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ABSTRACT

How nonlinear systems dynamically respond to external perturbations essentially determines their function. Weak perturbations induce
response dynamics near a stable operating point, often approximately characterized by linear response theory. However, stronger driving
signals may induce genuinely nonlinear responses, including tipping transitions to qualitatively different dynamical states. Here, we analyze
how inter-unit coupling impacts responses to periodic perturbations. We find that already in minimal systems of two identical and linearly
coupled units, coupling impacts the dynamical responses in a distinct way. Any non-zero coupling strength extends the regime of non-
tipping local responses relative to uncoupled units. Intriguingly, finite coupling may be more effective than infinitely strong coupling in
keeping responses from tipping. Interestingly, already weak coupling may create novel response modes in strongly driven systems, implying
the existence of multiple tipping points instead of only one. These results persist for systems of non-identical units, systems with nonlinear
coupling, and larger networks of coupled units.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0223294

External perturbations continuously impinge on natural and
engineered systems and may severely impact their functional-
ity. How do complex nonlinear dynamical systems respond to
time-dependent external fluctuations? Intriguingly, even weak
coupling may enable novel localized response modes in strongly
driven systems. However, for smaller, intermediate perturbation
strengths, system responses may diverge. Overall, as the pertur-
bation strength increases, the same system may undergo multiple
tipping points, transitioning from localized to divergent, back to
localized, and again to divergent responses. The observed phe-
nomena robustly emerge across a broad range of system types,
including systems of non-identical units, for nonlinear coupling,
and in larger networks of units.

I. BACKGROUND

The collective nonlinear dynamics and reliable function of
complex networked systems fundamentally underlie our daily lives,

affecting systems as diverse as biological cells,1 electric power
grids,2–4 and ecosystems.5–7 Most natural and human-made com-
plex systems are externally perturbed by driving signals that induce
linear or nonlinear dynamical responses, including tipping, that
disrupt the systems’ intended or desired function.8–12 While state-of-
the-art theoretical concepts and method development have focused
on linear responses suitable for weak driving signals,8,13,14 it is far
less understood how to characterize, predict, and design complex
systems responding to strong perturbations.15–18

Here, we address the question of how coupling and fluctuat-
ing driving signals jointly impact nonlinear system responses. To
obtain generic insights, we start by analyzing a minimal model of
two identical units in which one periodically driven unit is linearly
coupled to a second, unperturbed unit. We later illustrate how the
results generalize to systems of non-identical units, larger networks,
and nonlinear coupling.

In uncoupled systems, the driven unit exhibits periodic
responses if driving signals are weak and undergoes tipping to
diverging responses if the amplitude of the driving signals becomes
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larger than a critical value. In the limit of infinitely strong coupling,
both units respond identically and act like a single uncoupled unit
subject to a perturbation signal of reduced strength. In contrast,
intermediate coupling induces more intricate nonlinear response
dynamics. In particular, non-diverging responses emerge beyond
the critical perturbation strengths observed in both limiting cases.
For strongly perturbed, weakly coupled systems, these responses
constitute hybrid solutions where the driven variable experiences
large excursions while the other stays closely localized in the vicin-
ity of its stable operating point. Intriguingly, these systems exhibit
multiple tipping points, where localized (non-diverging) system
responses cease to exist, reemerge, and disappear again as the driving
amplitude increases.

II. DRIVEN NONLINEAR COUPLED SYSTEMS

Consider a class of driven, networked dynamical systems of N
units of the form

ẋi = fi(xi) +

N
∑

j=1

hij(xi, xj) + ε gi(t) (1)

for i ∈ {1, . . . , N}. Here, the functions fi : R → R define the free
(uncoupled) dynamics of the i-th unit. The functions hij : R

2 → R

for i 6= j and hii = 0 describe the pairwise interactions of unit j
affecting unit i. The last term denotes the deterministic external
driving signal gi(t) acting on unit i as a function of time t with a
perturbation strength ε. In this work, we focus on periodic, single-
frequency driving signals gi(t) = δi,k cos(ωt), where k is the index of
the driven variable and δi,k is the Kronecker delta. Without loss of
generality we take k = 1 throughout.

