots. As expected, the failure rate increases with the network
utilization as shown in Fig. 13 because the network becomes
denser with less alternative choices. In Fig. 14, the failure
rate for the same network with larger number of time slots



0

1

2

3

4

5

6

Min. 256 512 Min. 256 512 Min. 256 512

8x8 XNoC 16x16 XNoC 32x32 XNoC

Sp
e

e
d

u
p

 

1x2 - No OOO 2x2 - No OOO 2x4 - No OOO 4x4 - No OOO

1x2 - OOO 2x2 - OOO 2x4 - OOO 4x4 - OOO

Fig. 15. The speedups gained from distributed control plane in different net-
work sizes, instruction buffer sizes and number of SubCtrls. The instructions
are distributed to SubCtrls by Control Agent.

is lower because of the observation we mentioned in Section
III-C that we can shift the candidate time slots, if possible,
to resolve the conflicts. In both experiments, the failure rate
in bigger network is higher. The reason is that with the same
number of time slots and network utilization, the number of
paths allocated in bigger network is higher which causes more
conflicts on path scheduling.

In these experiments, we use the XY routing algorithm for
the paths with and without feedback, which can be a factor in
causing the high failure rate. In future work, we need to design
a better algorithm for this problem, in which the path length
may be increased to find the suitable time slots. The Equation 7
would be analyzed further to have a smarter way in allocating
time slots for the path rather than doing that randomly.

D. Distributed Control Plane

In this section, the performance of the XNoC with dis-
tributed control plane is compared against the XNoC with
centralized approach. The performance is characterized in
terms of speedup in different network settings. In Section IV-D,
we mentioned about the head-of-line blocking phenomenon
that hinders the performance of the distributed control plane.
There are two solutions to alleviate this problem: (1) increase
the instruction buffer size at SubCtrls; (2) use multiple data
channels from Master Proc to write instructions directly to
SubCtrls. We test these two approaches with different network
sizes 8x8, 16x16 and 32x32. The number of network time slots
in all three setups is 32. The size of the distributed control
plane also varies from 1x2, 2x2, 2x4 to 4x4. Additionally,
we have three settings for the size of the SubCtrls instruction
buffers: minimum number of words, 256 and 512 words. The
width of instructions is 32 bits. The minimum number of words
required for each instruction FIFO equals to the maximum
possible length of the path in the region. For example, in 32x32
network with 4x4 control plane, each SubCtrl manages a region
of 8x8. The maximum path length given by the XY routing
algorithm in that region is 16 hence the size of the instruction
FIFO. The size of the instruction FIFO in the centralized
approach is computed similarly.

We have implemented a SystemC cycle-accurate model
to simulate the operation of the control plane in XNoC. All
connection (de)-activation (for both data and feedback) and
the corresponding SW reconfiguration requests are generated
based on the uniformly randomly chosen source and destina-
tion nodes. The SW reconfiguration request is not generated for

0

1

2

3

4

5

6

Min. 256 512 Min. 256 512 Min. 256 512

8x8 XNoC 16x16 XNoC 32x32 XNoC

Sp
e

e
d

u
p

 

1x2 - No OOO 2x2 - No OOO 2x4 - No OOO 4x4 - No OOO
1x2 - OOO 2x2 - OOO 2x4 - OOO 4x4 - OOO

Fig. 16. The speedups gained from distributed control plane in different net-
work sizes, instruction buffer sizes and number of SubCtrls. The instructions
are written directly to SubCtrls by Master Proc.

connection deactivation. The XY routing algorithm is used to
find the path. The maximum number of time slots requested by
each connection is 8. Each node can request multiple connec-
tions. All instructions are created at the start of simulation. The
configuration instruction is sent to the network in every clock
cycle. The speedup is calculated based on the time needed
by the network with and without distributed control plane to
process all instructions. There are 1000 connection requests in
each experiment. The experiments are run multiple times with
different random seeds. The result reported is the average.

