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ABSTRACT

Biological neural systems encode and transmit information as patterns of activity tracing complex trajectories in high-dimensional state
spaces, inspiring alternative paradigms of information processing. Heteroclinic networks, naturally emerging in artificial neural systems,
are networks of saddles in state space that provide a transparent approach to generate complex trajectories via controlled switches among
interconnected saddles. External signals induce specific switching sequences, thus dynamically encoding inputs as trajectories. Recent works
have focused either on computational aspects of heteroclinic networks, i.e., Heteroclinic Computing, or their stochastic properties under noise.
Yet, how well such systems may transmit information remains an open question. Here, we investigate the information transmission properties
of heteroclinic networks, studying them as communication channels. Choosing a tractable but representative system exhibiting a heteroclinic
network, we investigate the mutual information rate (MIR) between input signals and the resulting sequences of states as the level of noise
varies. Intriguingly, MIR does not decrease monotonically with increasing noise. Intermediate noise levels indeed maximize the information
transmission capacity by promoting an increased yet controlled exploration of the underlying network of states. Complementing standard
stochastic resonance, these results highlight the constructive effect of stochastic facilitation (i.e., noise-enhanced information transfer) on
heteroclinic communication channels and possibly on more general dynamical systems exhibiting complex trajectories in state space.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0054485

In biological neural systems, computation and information trans-
mission are not always independent processes but rather a mixed
process in which feedback connections between regions may sur-
pass feed-forward ones in numbers, generating complex pat-
terns of neural activity. This suggests that these systems not
only transmit but also simultaneously preprocess information.
Remarkably, neural computing is robust despite intrinsically
noisy environments (e.g., in the brain) and despite a lack of
reproducibility of state space trajectories such that spike pat-
tern activity does not robustly repeat when performing the same
given task. Heteroclinic networks, naturally emerging in a class
of artificial neural networks, offer one efficient way to emulate

concurrent neural information transmission and computation.
In this paradigm, even small symmetrical systems can already
express a large number of complex trajectories, as their number
increases exponentially with the system size. Moreover, hetero-
clinic information processing and transmission properties are
deterministic and reproducible but become stochastic if noise is
present. We here study heteroclinic networks as noisy communi-
cation channels. Specifically, we measure the mutual information
rate (MIR) between input signals and the resulting state space
trajectories—the sequence of visited unstable state vicinities. We
reveal a constructive effect of noise—stochastic facilitation—on
the channel. Noise of small to moderate strength increases the
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MIR before decreasing it as the input signal is completely overrid-
den. It may be possible to extend this result to different dynamical
and neural systems exhibiting complex trajectories in state space,
as many may also rely on networks of unstable states to work.

I. INTRODUCTION

The brain makes use of a variety of energy-efficient and robust
encoding strategies to process information. Examples vary from
population coding, where information is encoded as statistical prop-
erties of neural populations, to precise spike timings, where infor-
mation capacity is only bounded by noise.1,2 Moreover, studies of
highly active neural systems, e.g., the vertebrate’s olfactory bulb
or the fly’s antennal lobe,3 suggest that information may also be
encoded as patterns of activity tracing complex trajectories in high-
dimensional state spaces. Together, such findings have inspired the
conceptualization of a number of novel dynamical mechanisms
for information processing, yielding insights on central interdisci-
plinary issues such as pattern generation,4,5 pre-processing to facil-
itate computations,6–10 noise-enhanced information storage,11 and
computing and signal encoding.12–16

A particularly transparent example of dynamics supporting
complex trajectories in high-dimensional state spaces is heteroclinic
networks, which naturally emerge in systems of spiking17–19 and
non-spiking oscillators,14,20 as well as non-oscillatory systems21 in
artificial and, potentially, in natural systems. A heteroclinic network
is a network composed of saddle states in which each connection is a
heteroclinic orbit, i.e., an orbit connecting part of the unstable man-
ifold of a saddle with the stable manifold of a second saddle.22 Here,
we study a particular class of symmetrical heteroclinic networks,
in which each saddle is locally surrounded by basins of attraction
of other saddles and these basins combined locally have full mea-
sure. Due to the pulse-coupled nature of the class of systems studied,
almost all trajectories perturbed away from a given saddle periodic
orbit would converge to one other saddle in finite time. All basin
volume of each attractor periodic orbit is not in that local volume
but remotely located close to other saddles in the network.17–19,23–25

Through sufficiently small perturbations applied to the system at
one saddle state, state trajectories thus end up in other symmetry-
related saddles. In this sense, the network of saddle states constitutes
a “clean” heteroclinic network as termed by Field.26–28

It has been shown that heteroclinic networks can support infor-
mation encoding12,14,15 via switching dynamics19,20,24,25,29 among its
constituting states. Furthermore, through the Heteroclinic Com-
puting paradigm15 such networks have been shown to be capable
of implementing logic gates and operators and thus support arbi-
trary n-ary computations. In this paradigm, switchings are driven
by external signals serving as inputs, forcing the dynamics toward
specific unstable directions25,30 (see Fig. 1), thus generating a com-
plex trajectory approaching saddles sequentially. At each switching
event, (i.e., near each saddle), the dominant signal components on
the unstable manifolds are computed. Moreover, if an external signal
persists for long enough, a cyclic sequence of states is established,14,15

resulting in the computation of a partial rank order of the sig-
nal’s components, also known as k-winners-take-all, where the k
strongest components out of a total of N are identified.