For isolated driven units, recent research has uncovered gen-
uinely nonlinear features of the dynamic response to deterministic
periodic perturbations.15 In contrast to the prediction of linear
response theory, which suggests an oscillatory response around the
original operating point for zero average driving, asymmetries in the
internal dynamics cause a shift of the average response. This offset
1x̄ ∼ ε2 is an intrinsically nonlinear effect [see also Eqs. (4a) and
(4b) and Fig. 2(a)] and emerges already for arbitrarily small driving
forces ε. Recent work also presented a method to estimate the critical
amplitude above which responses no longer stay local but diverge.15

How does coupling among several units affect such nonlinear
responses? To isolate the impact of coupling from the topology of
the interaction network, we start by analyzing a minimal model of
N = 2 identical units with linear coupling, where one unit is subject
to deterministic driving [Fig. 1(a)]. Equation (1) becomes

ẋ = f(x) + β(y − x) + ε cos(ωt) (2a)

ẏ = f(y) + β(x − y), (2b)

where we simplified notation to x = x1 and y = x2. The two param-
eters β and ε denote the coupling strength and the perturbation
strength, respectively. Rescaling time, we set ω = π without loss of
generality and consider free dynamics defined by

f(x) =

{

α − cos(x) for |x| < π

1 + α else,
(3)

FIG. 1. Multiple tipping points separate localized and diverging response dynam-
ics. (a) Scheme illustrating the system of two coupled units [Eqs. (2a) and (2b)]. (b)
Function f(x) [Eq. (3)] that determines free (uncoupled, unperturbed) dynamics.
(c)–(f) Dynamic responses x(t) of the driven unit (red) and y(t) of the unperturbed
second unit (blue) for different perturbation strengths ε. (c) and (d) For sufficiently
weak perturbations, both x(t) and y(t) oscillate approximately around the fixed
point of the unperturbed system and the response amplitude increases with the
perturbation strength. (e) Once ε has passed a critical value, the response dynam-
ics becomes unstable and both units continually drift towards higher values. (f)
For even stronger perturbations, stationary response dynamics reemerges. The
driven variable x(t) oscillates with a large offset and an average response far
outside the basin of attraction of the stable operating point of the unperturbed sys-
tem while the second variable y(t) oscillates within the basin of attraction. Model
Parameters: Eqs. (2a) and (2b), with asymmetry parameter α = 0.1, coupling
strength β = 0.075, initial conditions x(0) = y(0) = x∗

s .

with α > 0 set to α = 0.1 if not specified otherwise [Fig. 1(b)]. The
free dynamics exhibit one stable operating point at x∗

s = − arccos α

which we take as initial condition in all simulations. An unstable
fixed point at x∗

u = arccos α and f(x) > 0 for sufficiently large |x|
ensures that the system exhibits diverging responses, x(t) → ∞ for
t → ∞, for strong perturbations. A more detailed overview of the
fixed points of the coupled system is provided in the Appendix and
illustrated in Fig. 5.

This simplified model setting ensures that the observed non-
linear responses are only affected by the coupling between the units,
not by heterogeneities among the units, nonlinearities in the cou-
pling, stochasticity of the driving signal, the topology of the coupling
among units, or some collective response mode potentially arising
in systems with many units. In particular, we also avoid system-
intrinsic dynamical phenomena such as a finite-time blowup as
arising, e.g., for free dynamics of normal form14 f(x) = x2 − α. As we
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FIG. 2. Weak coupling induces localized average responses to strong pertur-
bations. (a) Nonlinear offsets 1x̄ and 1ȳ for uncoupled units, β = 0. Only
the driven unit’s variable x responds to the perturbation, with an offset 1x̄(ε)
that increases nonlinearly with the perturbation strength ε until the response

diverges for ε > ε
(0)
crit (dashed vertical line). (b) In the limit of strong coupling,