Fig. 15 and Fig. 16 show the speedup results of the
network with two different methods of how instructions are
fed to SubCtrls. The performance gained by using the out-
of-order (OOO) technique presented in Section IV-C is also
included in the graphs. It can be seen that the speedup
increases with the size of the distributed control plane and
the size of the instruction buffer. However, with the minimum
instruction buffer size, the average speedup gained by doubling
the number of SubCtrls in Fig. 15 is just 26% (28%) with
(without) OOO. These numbers are 38% and 50% respectively
in Fig. 16. This clearly shows the strong benefits of utilizing
multiple data channel for instructions and the OOO technique.
In all setups, the OOO technique improves the speedup from
4−9% for centralized control unit and 8−38% for distributed
approach with minimum instruction buffer size.

Besides, for the head-of-line phenomenon, the results given
in Fig. 15 show that it can be mitigated by increasing the
instruction buffer size at SubCtrl. However, allocating that
large amount of buffer to each SubCtrl is costly. Therefore,
we suggest the second solution where multiple data channels
are used to push instructions directly to SubCtrls. This method
approximately offers the similar speedup compared with the
large buffer size solution even with the minimum buffer size
as reported in Fig. 16. The resource cost of this method is small
because for each data channel, we only need one simple state
machine to write data from the AXI-Stream slave interface to
the instruction FIFO.

In large networks, many applications can be executed at the
same time. Each application requires a set of PEs. The commu-
nication aware runtime mapping algorithm tends to allocate the
PEs which are close to each other to each application to reduce
the communication latency. It is very rare that the PEs from
different corners of the network directly communicate with
each other. This is one of the motivations for our distributed
control plane where each SubCtrl manages its own region



0

1

2

3

4

5

6

7

8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Sp
e

e
d

u
p

 

Locality 

1x2 - No OOO 2x2 - No OOO 2x4 - No OOO 4x4 - No OOO

1x2 - OOO 2x2 - OOO 2x4 - OOO 4x4 - OOO

Fig. 17. The speedup achieved from 32x32 XNoC with default settings and
varying locality values.

independently. Therefore, to further evaluate the performance
of the distributed approach, we introduce the locality metric. It
is used to model the behavior of the connection (de)-activation
requests at runtime instead of fully randomizing them. The
larger the locality, the higher the chance the connections are
not crossing multiple regions. When the number of SubCtrls
increases, the number of PEs in each physical region reduces.
It becomes harder for the communication aware runtime ap-
plication mapping algorithm to find a feasible mapping if it is
only restricted to the available PEs in one region. Thus, we also
define communication regions. These regions are superimposed
over the physical ones as follows: 1x2 for 1x2 SubCtrls, 1x2 for
2x2 SubCtrls, 2x2 for 2x4 SubCtrls, and 2x2 for 4x4 SubCtrls.

Fig. 17 presents the speedup achieved from the 32x32
XNoC with different number of SubCtrls and minimum in-
struction buffer size. The instructions are written directly
to SubCtrls by Master Proc. These are the default settings
for XNoC. As expected, the speedup rises with the locality,
especially from 60% to 100% range. The highest speedup is
7.6X. In the locality range of 0 − 60%, the speedup stays
mostly the same for all network settings. The reason is that
there is a large number of connections that cross multiple
communication regions. They involve more SubCtrls to (de)-
activate the connections. Therefore, at some point, they have
to synchronize with each other. The synchronization lowers
the freedom of each SubCtrl and hence the speedup.

The average number of clock cycles required to activate
connections in a 32x32 XNoC with default settings is reported
in Fig. 18. The results are calculated by dividing the time
needed to activate a connection by its length and the requested
number of time slots. The SWs reconfiguration time is not
included because they can be hidden by the on-going data
communication in the network. In this experiment, the average
and maximum requested number of time slots is 8 and 16
respectively. The lengths of connections range from 10 to 26.
This experiment is carried out based on the scenario where
there are back-to-back connection activation requests generated
by the Master Proc. In this case, the parallelism of distributed
control plane is well exploited.