FIG. 1. Schematic of a heteroclinic network as an input–output noisy communi-
cation channel. (a) The heteroclinic network encodes its input in the presence of
noise and produces an output; the mutual information rate (MIR) between input
and output quantifies howmuch information the system is able to transmit. (b) The
encoding process is based on the heteroclinic switching between saddles. In a
noiseless system (black trajectory), the relative strengths of the components of
the input signal completely determine the transition from one saddle to the next
by driving the state of the system towards a specific unstable direction and through
an associated heteroclinic connection. When noise is present (dotted trajectory)
and strong enough, it can overcome the deterministic effects of the input near
a saddle and may push the dynamics towards another unstable direction, thus
adding some randomness to the process. (c) A more detailed representation of a
heteroclinic network seen as a currents-in, sequences-out noisy communication
channel. Each saddle vicinity si can be seen as a process comparing a pair of
input components 1i under noisy conditions. The input signal causes the sys-
tem to continuously switch between states, thus producing a sequence of visited
states.

Alongside computation, information transmission is a fun-
damental function of neural systems, which is performed in an
intrinsically noisy environment via complex patterns of activity.
Here, to investigate the information transmission properties of bio-
inspired dynamical systems exhibiting complex trajectories in the
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state space, we study heteroclinic networks as input–output noisy
communication channels. Previous work has shown that (1) noise
adds a stochastic component to an otherwise deterministic switch-
ing process and, thereby, modifies transition probabilities between
saddles in a network of states,31–37 (2) perturbations at saddle states
grow exponentially with time,25 and (3) noise also accelerates the
saddle-to-saddle, defining an upper boundary for the switching time
depending on the noise level itself.38 To capture all these aspects in
one measure, we characterize the heteroclinic channel by computing
the mutual information rate (MIR) between external input signals
and the resulting sequences of states, for varying noise level.

Typically, noise tends to lower the performance of commu-
nication channels as it introduces errors in the transmission of
information, thus reducing confidence in the reconstruction of the
original signal. In contrast, we here report that intermediate lev-
els of noise maximize the information transmission capacity of the
system—a stochastic facilitation effect. The mechanism underly-
ing such effect relies on two factors: first, noise can reduce the
time spent in the vicinity of each saddle (see Ref. 38 as well as the
supplementary material) and second, it can promote an increased
yet controlled exploration of the underlying network of states. As a
consequence, the MIR between input signals and the sequences of
visited states depends non-monotonically on the noise levels. The
MIR increases for intermediate levels of noise, before monotonically
decreasing, until the resulting switching direction at each saddle
becomes virtually random.

We argue that our results are general to systems exhibiting het-
eroclinic networks, because they arise simply from the stochastic
nature of the dynamics close to the saddles, for which more than one
(typically many) exit options are available in their unstable manifold.
These results suggest a positive role of noise for a range of natu-
ral and artificial information processing systems relying on complex
state-space trajectories, as those may also rely on unstable states
or similar structures and may thus be of broad interdisciplinary
interest.

II. NETWORKS OF OSCILLATORS AND HETEROCLINIC

DYNAMICS

Heteroclinic networks naturally emerge in a variety of symmet-
rical systems composed of oscillators,14,24,25,29 both phase- and pulse-
coupled, providing a model-independent framework for encoding
and computing. We here consider networks of pulse-coupled leaky
integrate-and-fire neurons. This simple model already captures the
fundamental aspects required for the emergence of heteroclinic net-
works, i.e., symmetrical and excitatory delayed couplings. Further-
more, this model provides a closed-form solution for the system’s
time evolution between pulse events. This allows for efficient event-
based simulations, when compared to more expensive time-based
numerical integration.

Between pulse events, the dynamics of each node i is defined
by a voltage-like variable Vi(t), satisfying the following differential
equation and reset condition:

dVi(t)

dt
= −γVi(t)+ A + Wi(t)+1i(t)+ ηi(t), (1a)

lim
ζ→0+ ;ζ>0

Vi(tf + ζ ) = Vreset, (1b)

where γ is a dissipation parameter and A is the base driving current;

the network coupling is given by Wi(t) =
∑N

j=1, j6=i εδ(t − τ − tj), a
sum of incoming pulses at time t, where ε is the connection strength
and τ the connection delay; 1i represents an external input source
such that |1i| � |A|; and ηi represents a Gaussian noise source. The
second equation defines the reset condition that depends on the fir-
ing times tf of pulse events, which are themselves defined in terms
of a threshold criterion {tf : V(tf) = Vthreshold}. Herein, we consider
Vreset = 0 and Vthreshold = 1. To preserve the existence of closed-
form solutions for the system’s time evolution between events, we
approximate ηi through a pair of high-frequency, low-amplitude
pulse generators which, in practice, just add a large number of new
events. Each oscillator in the network is connected to two indepen-
dent noise sources, one producing excitatory pulses and the other
producing inhibitory ones, for a mean input current of 0 (see the
supplementary material).