β → ∞, both units x and y react identically to the perturbation, like a one-di-
mensional system affected by a perturbation of strength ε/2 [Eq. (7)], with a

critical coupling strength ε
(∞)

crit = 2ε
(0)
crit (dashed vertical line, compare gray lines

for the uncoupled dynamics). (c) Nonlinear offset 1x̄ of the driven unit color
coded (shades of red), as a function of the coupling strength β and the pertur-
bation strength ε. White denotes diverging responses without a finite offset 1x̄.
For small positive coupling strengths β , responses also exist beyond the limit-
ing critical coupling strengths (dashed horizontal lines), up to ε ≈ 112 (see the
inset). For small coupling strengths β , multiple transitions exist between localized
and divergent responses as the perturbations get stronger (compare panel d).
(d) and (e) Nonlinear offsets 1x̄ and 1ȳ for coupling strengths β = 0.075 and
β = 0.2, respectively [compare gray vertical lines in panel (c)]. For both coupling
strengths, localized average responses exist beyond the limiting critical perturba-

tion strengths ε
(0)
crit and ε

(∞)

crit . However, for weak coupling, the response diverges at
intermediate perturbation strengths [gap of both lines in panel (c)]. Model param-
eters as in Fig. 1, Eqs. (2a) and (2b), α = 0.1, driving frequency ω = π , and
initial conditions x(0) = y(0) = x∗

s .

report below, the core phenomena persist also for other choices of
the intrinsic dynamics of the units, for nonlinearly coupled units,
for systems of non-identical units, and for larger networks of units.

III. NONLINEAR RESPONSES OF COUPLED UNITS

Trajectories from direct numerical integration for small cou-
pling strength β provide an overview of possible response dynamics
as the perturbation amplitude increases [Figs. 1(c)–1(f)]. Both units
oscillate in response to the periodic driving, with the directly driven
unit responding more strongly. For weak coupling, both units oscil-
late approximately around the stable operating point of their intrin-
sic dynamics. As the perturbation strength ε increases, the response
amplitude increases until, beyond a critical perturbation strength

ε
(β)

crit , the response becomes unstable and diverges. This form of tip-
ping upon increasing the driving amplitude resembles the response
dynamics recently explained and quantitatively estimated for one-
dimensional systems.15 Intriguingly, for even larger perturbation
strengths, a stationary (non-diverging) response reemerges with
hybrid dynamics of both units [Fig. 1(f)]. The driven variable x(t)
oscillates with a large amplitude around an average value far away
from its original stable operating point and outside of its basin of
attraction, while the second variable y(t) oscillates only weakly with
a slight offset within the basin of attraction of its (one-dimensional)
stable fixed point. For even stronger perturbations (not shown here),
again the responses diverge, albeit faster than those for intermediate
perturbation strengths [see Fig. 1(e)]. This is ultimately the expected
behavior for any large-amplitude perturbation [see Figs. 2(c) and
2(d) for an illustration].

In contrast to the one-dimensional system, we, thus, observe
not one tipping point at one critical driving amplitude— instead the
coupling between units induces multiple tipping transitions.

We quantitatively characterize the response dynamics by the
offset,

1x̄ = lim
t1→∞

1

T

∫ t1+T

t1

x(t) dt − x∗ (4a)

1ȳ = lim
t1→∞

1

T

∫ t1+T

t1

y(t) dt − y∗ (4b)

defined as the deviation of the long-term average response over a
period T = 2π/ω of the perturbation signal from the original oper-
ating state, similar to Ref. 15. By taking the limit t1 → ∞, we ignore
transient times. In contrast to predictions from linear response
theory,2 the averages of the nonlinear response dynamics generally
feature non-zero offsets, 1x̄ 6= 0 and 1ȳ 6= 0, from the original fixed
point.

IV. WEAK-COUPLING AND STRONG-COUPLING LIMITS

In the limit of uncoupled units and in the limit of infinitely
strong coupling, the system dynamics reduce to those of a single
driven unit.
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For uncoupled units, β = 0, the dynamical equations (2a) and
(2b) are given by

ẋ = f(x) + ε cos(ωt), (5a)

ẏ = f(y). (5b)

The time-dependent perturbation of the variable x does not
affect variable y and the response dynamics are characterized by
the single one-dimensional differential equation (5a) for the driven
unit x. As expected from previous research,15 the system exhibits
stable oscillatory responses for weak perturbation strengths with a
nonlinear offset 1x̄ = O(ε2) as ε → 0. Beyond some critical per-

turbation strength ε
(0)
crit, the responses diverge such that 1x̄ is not

finite [Fig. 2(a)].
In the strong-coupling limit β → ∞, both units respond

exactly in unison. Expressing the dynamics of x and y in terms of a
center-of-mass coordinate u = (x + y)/2 and a relative coordinate,
v = (x − y)/2, the dynamical equations (2a) and (2b) become

u̇ =
1

2

(

f(x) + f(y) + ε cos(ωt)
)