The average latency obtained from Fig. 18 (2x2 SubCtrls,
OOO activation, locality of 50%) for XNoC with distributed
control plane (XNoC - D.) and the worst-case latency for XNoC
with centralized control unit (XNoC - C.) presented in Section
III-D are used to compare with the results reported in [14] and
[15]. One advantage of dAElite [14] is that it can configure
all time slots at once with the trade-off of excessive usage of
multiple distributed RAMs. However, in practice, it is unusual
for one PE to require full bandwidth offered by the network

0

0.5

1

1.5

2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%N
u

m
. C

lk
/h

o
p

/t
im

e
 s

lo
t 

Locality 

1x2 - No OOO 2x2 - No OOO 2x4 - No OOO 4x4 - No OOO

1x2 - OOO 2x2 - OOO 2x4 - OOO 4x4 - OOO

Fig. 18. The average number of clock cycles per hop per requested time
slot taken to activate connections.

just to communicate with another PE. Therefore, to have a fair
comparison with our XNoC and [15] which activate 1 slot at
a time, we set the total time slots of the network to 8. Each
connection requests 8 time slots. The number of hops is from
6 to 12. The results are given in Table II. The numbers in
parentheses indicate the worst case latency in which the data
can be injected into the network. For XNoC - D. and [15],
the path is ready to receive the first data after the first slot is
activated plus the worst case turnaround time of 8 cycles. For
XNoC - C., this latency only depends on the total time slots
of the network which is 8 + 2. It can be seen from Table II
that XNoC - D. outperforms all the other works.

TABLE II. CONNECTION ACTIVATION LATENCY

Works 6 Hops 8 Hops 10 Hops 12 Hops

dAElite [14] 81 (89) 94 (103) 119 (127) 133 (141)
Pr. Probe [15] 208 (34) 240 (38) 272 (42) 304 (46)
XNoC - C. 136 (10) 152 (10) 168 (10) 184 (10)
XNoC - D. 37 (13) 49 (14) 62 (16) 74 (17)

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, a non-intrusive TDM CSw NoC, XNoC, is
presented. The resource cost of our XNoC is shown to be
smaller than the most known comparable NoC while offering
more features. XNoC non-intrusive configuration process does
not interfere with the data communication at all. The time
needed to switch to the new configuration is strictly bounded
by the length of the path and the number of time slots. XNoC
is also the first NoC that supports many-to-one feedback for
multi-cast service. The scheduling of the feedback signal is
directly inferred from the data path. The distributed control
plane is also proposed with low resource overhead and superior
performance over the centralized approach and other works.

The forthcoming works are to design a better routing
algorithm for the path-with-feedback and to explore the per-
formance of XNoC in real-life SoC with multiple applications
using partially reconfigurable PEs.

VII. ACKNOWLEDGMENTS

This work is supported in part by the German Research
Foundation (DFG) within the Cluster of Excellence “Center
for Advancing Electronics Dresden” (cfaed) at the Technische
Universität Dresden.



REFERENCES

[1] A. Agarwal, C. Iskander, and R. Shankar, “Survey of network on chip
(noc) architectures & contributions,” Journal of engineering, Computing
and Architecture, vol. 3, no. 1, pp. 21–27, 2009.

[2] S. Hesham, J. Rettkowski, D. Göhringer, and M. A. A. El Ghany,
“Survey on Real-Time Network-on-Chip Architectures,” in Applied
Reconfigurable Computing. Springer, 2015, pp. 191–202.

[3] A. Agne, M. Happe, A. Keller, E. Lubbers, B. Plattner, M. Platzner, and
C. Plessl, “ReconOS: An operating system approach for reconfigurable
computing,” Micro, IEEE, vol. 34, no. 1, pp. 60–71, 2014.

[4] T. D. Nguyen and A. Kumar, “PR-HMPSoC: A versatile partially recon-
figurable heterogeneous Multiprocessor System-on-Chip for dynamic
FPGA-based embedded systems,” in Field Programmable Logic and
Applications (FPL), 2014 24th International Conference on. IEEE,
2014, pp. 1–6.

[5] K. Goossens and A. Hansson, “The aethereal network on chip after
ten years: Goals, evolution, lessons, and future,” in Design Automation
Conference (DAC), 2010 47th ACM/IEEE. IEEE, 2010, pp. 306–311.