Saddle states arising in such networks of oscillatory neurons are
characterized by the presence of poly-synchrony,25 that is, neurons
synchronize in groups, here simply referred to as “clusters.” While
pulse-induced simultaneous resets promote synchronization, full
synchronization is prevented by the delayed connections because
the neuron(s) sending the pulse(s) typically cannot synchronize with
neurons receiving it(them). Some examples of poly-synchronous
states were reported by Ashwin and Borresen39 with permutation
symmetry S3 × S2, by Wordsworth and Ashwin14 with permutation
symmetry S2 × S2 × S1, and by Neves and Timme15 with permu-
tation symmetry S21 × S21 × S21 × S21 × S16. Here, Sn stands for all
permutations of n elements, i.e., all n elements in a Sn cluster are in
an identical state. The × symbol is used to describe (compose) a state
with multiple clusters. Furthermore, poly-synchronous saddle states
often show instability to perturbation only over a single cluster. In
this case, with the exception of one cluster, oscillators in each clus-
ter are synchronized by incoming pulses causing their simultaneous
reset, which also erases any small variation in voltage and thus the
effect of any small perturbation. Neurons on the remaining cluster,
here loosely called the “unstable cluster,” are not reset by pulses but
rather independently reach the threshold. Small voltage differences
in the unstable cluster actually keep increasing at each cycle (one
pulse per neuron) due to the fact that the greater the neuron’s volt-
age, the quicker an incoming pulse will cause it to reach its threshold
in an exponential fashion. Finally, networks of states exhibiting per-
sistent switching dynamics are typically formed by states with the
same symmetry. That is, all states in the network are simple permu-
tations of each other, thus exhibiting the same stability properties
after permutation.

As the calculation of the mutual information (in Sec. III)
requires averaging the results of many trials over all orderings of
inputs and initial conditions, and both these quantities grow expo-
nentially with the system’s size, we here choose a small but represen-
tative network of five neurons as a concrete example. For parameters
ε = 0.025, A = 1.04, τ = 0.49 · ln (A/(A − 1)), the system exhibits
saddle orbits with a three-cluster formation and S2 × S2 × S1 per-
mutation symmetry (see Fig. 2), i.e., two groups of two synchronized
oscillators and one singleton. Moreover, it has been established
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FIG. 2. Poincaré sections for a single switch (a) and for a noise driven sequence of switches (b). The potential V of all five oscillators is plotted whenever V1 → 0, showing
the cluster formation. Labels “a” indicates the unstable cluster, “b” the stable cluster, and “c” the singleton. (a) at time 50, a single time perturbation induces a switch between
two saddle states (b, b, c, a, a) → (a, a, c, b, b); (b) a low but persistent noise source induces a random sequence of visited states, resembling a random walk in a graph
(the heteroclinic network itself).

before15,39 that these states are unstable only to perturbation to one
of their clusters. Let {a, b, c} be labels for the clusters and {a} be the
label for the unstable cluster. We denote each saddle with a symbolic
vector, e.g., (a, a, b, b, c), in which each component corresponds to
one of the N = 5 oscillators. Such a vector uniquely labels a sad-
dle and explicitly denotes the permutation symmetry of these states,
as we can simply permute the vector to express any other state. By
doing so, we obtain a total of

(

5

2,2

)

= 30 saddle states. These states

are interconnected via heteroclinic orbits following a simple transi-
tion rule:25 given a general perturbation 1 = (11,12,13,14,15),
where11 > 12, then

(a, a, b, b, c) → (c, b, a, a, b), (2)

where the arrow denotes the dynamical switch between two sad-
dles via a heteroclinic connection (see Fig. 2). In other words, the
oscillator in the unstable cluster receiving the largest perturbation
component becomes the new singleton, the original stable cluster
loses stability and becomes the new unstable cluster, and the remain-
ing two oscillators synchronize forming a new stable cluster [see
Fig. 2(a), for an example]. By permuting this relation, we obtain
the set of all heteroclinic connections forming the heteroclinic net-
work. Notice that because all nodes have the same characteristics
and the connections are symmetric, heteroclinic networks can be
represented as directed graphs,34 in which the saddles are the nodes
and the edges are the connections, see Fig. 3.

In this work, we are interested in characterizing the transmis-
sion of information through heteroclinic networks. It is thus of par-
ticular interest to understand how long-lasting signals are processed.
It has been shown15 that, in the absence of noise, for every input
having the same partial ordering, the sequence of approached sad-
dle states deterministically realizes one of two possible trajectories
approaching six specific saddles, depending on initial conditions.
For example, given an input signal11 > 12 > 13 > 14 > 15 and

an initial state (c, b, a, a, b), the system realizes the orbit as shown in
Fig. 4. Permuting any two neurons between the S2 clusters yields the
other possible orbit. In the noiseless case, we ignore any potential
transient toward this orbit because once it is approached, the system