, (6a)

v̇ =
1

2

(

f(x) − f(y) + ε cos(ωt)
)

− β v. (6b)

As β → ∞, the coupling term dominates the time derivative v̇, over-
ruling the intrinsic dynamics of the units and the perturbation such
that v(t) → 0 as t → ∞. Together with the identical initial con-
ditions of both units, x(0) = y(0), this gives a constant difference
v(t) = x(t) − y(t) = 0. The time evolution of the center-of-mass
coordinate u = x = y then reduces to

u̇ = f(u) +
ε

2
cos(ωt) (7)

and follows the one-dimensional dynamics of a single (uncoupled)
unit with a reduced effective perturbation strength ε/2. The system,
thus, responds qualitatively identically to the uncoupled driven unit
with a perturbation strength reduced by a factor of two. Importantly,
the response remains non-diverging up to a critical perturbation

strength ε
(∞)
crit twice as large as in the uncoupled case,

ε
(∞)
crit = 2ε(0)

crit, (8)

see Fig. 2(b).

V. LOCALIZED RESPONSES TO LARGE

PERTURBATIONS

Intriguingly, for intermediate coupling β , the critical per-
turbation amplitude does not monotonically increase. Localized
responses to large perturbations exist also beyond the critical per-

turbation strengths ε
(0)
crit and ε

(∞)
crit of the two limiting cases considered

above. Figure 2(c) illustrates the parameter region in the β-ε-space
where localized responses exist, characterized by a finite nonlinear
offset 1x̄(β , ε) of the driven unit. For a wide range of β > 0, the
system exhibits localized response dynamics also for perturbation

strengths ε > ε
(∞)
crit , even up to large perturbation strengths ε ≈ 112.

However, for β . 0.1, localized dynamics may cease to exist for

intermediate perturbation strengths ε, such that there is not a single
unique critical perturbation strength but multiple transitions from
localized to divergent, to localized, and finally again to divergent
responses. In the upper branch of localized responses for large per-
turbation strengths ε, the response dynamics exhibit a large offset of
the driven unit [Fig. 2(d)], indicating the hybrid response observed
in Fig. 1(f).

VI. ORIGIN OF LOCALIZED RESPONSE DYNAMICS

How do these localized dynamics far from the stable operat-
ing point of the unperturbed system emerge? We first consider the
fixed point structure of the coupled system in a simpler case, taking
the parameter α = 0 for the intrinsic dynamics equation (3) [com-
pare Fig. 1(b)]. The system has two symmetric fixed points from
the uncoupled system x∗

s = y∗
s = − arccos α (stable) and x∗

u = y∗
u

= arccos α (unstable). For sufficiently weak coupling, the sys-
tem also has additional asymmetric fixed points. One of these
fixed points is x∗∗ = 1/β and y∗∗ = 0 which exists for β < 1/π .
The intrinsic dynamics push both units in opposite directions,
f(x∗∗) = 1 and f(y∗∗) = −1. However, the coupling β (y∗∗ − x∗∗)

= −1 between the units exactly cancels the intrinsic force. This fixed
point also exists (at different values) for α < 0 and annihilates in a
saddle-node bifurcation19 exactly at α = 0 (see the Appendix and
Fig. 5 for a more detailed overview of the fixed points and bifurca-
tions in the system). The hybrid responses for α > 0 are a ghost of
this stable fixed point.

As a necessary condition for the existence of a periodic
response that is non-divergent and in this sense localized, the aver-
age force from the intrinsic dynamics and the coupling have to
cancel out over one period of the driving signal. Figure 3 illustrates
the three qualitatively different types of responses. For small pertur-
bation strengths ε, the system oscillates around the stable operating
state (x∗

s , y∗
s ) [Fig. 3(a)]. In this state, the force from the intrinsic

dynamics of the units approximately averages out individually, even
without the coupling [Fig. 3(b)].