[6] S. Liu, A. Jantsch, and Z. Lu, “Analysis and evaluation of circuit
switched NoC and packet switched NoC,” in Digital System Design
(DSD), 2013 Euromicro Conference on. IEEE, 2013, pp. 21–28.

[7] N. D. E. Jerger, L.-S. Peh, and M. H. Lipasti, “Circuit-switched
coherence,” in Proceedings of the second ACM/IEEE international
symposium on networks-on-chip. IEEE Computer Society, 2008, pp.
193–202.

[8] J. Yin, P. Zhou, S. S. Sapatnekar, and A. Zhai, “Energy-efficient time-
division multiplexed hybrid-switched noc for heterogeneous multicore
systems,” in Parallel and Distributed Processing Symposium, 2014
IEEE 28th International. IEEE, 2014, pp. 293–303.

[9] A. Leroy, P. Marchal, A. Shickova, F. Catthoor, F. Robert, and D. Verk-
est, “Spatial division multiplexing: a novel approach for guaranteed
throughput on NoCs,” in Proceedings of the 3rd IEEE/ACM/IFIP
international conference on Hardware/software codesign and system
synthesis. ACM, 2005, pp. 81–86.

[10] Z. J. Yang, A. Kumar, and Y. Ha, “An area-efficient dynamically
reconfigurable spatial division multiplexing network-on-chip with static
throughput guarantee,” in Field-Programmable Technology (FPT), 2010
International Conference on. IEEE, 2010, pp. 389–392.

[11] S. Liu, A. Jantsch, and Z. Lu, “MultiCS: Circuit Switched NoC
with Multiple Sub-Networks and Sub-Channels,” Journal of Systems
Architecture, 2015.

[12] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal network on
chip: concepts, architectures, and implementations,” Design & Test of
Computers, IEEE, vol. 22, no. 5, pp. 414–421, 2005.

[13] A. Hansson, M. Subburaman, and K. Goossens, “aelite: A flit-
synchronous network on chip with composable and predictable ser-
vices,” in Proceedings of the Conference on Design, Automation and
Test in Europe. European Design and Automation Association, 2009,
pp. 250–255.

[14] R. A. Stefan, A. Molnos, and K. Goossens, “daelite: A tdm noc
supporting qos, multicast, and fast connection set-up,” Computers, IEEE
Transactions on, vol. 63, no. 3, pp. 583–594, 2014.

[15] S. Liu, A. Jantsch, and Z. Lu, “Parallel probe based dynamic connection
setup in TDM NoCs,” in Proceedings of the conference on Design,
Automation & Test in Europe. European Design and Automation
Association, 2014, p. 239.

[16] A. K. Lusala and J.-D. Legat, “A SDM-TDM-Based Circuit-Switched
Router for On-Chip Networks,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 5, no. 3, p. 15, 2012.

[17] J. Sparso, E. Kasapaki, and M. Schoeberl, “An Area-efficient Network
Interface for a TDM-based Network-on-Chip,” Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 1044–1047, 2013.

[18] T. Krishna and L.-S. Peh, “Single-cycle collective communication over

a shared network fabric,” in Networks-on-Chip (NoCS), 2014 Eighth
IEEE/ACM International Symposium on. IEEE, 2014, pp. 1–8.

[19] R. Bittner and P. Athanas, “Wormhole run-time reconfiguration,” Pro-
ceedings of the 1997 ACM Fifth International Symposium on Field
Programmable Gate Arrays, pp. 79–85, 1997.


	Introduction
	Related Work and Motivation
	Related Work
	Motivation

	XNoC
	Overview
	XSwitch
	Flow Control - Feedback
	(De)-Activating Connection
	Multi-cast operation

	Distributed Control Plane
	Overview
	(De)-activate Connection — Inter-SubCtrl Synchronization
	Activate Connection — Out-of-Order Execution
	Discussion about the Speedup

	Experiments
	Resource Cost - XSwitch
	Resource Cost - XNoC
	Path Scheduling with Feedback
	Distributed Control Plane

	Conclusions and Future Works
	Acknowledgments
	References