FIG. 3. Graph representation of the heteroclinic network defined by Eq. (2)
and all its permutations. Each node represents a saddle periodic orbit; each
arrow represents one heteroclinic orbit connecting two saddles. Two peri-
odic sequences of states (complex trajectories) encoding the same input
1 = (11,12,13,14,15) are highlighted with a red-dotted and blue-dashed
pattern.
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FIG. 4. Detailed representation of a cyclic sequence of six saddle orbits,
blue-dashed trajectory in Fig. 3. The sequence was generated by an input with
11 > 12 > 13 > 14 > 15, starting from the (c, b, a, a, b) state. The rela-
tive ordering of the input components, here shown in gray, drives the transition
between states. Conversely, observing a transition in the noiseless system at
each saddle in the sequence implies an ordering between the two input com-
ponents over the unstable cluster (marked with a in the symbolic vector labeling
the saddle state). In this example, observing the complete sequence reveals that
{11,12,13} are all larger than {14,15}.

is locked there for as long as the signal is present. Statistically speak-
ing, the transient does not play any relevant role. Given the transi-
tion rule in Eq. (2) and all its permutations, observing the periodic
orbit in Fig. 4 reveals that {11,12,13} are all larger than {14,15}.
Generalizing this result for all possible orbits shows that the system
computes a k = 3-winners-take-all function over N inputs, i.e., it
determines the three strongest input signal components. Note that
no additional information about the overall rank order is known
from observing a cyclic sequence of saddle orbits.

The introduction of noise, which would be present in any real-
ization of the system in the physical world, changes the input-driven
switching dynamics in at least one fundamental way. Whereas the
noiseless system’s dynamics is characterized by the approach of
six saddle orbits, noise introduces an element of randomness, dis-
rupting the cycle. For the rest of this work, we conceptualize our
system as an input–output device, receiving an input and produc-
ing state sequences of some arbitrary length [see Fig. 1(c)] as an
output. Furthermore, because the state-to-state switching is driven
by the difference between currents rather the values themselves
(see the supplementary material for more details), in what follows,
we will define the input current vectors in terms of the difference
Di = 1i+1 −1i between its components.

III. QUANTIFYING INFORMATION IN NOISY

HETEROCLINIC COMMUNICATION CHANNELS

In what follows, we show how to quantify information trans-
mission via heteroclinic networks, studying them as noisy commu-
nication channels. Specifically, we measure the Mutual Information
Rate (MIR) between input signals and the resulting outputs, subject
to different noise levels. Formally, the mutual information between

two random variables (r.v.) {X, Y}, here, respectively, taking values
from the set of possible inputs signals X and the set of possible out-
put responses Y , is defined as the difference between the marginal
entropy of the input r.v. X and the conditional entropy between the
input r.v. X and the output r.v. Y, that is,

I(X; Y) = H(X)− H(X|Y), (3)

where the marginal entropy H(X) = −
∑

x p(x) log p(x) measures
the uncertainty about the variable X, while the conditional entropy
H(X|Y) = −

∑

y p(y)
∑

x p(x|y) log p(x|y) measures the uncertainty

in X given that Y = y is known, averaged over all possible y’s. Here,
p(x) is the probability of a signal x being transmitted and p(x|y) is the
conditional probability of x given that y is known. Therefore, their
difference I(X; Y) measures a drop in uncertainty in x by observing
y. For example, if y predicts x with absolute certainty, H(X|Y) = 0
and I(X; Y) = H(X). On the other hand, if X and Y are indepen-
dent, H(X|Y) = H(X) and I(X; Y) = 0. We define the MIR simply
as µsI(X; Y), where µs is the average number of saddle states vis-
ited per unit of time. Calculating the mutual information between
the input and output of a system from Eq. (3) relies upon estimating
the three distributions p(X), p(Y), and p(X|Y). Notice that no ana-
lytical formulation is available for p(X|Y) for the system studied in
this paper. Thus, we approximate these distributions. To do so, we
first properly define our input set X and output set Y ; choose our
source of noise; and finally, numerically compute the probabilities.

Input set: In this work, each input x ∈ X to the system
[the external input source in Eq. (1)] is simply a vector of small
and constant currents 1 = (11,12, . . . ,15) with 1i ∈ < targeting
oscillator i.

As the computation performed by heteroclinic networks is that
of a partial ordering of their input currents, and we want all order-
ings to be equally represented, the chosen input set X must contain
vectors with elements in all possible orderings in the same pro-
portion. Therefore, we first pick a random input 1g (g stands for
“generating”); and we then generate our input set X = P(1g), the
set of all possible permutations of1g. The cardinality of the resulting
input set is thus |X | = 5! Notice that the defining computation at
the vicinity of each saddle is the direction of the pairwise differences
between the input components, rather than their magnitude. Thus,
to generate one instance of1g, we randomly generate the differences
between consecutive pairs of inputs. Specifically, we generate vectors
of the form

1
g
i =

{

b, i = 1,

1i−1 + Di−1, i = 2, . . . , 5,
(4)

where b ∈ R is some constant and D1, . . . , D4 are independent and
identically distributed random variables from a uniform distribu-
tion in the interval (0, 10−5). Permuting each generated vector in all
possible configurations provides the complete set of inputs for each
instance of our simulations. Furthermore, to better characterize the
system response to signals and noise, we simulate the system for a
variety of randomly generated input sets.