In contrast, for large perturbation strengths ε, the units
exhibit hybrid responses, oscillating around the ghost fixed point
at (x∗∗, y∗∗) = (1/β , 0) [Fig. 3(c)]. The response amplitude of the
driven unit is sufficiently large that the system returns to the basin of
attraction of the original operating state. The intrinsic force of both
units does not average to zero over one period of the response. How-
ever, the driven unit returns to the basin of attraction of the original
operating state where f(x) < 0, reducing the average force from

f(x∗∗) = 1 + α to f(x) < 1 − α. The second unit oscillates close to

the minimum of f(y) such that f(y) = −f(x). The coupling between
the units is, thus, able to counteract the opposing forces of the intrin-
sic dynamics and stabilize hybrid responses oscillating around or
near the ghost fixed point (x∗∗, y∗∗) [Fig. 3(d)].

For intermediate perturbation strengths ε, the oscillations
of the system also tend toward the ghost fixed point (x∗∗, y∗∗)

[Fig. 3(e)]. However, due to the smaller perturbation strength, the
response amplitude of the driven unit is not large enough for it to
reach the basin of attraction of its original operating state. The aver-

age force is f(x) ≈ 1 + α > 1 − α such that the second unit cannot

compensate the intrinsic force, because f(y) > −(1 − α), even if it
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FIG. 3. Force balance at ghost fixed point explains localized responses for large perturbations. (a) For weak perturbations, ε = 6, both units oscillate around the localized
operating point (x∗

s , y
∗
s ). Arrows represent the dynamical flow of the unperturbed system. (b) Over one period of the response, the average forces from the intrinsic dynamics

of both units approximately cancels even without the coupling, f(x) ≈ 0 and f(y) ≈ 0 (dotted lines). (c) For strong perturbations, ε = 45, the units oscillate around the
ghost fixed point (x∗∗, y∗∗) = (1/β , 0) (cross). For comparison, the dashed rectangle and the dashed ellipse recall the state space region and the system’s response
shown in panel (a). (d) The response of the driven unit (red) reaches into the basin of attraction of the original operating point where f(x) < 0, reducing the average force

of the intrinsic dynamics. The average force on both units becomes equal in magnitude, f(x) = −f(y) < 1 − α (dotted lines), such that the coupling is able to stabilize
the opposing intrinsic forces. (e) For intermediate perturbation strengths, ε = 14, the response slowly drifts along the unstable manifold of the saddle point (open circle).
(f) Due to the weaker perturbation, the response amplitude of the driven unit is too small to reach the basin of attraction of the original operating point. The average force is

f(x) > 1 − α > −f(y) such that the system overall slowly drifts towards larger values and eventually diverges.

remained at the minimum (and, thus, extremum) of f(y) without
oscillating. The response slowly drifts along the unstable manifold
of the remaining saddle point and passes the ghost fixed point as it
diverges [Fig. 3(f), compare Fig. 1(f)].

VII. ROBUSTNESS OF RESPONSE DYNAMICS

The reported phenomena are robust and generalize to systems
of non-identical units, nonlinear coupling, and larger networks of
units. Indeed, the core qualitative arguments presented above also
hold in such more intricate settings.

In particular, the same qualitative state space and bifurca-
tion structure persist for symmetric local forces (α = 0) and for
reversed asymmetry [α < 0, Fig. 4(a)]. For symmetric local forces,
the upper branch of the localized response regime diverges, εcrit

→ ∞ as β → 0. As a consequence, localized responses exist for
arbitrarily large perturbation amplitudes ε and for arbitrarily small
coupling strengths β . For reversed asymmetry, α < 0, the ghost
becomes a real fixed point through a reverse saddle-node bifurca-
tion, enabling the same localized response (compare also Fig. 5 in
the Appendix). In addition, the intrinsic dynamics are now shifted

such that the unperturbed unit can always counteract the intrinsic
force experienced by the other unit [compare Figs. 3(c) and 3(d)].
For small coupling strengths β , a second branch of stable oscil-
latory responses becomes possible around the stable asymmetric
fixed point. These solutions never reach the basin of attraction of
the original operating point or the unstable asymmetric fixed point
[compare Figs. 5(g)–5(i)].

The same qualitative dynamics emerge for quantitatively modi-
fied intrinsic dynamics of the units, including asymmetric dynamics
f(x) 6= f(−x) [Fig. 4(b)] and non-identical units [Fig. 4(c)].

Similar localized responses may also emerge for qualita-
tively different, unbounded intrinsic dynamics, f(x) ∼ a x2 → ∞

for |x| → ∞ [Figs. 4(d)–4(f)]. If the intrinsic force remains small,
the dynamics are qualitatively identical to the previous observa-
tions [Fig. 4(d)]. For larger intrinsic forcing, the parameter region
allowing stable localized responses no longer folds back to small
coupling strengths β and only a single tipping point exists for a
given coupling. However, stable localized responses may still exist
for significantly larger perturbation strengths [Fig. 4(e)]. If the force
from the intrinsic dynamics becomes too large, localized responses
are only possible for oscillations within or very close to the basin of
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FIG. 4. Localized hybrid responses robustly emerge across a variety of systems. Panels show the average offset 1x̄ as a function of coupling strength β and perturbation
strength ε [as Fig. 1(c)] for various generalizations of the system studied extensively above. Insets illustrate the model setting and typical localized dynamics together with the
unperturbed operating point at selected parameters (crosses in the main panels), respectively. For all variations, the qualitative dynamics remain largely robust and similar to
the minimal model system. (a) Identical two-unit system as defined by Eqs. (2a), (2b), and (3) at α = −0.001. (b) Identical two-unit system as defined by Eqs. (2a) and (2b),
with f(x) = 8x−2(x−2 − 1) + 1.1. (c) Heterogeneous 2-unit system with fx(x) = f(x;αx) and fy(y) = f(y − 0.3;αy) following Eq. (3) with different parameters αx = 0
and f(y) with αy = 0.3. Here, the offset 1x̄ is defined relative to the fixed point of the uncoupled system. (d)–(f) Identical two-unit system as defined by Eqs. (2a) and (2b),

with f(x) as given in Eq. (3) with α = 0, modified as f(x) → f(x) + ax2, with a = 0.001 (panel d), a = 0.01 (panel e), and a = 0.1 (panel f). (g) Identical 2-unit system with
nonlinear coupling function h1,2(x, y) = (y − x)3/|y − x|. (h) All-to-all network of N = 8 identical units, with f(xn) as in Eq. (3) and α = (N − 2)/N = 0.75. At this value

of α, a saddle point emerges at (x1, x2, . . . , xN)
T = (2/(βN), 0, . . . , 0)T, where a single strongly deflected unit x1 is exactly balanced by the other units. This corresponds

to symmetric local dynamics, α = 0, in the minimal model setting. (i) Connected random network (drawn from Gilbert ensemble at p = 0.5), with N = 8 identical units and
f(xn) as in Eq. (3) with α = 0.65.

attraction of the original operating point. The critical perturbation
strength ε∗ increases monotonically with the coupling strength β

[Fig. 4(f)].

Even for qualitatively modified coupling between the units,
the observed dynamics remain robust. This includes systems with
nonlinear coupling [Fig. 4(g)], all-to-all coupled networks of N >
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2 units [Fig. 4(h)], and networks with random coupling topology
[Fig. 4(i)].

VIII. CONCLUSIONS

The influence of external time-dependent signals on dynami-
cal systems is often quantified by linear response theory.3,8,13,14,20–22

Recent work15 has reported genuinely nonlinear responses to peri-
odic perturbations resulting in a non-zero average offset away from
the stable operating point of a system. The offset predicts qualitative
changes in the response dynamics when the system undergoes tip-
ping for sufficiently strong perturbations and the response diverges.
Although such nonlinear offsets and tipping have been equally
observed for coupled networked systems of several variables, the
impact of inter-variable coupling on such responses has remained
unclear so far.