Output set: To define the general form of the output y ∈ Y of
heteroclinic networks, we describe a network of states as a directed
graph G = (V, C), in which vertices V are the set of sufficiently close
neighborhoods of saddle states S and the edges E are the heteroclinic
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connections C =
{

c
∣

∣ c = (si, sj), > si, sj ∈ S
}

between those states
[see Fig. 1(c)]. Any sequence of states can be represented as a walk
on this graph. A set Y thus has the general form of the set of all
walks of some finite length n on G, that is,

Y = On =
{

w
∣

∣ w = (si)
n
i=1, > si ∈ S, > (si, si+1) ∈ C

}

, (5)

with y being an element of this set. We remark that n is a hyper-
parameter that will be chosen taking in consideration arguments
of convergence of measured information and the numerical com-
putability time.

Quantifying noise: The effect of noise on the MIR between input
and output is proportional to its strength compared to the input
amplitude. For this reason, we introduce a quantity relating the
strength of input and noise. Because the dynamical response of the
system depends fundamentally on the differences Di between sig-
nals, which are drawn from a uniform distribution, we introduce a
signal-to-noise ratio defined as follows:

SNR =
E[D2]

Var[Z]
, (6)

where D is a uniformly distributed r.v., E[D2] is the expected value
of its square, and Var[Z] is the variance of the noise r.v. Z (see the
supplementary material). Stronger noise leads to a lower SNR and
vice versa.

Numerical simulations: As discussed above, our objective is to
characterize a noisy heteroclinic information channel in terms of
MIR. To do so, we numerically approximate the distribution p(Y|X)
of the channel’s outputs from Y given inputs from X , as they are
defined above, under varying levels of noise. Furthermore, our spe-
cific choice for the length of our outputs (here a hyperparameter)
is 11, determining the output set O11, i.e., the set of all walks of
length n = 11 on G. The value n = 11 has been chosen as a trade-off
between clarity of presentation of the results and increase in compu-
tation time needed to analyze the data. Results for different choices
of n are reported in the supplementary material; we observe same
qualitative results for all n ≥ 7.

As shown in Fig. 5, we generate 100 MIR-SNR curves, allowing
us to better understand the system’s properties. We start by gener-
ating 100 input sets Xi via Xi = P(1

g
i ), the set of all permutations

of1
g
i , where i indicates a specific set instance. For each input set Xi,

we pick only one element x̂i to serve as an input for a simulation
[see Fig. 5(a)]. Each simulation is actually a set of numerical simu-
lations using the same input, where we test 20 different noise levels
sampled logarithmically in the [10−1, 101] interval. Furthermore, we
run the system starting from each of the 30 possible states in the
network, with independent noise realizations. Thus, a “simulation”
actually consists of 20 × 30 independent runs. For each level of
noise and initial condition, we collect a switching sequence of length
k = 1000. To extract the needed 11-walks from each com-
plete switching sequence q = (si)

k
i=1, a moving window func-

tion gn(t) = (sx)
t+n
x=t is used. For one simulation (c = 30, k = 1000,

n = 11), the total number of collected output y sequences for any
element x̂ of the input set and one SNR is equal to 29 700.

Note that a simulation using only one element x̂i from Xi not
only provides an approximation for p(Y|x̂) but also an approxi-
mation for the full p(Y|X) distribution. Due to the symmetries in

FIG. 5. Layout of the numerical simulation suite used in this study. (a) A
single simulation takes a vector of currents x̂ and a signal-to-noise ratio
SNR level as an input and internally simulates the system over 1000 state
switches for all the 30 initial conditions [one run φ(cl , x̂, SNR) for each clus-
tered state cl , with l = 1, . . . , 30, in the simulated heteroclinic network]. For
each initial condition, the simulation generates one set of output sequences

www i =
{

(sj)
t+n
j=t

∈ On, with t ∈ {1, . . . , 1000 − n}, and n = 11
}

and one mean

switching rate µi . The aggregate set of output sequences is used to compute the
approximated distribution p̂(Y |X), and the mean switching rates are averaged
to an aggregate µ; with these, it is possible to compute the mutual information
rate associated with the given input setX = P(x̂) (i.e., the set of input vectors
resulting from all possible permutations of the elements of x̂) and noise strength
as parameterized by the SNR. Due to the symmetries of the system, it is possi-
ble to derive a full p̂(Y |X) distribution from a partial p̂(Y |x̂) distribution obtained
by simulating the system with a specific x̂ example, as opposed to simulating
the system for the full X input set. (b) The system is simulated for each of the
(x̂j , SNRk) combinations of randomly generated input vectors x̂j and SNRk levels,
with j ∈ 1, . . . , 100 and k ∈ 1, . . . , 20, from which 2000 mutual information rates
MIRx̂j ,SNRk

are computed.

the system’s network of states and oscillator connectivity, any real
p(Y|xk) distribution for this system equals any other p(Y|xj) up to
a simple reordering of the vectors’ elements. In this way, a single
simulation run can actually provide an approximation of the full
p(Y|X) distribution. Then, by taking into consideration that we can
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marginalize p(Y|X) over X to obtain p(Y), and that p(X) is a uniform
distribution, where every input is equally likely, we obtain p(X|Y) =
p(Y|X)p(X)

p(Y)
by Bayes’ theorem. We thereby compute the mutual infor-

mation as defined in Eq. (3). By multiplying this quantity by the
average number of state switches per unit of time in the simulation
run, we obtain the MIR of the run.