However, the impact of coupling on these nonlinear response
dynamics is highly non-trivial. We find that for weak coupling, two
parameter regions of localized responses exist, one for sufficiently
small perturbation amplitude and a second for large perturbations
beyond the expected critical perturbation strength for uncoupled or
strongly coupled units. In this second regime, the system exhibits
hybrid periodic responses and oscillates around a ghost fixed point
far away from the original operating point. The driven variable
responds with large-amplitude oscillations and a large average offset,
whereas the coupled variable responds with periodic low-amplitude
excursions within the basin of attraction of its stable operating point.
If the driving amplitude is in between these two regimes or too large,
responses diverge over time. Instead of a single critical perturba-
tion strength εc, a total of three transitions emerge with increasing
perturbation strength. With increasingly strong coupling, these two
response modes merge such that periodic low-amplitude responses
prevail for sufficiently weak driving and responses diverge above a
critical perturbation strength εc. These phenomena are robust with
respect to varying intrinsic unit dynamics and coupling functions
and equally emerge in larger networks, also with intricate coupling
topologies.

Our results underline the intricate joint impact of inter-variable
coupling and external driving on the collective response proper-
ties of driven nonlinear dynamical systems. Interestingly, already
(arbitrarily) weak coupling might allow for more effective absorp-
tion of external, fluctuating perturbations on average. Despite the
weak average deviation, coupling enables substantial temporary
deviations from an original fixed point. Indeed, we may view the
fluctuating driving signal as stabilizing responses that on average are
located near a previously existing fixed point (ghost) of the system
dynamics.

Future work needs to more systematically address responses of
networked systems of coupled nonlinear units. As initial candidate
network topologies, representatives of spatially extended systems,
like cycle graphs, chains, or lattices, and globally coupled systems or
small motif networks constitute the most immediate generalizations
of the two-variable systems considered here. Whereas the results
reported above open up novel perspectives on potential collective
response dynamics emerging through coupling, we are still miss-
ing a systematic understanding of how coupling controls possible

responses. Furthermore, it remains unknown under which condi-
tions new forms of collective responses may emerge. Open questions
include, for instance, how responses of different units interfere in
multi-variable systems and how systems respond to driving signals
perturbing more than one variable.

Our theoretical results may find key applications in several
fields. For instance, ecosystems that are periodically driven may
respond in unexpected ways.7,23 The eutrophication of lakes driven
by noisy, roughly periodic signals exhibit tipping points24 one may
want to predict in model settings by combining insights from15 with
results reported above. It also remains an open question how to mit-
igate dysfunction—for example, voltage drops or power outages—in
electric power grids that are driven by fluctuating renewable-source
inputs4,25 or fluctuating demand.26 Furthermore, climate systems
as representatives of highly interconnected complex systems are
often periodically driven and it still is a challenge to predict their
responses.27

Because generic nonlinearly shifted periodic responses as well
as the tipping transition itself constitute genuinely nonlinear phe-
nomena, responses from different driven units in the same system
do not superimpose linearly, not even at arbitrarily small driving
amplitudes. Nonlinear response phenomena of fluctuation-driven
systems thus require their own dedicated branch of analysis to
understand emerging response patterns, in turn needing the devel-
opment of suitable mathematical tools appropriate for networked
dynamical systems that are driven and respond in a genuinely
nonlinear fashion.
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APPENDIX: FIXED POINT ANALYSIS FOR SMALL β > 0

The dynamics of the model system discussed in the main text
depends on its fixed point structure. With the internal dynamics as
given by Eq. (3), for all α ∈ (−1, 1) and β ∈ [0, ∞), there is a stable
operating point (x∗

s , y∗
s )

T = (− arccos α, − arccos α)T. As discussed

in Sec. VI, for sufficiently weak periodic driving (small ε), the col-
lective dynamics stays in the vicinity of this stable fixed point, as
predicted also by linear response theory. Then, the forces f(x) and
f(y) (approximately) cancel out over one period of the perturba-

tion, f(x) ≈ 0, f(y) ≈ 0, so that each variable x, y is stable by itself
[compare Figs. 3(a) and 3(b)].