To summarize, we simulate the network for 100 different
inputs; for each, we test 20 different noise levels; for each noise
level, we start the system from all 30 initial states. In this way, we
obtain 100 curves of mutual information rate as a function of the
SNR (again, see Fig. 5 for an overview).

IV. RESULTS

Our computational experiments reveal that moderate levels of
noise increase the MIR in the system in a predictable fashion (see
Fig. 6). Specifically, for intermediate levels of noise, we observe an
increase in MIR of up to 15% with respect to the MIR measured at
the smallest noise level tested (SNR = 10).

This effect relies on the nature of the computation performed
by heteroclinic networks: at each state, a different feature of the
input is computed, i.e., which is the strongest input signal compo-
nent over the unstable cluster but only a subset of all states is ever
visited in the noiseless system. Figure 7 shows how these dynamics
are modified by noise by presenting how often each state is visited
and the frequency of error for each state, for different levels of noise
in runs of n = 1000 recorded states. Here, we say an error occurred
during switching from state A if the resulting state B∗ is different
from the state B predicted for a deterministic noiseless system. For
low noise, a heteroclinic network only ever visits a subset of all states.
In the specific case of the small leaky integrate-and-fire network, we
analyze the switching dynamics are essentially confined to an orbit
of six states, thus performing the same comparisons between pairs
of input currents over and over again. For high noise, the switching
dynamics become highly unpredictable and largely independent of
the input; this is reflected by the high spread of state frequencies in

Fig. 7 and high error frequency for each state, approaching chance.
For intermediate noise, instead, occasional errors performed at some
states allow the system to explore more of the network of states
via short transient orbits, thus computing a greater range of input
features (comparisons between pairs of input currents) and provid-
ing more information per time. The noise is low enough for mostly
predictable orbits to exist, but high enough for the dynamics to be
varied. That is, correctly computed transients orbit towards correct
periodic orbits arise.

Because each switch between saddles computes the largest
input signal between a pair of inputs, there is a trade-off between
the increased exploration due to noise, and a decreased accuracy
of the computation at each switch: at intermediate noise, the sys-
tem performs a more diverse range of computations on the input,
although with lower accuracy at the level of the single computa-
tion. Approaching the system as a channel, shifts the focus from
computation to information transmission and puts the richer infor-
mation content to the forefront. Furthermore, higher noise levels
are associated with a faster rate of switching (see the supplementary
material), thus it may also positively impact the MIR. Concurrently,
the switching rate is also affected by the absolute strength of the
difference between input currents, i.e., greater differences are asso-
ciated with a higher rate of switching, but not to a larger error rate
or a larger exploration. Together, these two features account for the
shifting maximum in Fig. 6, where inputs with smaller mean differ-
ence between currents tend to have their maximum MIR at higher
SNRs (i.e., lower noise levels). Note that the reason behind the “dis-
alignment” in the plot curves in panel (c) of Fig. 6 is ultimately due
to the formulation of SNR, which simplicity facilitates exposition yet
does not capture the full relationship between signal and noise in the
system. In fact, rescaling each simulation’s SNR by the mean differ-
ence between the three strongest currents and the two weakest as in
panel (d) of the figure, substantially aligns the MIR results.

To put our results into perspective, we now shortly discuss
how to interpret the reported increase in MIR. The fundamental
constraint on our information measure is our choice of output.
By choosing sequences of saddle states, we constrain the possible

FIG. 6. The four panels in this figure report MIR-SNR curves as generated by the full numerical simulation suite depicted in Fig. 5. (a) MIR-SNR curve for a selected
simulation. Here, we report a single curve to highlight the presence of a characteristic increase in MIR for intermediate levels of noise found for most of the simulated
input sets. (b) Distribution (in gray) and median (in black) of the 100 MIR values computed for each SNR level from randomized input sets. The MIR distributions, shown
rotated and mirrored for each SNR level, are estimated through Gaussian kernel density estimation. (c) MIR-SNR of 100 randomized input sets, ordered by decreasing mean
difference between the three strongest and the two weakest input currents (a proxy measure for the “strength” of the cyclic sequence of six states). The maximum MIR for
each simulation is highlighted by a yellow dot. (d) The same MIR-SNR of panel (c), where each simulation’s SNR is rescaled by the mean difference between the strongest
three currents and the two weakest.
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FIG. 7. Frequency of visits to each state (a) and frequency of wrong switches from each state (b). Values are calculated from sequences of n = 1000 states, for three
levels of SNR, from an simulation run where the difference between consecutive input pairs Di = 1i+1 −1i is set to be 10

−5 for all i. (a) When SNR = 10, the switching
traces the same orbit over and over again, and only six states are ever visited, no errors are made. When SNR = 1, the noise causes a small amount of wrong switches,
allowing the dynamics to explore a larger part of the network of states and move between two orbits representing the same input; thus, 12 states are visited most frequently.
With SNR = 10−3, noise promotes a large amount of errors during switching and the switching process becomes virtually random. Panel (b) is divided in four sections by
vertical dotted lines. The first section contains all those switches in which pair of inputs with the smallest difference Di = 10−5 are compared; the second section contains
switches comparing inputs that differ by 2Di ; and so on for the third and fourth sections. The decreasing trend in switching error frequency for the four sections is caused by
the increasing differences in input currents, which increases the effective SNR. For details on our numerical analysis, see Sec. III.

knowledge about the inputs to their full rank order (when observing
the output) because each sequence of two saddles encode only the
rank order between two input signals. In the noiseless case, in our
example of dynamics, only six comparisons are ever made and
repeated cyclically, revealing a partial rank order. Particularly, an
increase in MI (as reported) mathematically implies an increase in
the amount of knowledge that can be gathered about the input by
observing the output. Given our choice of encoding, an increase in
MI can only mean that more about the full rank order is known.
What exactly is learned depends on details of the system, the input,
and the noise level (and type) and is, therefore, outside the scope of
this article. Our results thus simply show, in a system-agnostic way,
that noise is capable of increasing the MI (knowledge about the com-
plete rank order) and MIR in heteroclinic information channels for
this particular encoding.