In this region of state space, the dynamics are dom-
inated by two fixed points (one stable and one unstable)
of the individual one-dimensional intrinsic dynamics where
f(x) = 0. In the coupled system, four fixed points exist close
to combinations of the stable and unstable fixed point of
these one-dimensional dynamics [Figs. 5(a)–5(c)]: two symmet-
ric fixed points at (x∗

s , y∗
s )

T = (− arccos α, − arccos α)T (stable)

and (x∗
u, y∗

u)
T = (arccos α, arccos α)T (unstable) and two asymmet-

ric fixed points close to (x∗
s , y∗

u)
T ≈ (− arccos α, arccos α)T and

FIG. 5. Ghost fixed point determines the structure of the dynamical flow. (a) Portrait of the dynamical flow and relevant fixed points of the coupled two-unit system defined by
Eqs. (2a), (2b), and (3) for α = 0.1 and β = 0.075. (b) and (c) Schematic illustration of two of the four fixed points close to combinations of the fixed points of the intrinsic
dynamics where f(x) = 0. Panel (c) illustrates the stable operating point (− arccosα,− arccosα)T. (d) Zoom-in for large x, with α = 0. For this parameter choice, a saddle
point exists at (1/β , 0). It has a stable and a (linearly) neutrally stable manifold such that the dynamical flow is qualitatively similar to the case with α > 0 [panels (a) and
(f), the last position of the saddle point is marked by the black cross]. (e) Schematic illustration of the asymmetric saddle point. Note that f(x) = −f(y) so that the overall
forces on both units are exactly canceled out by the coupling. (f) For α > 0 [as in panel (a)], the system does not exhibit a fixed point for large x, but the unstable manifolds
from two existing fixed points for smaller x still converge to the same trajectory. The overall flow remains similar due to the ghost of a fixed point existing at α = 0 (black
cross). (g) For α < 0, a saddle-node bifurcation gives rise to a stable fixed point and a saddle point. Note that globally, apart from the small region between the two fixed
points, the dynamical flow still remains similar [compare response dynamics illustrated in Fig. 4(a)]. (h) and (i) Schematic illustration of the two fixed points emerging from
the saddle-node bifurcation.
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(x∗
u, y∗

s )
T ≈ (arccos α, − arccos α)T (both unstable). For α > 0 and

sufficiently small coupling strength β < 1/π , these are the only four
fixed points.

For larger perturbation strengths ε, generally the collective
response leaves the basin of attraction of the stable operating point
(x∗

s , y∗
s )

T and the dynamics in other parts of state space becomes
relevant. However, for α > 0, the emergence of non-divergent col-
lective responses cannot be directly linked to a fixed point of the
unperturbed system. Instead, the response is determined by the
dynamical flow along the unstable manifold of the saddle (x∗

u, y∗
s )

T

≈ (arccos α, − arccos α)T, which converges to the same trajectory as
the unstable manifold of the symmetric unstable fixed point for large
x [Fig. 5(d)].

This structure represents the remains of strongly asymmet-
ric fixed points that undergo a saddle-node bifurcation19 at α

= 0. Exactly at α = 0, there is a saddle point (1/β , 0)T, where the
intrinsic forces on both units, f(x) = −f(y) = 1, are exactly bal-
anced by the forces of the inter-unit coupling, β (y − x) = −β (x
− y) = −1 [Figs. 5(e) and 5(f), compare also Figs. 3(c) and 3(d)].
This fixed point also exists for α > 0 when the coupling is suf-
ficiently strong such that at the fixed point f(x) < 1 and both
variables are still in the vicinity of the fixed points of the intrinsic
dynamics. For α < 0, the fixed point splits into a stable fixed point
at (− arccos (1 + 2α) + (1 + α)/β , − arccos (1 + 2α)T and a saddle
at (arccos (1 + 2α) + (1 + α)/β , arccos (1 + 2α))T [Figs. 5(g) and
5(h)]. The same fixed points also exist for flipped x and y variables
due to the symmetry of the unperturbed system.

In the main text, we explain the non-divergent responses for
large perturbation strengths ε for α = 0.1 > 0 in terms of a “ghost”
fixed point at (1/β , 0)T for β < 1/π , which is the position of the
fixed points before annihilation at α = 0. Figure 5 illustrates that
indeed, despite the saddle-node bifurcation, the dynamical flow
remains overall similar for the different choices of α, apart from the
small region between the two fixed points emerging for α < 0. This
structure of the flow remaining from the asymmetric stable fixed
point (− arccos (1 + 2α) + (1 + α)/β , − arccos (1 + 2α))T enables
the asymmetric hybrid responses in strongly driven systems.
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