Markov chain analysis: To show that our results really hinge on
a simple trade-off between local errors in state-to-state transitions
and global exploration of the network of states and thus generalize
beyond the specific choice of pulse-coupled system analyzed here,
we now turn our attention to the heteroclinic networks’ graphs. As
previously discussed, a heteroclinic network can be described as a
directed graph and sequences of state transitions as walks on this
graph. A persistent input signal induces cycles on the graph, with
each transition corresponding to a comparison between input com-
ponents, i.e., state-to-state switch. In the noiseless case, all switches
are deterministic. When noise is present, transitions become proba-
bilistic and the probability of “correct” switches (as prescribed in the
noiseless case), decreases with increasing noise strength.

Assuming that walks on this probabilistic graph exhibit the
Markov property (i.e., the probability of the next state only depends
on the current one), the graph can be seen as a discrete-time Markov
chain, where a given input x ∈ X and a comparison success probabil-
ity vector Ecsi define the transition matrix Psi ,sj . For any such system,

it is possible to derive the success probability vector Ecsi (or equiv-
alently, the error probability vector 1 − pc) associated with a given

noise level. Pulse-coupled systems such as the subject of our previous
simulations, for example, do exhibit the Markov property, because
of the memory-erasing effect of simultaneous pulse-driven resets in
their stable clusters. The probability vectors Ecsi for three different
SNR are shown in Fig. 7(b).

For the sake of exposition, we here simplify analysis by setting
a single parameter pc as a global comparison success probability at
each state. Note that the pc probability parameter is tied to the noise
level in the heteroclinic network the Markov chain is abstracting.
Manipulating this parameter is akin to manipulating a signal-to-
noise ratio (SNR) parameter in the system implementing the het-
eroclinic network, as we have done in our previous simulations. As
the SNR decreases, the probability of a correct transition approaches
chance. Similarly, in this analysis, we manipulate the pc parameter in
the range between determinism pc = 1 and chance pc = 1

nt
, with nt

being the number of possible transitions at each state.
For pc < 1, the Markov chain is ergodic, allowing for the ana-

lytical derivation of the limiting distribution ψ of its states, i.e., the
probability for each state s to be the active state at time t, for t → ∞.
By knowing the limiting distribution ψ and the transition matrix P,
it is possible to calculate the probability of any n-walk y = (si)

n
i=1 as

follows:

p
(

(si)
n
i=1

)

= ψs1

n
∏

i=2

Psi−1 ,si . (7)

It is then straightforward, given any input x ∈ X and compari-
son success probability pc < 1, to calculate the probability distribu-
tion P(Y|x ∈ X) of output n-walks y ∈ Y on the graph and, thus, to
calculate the Mutual Information I(X; Y) between inputs and walks.

For pc = 1, the Markov chain is non-ergodic, thus requiring
a different approach for the calculation of walk probabilities and
resulting mutual information. In this case, given an input, all state
sequences converge to one of a finite number of cycles. In the limit
of t → ∞, only n-walks on those cycles have probability greater than
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FIG. 8. MI curves resulting from a Markov chain analysis of known hetero-
clinic networks. MI curves for different probability of correct switches pc (pc = 1
for the noiseless case) for S2 × S2 × S1, S2 × S1, S2 × S2 × S2 × S1, and
S3 × S3 × S1, which have been reported on phase- or pulse- coupled networks
or both. For all symmetries, one of the large clusters is unstable and the neuron
receiving the strongest input becomes the new singleton.We again consider walks
of length 11. Note that for all system exhibiting a S2 cluster, chance is associated
with pc = 1

2
(2 transitions per state), while for the system exhibiting S3 unstable

clusters, chance is associated with pc = 1
3
(3 transitions per state).

zero, because any transient walks any of the cycles will only ever
happen once, and the corresponding probabilities will thus converge
to zero as all subsequent walks are confined to one of the cycles.
The initial state, however, stills determines which specific cycle is
approached. If we assume a uniform probability over starting states,
it is possible to derive the probability of observing a cycle by sim-
ply taking the proportion of starting states eventually leading to that
cycle. In turn, the probability of any given n-walk, is either 0, if the
n-walk is not a walk on one of the cycles, or equal to the probability
of the traced cycle divided by the number of possible n-walks on that
cycle. Having derived the n-walk probability distribution for a given
input, it is thus possible to calculate the mutual information I(X; Y)
between inputs and walks.

In Fig. 8, we show the result of this analysis performed on three
graphs corresponding to four known heteroclinic networks. All of
these display the same non-monotonicity emerging from the pre-
viously discussed numerical simulations. In particular, the peak MI
emerging from the Markov chain analysis of the S2 × S2 × S1 sys-
tem, closely resembles the one found in numerical simulation (see
the supplementary material). Note that, for this analysis, the num-
ber of n-walk distributions to be considered in order to compute
the mutual information depends on the size of the input set. As this
grows factorially with the number of oscillators in the heteroclinic
system, systems with more than a few oscillators are still numerically
challenging. For this reason, our analysis is here limited to smaller
systems.

V. CONCLUSION

In this work, we studied how noise and input signals jointly
affect the Mutual Information Rate (MIR) in heteroclinic com-
munication channels, shifting the focus from heteroclinic comput-
ing to information transmission. As a concrete example, we have

focused our efforts on a system of delta-pulse-coupled oscillators,
studying how the signal-to-noise ratio (SNR) controls the measured
input–output MIR. Specifically, we studied how the magnitude of
pairwise differences between input components interacts with noise
to control the MIR. Interestingly, MIR is a non-monotonic func-
tion of the SNR: for small SNR, the dynamics are dominated by
noise-triggered, random state switches, thus exhibiting the low-
est MIR; for large SNR, the dynamics almost exclusively exhibit
deterministic switches triggered by the signal, yielding a cyclic tra-
jectory approaching a specific sequence of states and, thus, exhibit-
ing a well-defined MIR (here taken as baseline); for a consider-
able range of intermediate values of SNR, the MIR increases from
its baseline value, before falling to its minimum, thus exhibiting
non-monotonicity. This occurs due to a trade-off between a small
amount of noise-triggered “wrong” turns and a wider exploration of
the network of states, where a wrong turn can trigger a new deter-
ministic transient trajectory returning to a cyclic trajectory. The
overall result is a larger variety of comparisons between the input
components by approaching a larger variety of saddles, at the cost
of a small amount of computing errors. From the point of view of
information transmission, this translates to more knowledge being
transmitted about the input signal overall, albeit a less certain one at
each switch event, due to noise.

Our choice of network of oscillators was dictated by practical
considerations of numerical simulation, due to the large amount
of simulation trials required to accurately compute the MIR, and
because many properties of heteroclinic networks, e.g., number of
states, grow exponentially with the system size. Notwithstanding the
specific implementation of heteroclinic network considered in this
study, our results are general as they do not (qualitatively) depend
on the system size, oscillator model, or the specific heteroclinic net-
work realization, but only on the existence of a heteroclinic network
of unstable states and saddles’ unstable manifolds with more than
one direction. For any such system, there will be a trade-off between
uncertainty at each state switch and a resulting greater exploration
of the network of states, leading to MIR sweet spots for given SNR
ranges. To support this view, we presented a Markov chain analy-
sis of networks of symmetrical saddle states and show that, from a
system-agnostic perspective, different networks exhibit qualitatively
the same non-monotonic MI curves.

Our results may have direct implications on a variety of inter-
disciplinary issues concerning computation in natural and artificial
systems. Notably, heteroclinic dynamics have been suggested as an
underlying mechanism for the olfactory dynamics in animals.30,40–42

In this context, our results on increased MIR through noise sug-
gest yet a new role for noise in neural information processing and
transmission, adding to works on: “stochastic resonance,”43–45 where
noise facilitates the detection of sub-threshold inputs; on “system
size resonance,”46 where the system size becomes an order parame-
ter; on “coherence resonance”47 where noise induces a more coher-
ent (better synchronized) state; and, more generally, on “stochas-
tic facilitation.”48 For artificial systems, our results reveal a clear
picture of how noise affects computation and information trans-
mission in heteroclinic networks composed of symmetrical states
(under index permutation) and potentially on systems exhibit-
ing complex state-space trajectories, e.g., hierarchical heteroclinic
networks,49 networks of saddle states composed of states with
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FIG. 9. Sequence of visited states. The associated video demonstrate sequences
of visited states and their relative frequency of occurrence for different signal--
to-noise ratios. Multimedia view: https://doi.org/10.1063/5.0054485.1.

different symmetries,31–34 or models of specific features of the
mind,50–52 because their dynamics also rely on unstable states or
similar structures. Notably, our numerical results are calculated on
spiking neural networks with full resets, which promote an explicit
loss of memory, i.e., simultaneous resets induced by incoming spikes
instantly erase voltage differences between oscillators in the same
stable cluster. Thus, even though our Markov chain analysis suggests
a degree of generality, whether our results generalize to systems of
phase-coupled units, where memory may fade exponentially fast, or
not is still an open question.

Overall, our results come in a timely manner as the micro-
processor industry is exploring the use of “imprecise” processors
to compute and transmit information with greater speed and lower
power consumption.53,54

SUPPLEMENTARY MATERIAL

See the supplementary material for explanation of how we
implemented noise in our system and how it affects its dynamics
such that the results can be reproduced. Furthermore, we present
the results on the mutual information and mutual information rate
calculated over different path lengths. Finally, to provide some intu-
ition on how we generate the statistics in our work, we also provide
a video, see Fig. 9 (Multimedia view), showing transitions between
states for short intervals of time for different signal-to-noise ratios.
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