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The number of units of a network dynamical system, its size, arguably constitutes its most fundamental
property. Many units of a network, however, are typically experimentally inaccessible such that the network
size is often unknown. Here we introduce a detection matrix that suitably arranges multiple transient time
series from the subset of accessible units to detect network size via matching rank constraints. The
proposed method is model-free, applicable across system types and interaction topologies, and applies to
nonstationary dynamics near fixed points, as well as periodic and chaotic collective motion. Even if only a
small minority of units is perceptible and for systems simultaneously exhibiting nonlinearities,
heterogeneities, and noise, exact size detection is feasible. We illustrate applicability for a paradigmatic
class of biochemical reaction networks.
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Networks of interacting dynamical units prevail across
natural and human-made systems [1–3]. Examples range
from intracellular gene-regulatory networks critical for
survival [4,5] to power grids supplying electric energy
on demand [6–11] and to social and transportation net-
works determining how ideas and diseases spread [12–14].
Key properties of the physical interaction topology in such
networks fundamentally underlie their function such that
revealing them from measurements of the collective
network dynamics constitutes a topical field of research
[15–27].
However, dynamical data from many networks are often

only incompletely accessible, because many of their units are
hidden from measurements. Thus the dynamics of a possibly
small subset of units might be available only. Such hidden
units typically complicate the inference of direct interactions
by correlating or decorrelating the dynamics of measured
units in unpredictable ways [28,29]. Nevertheless, partial
information about a networked system may provide hints
about overall features of the network. For instance, approxi-
mating the network dynamics via model differential equa-
tions may help to detect the existence and location of a single
hidden unit through heuristics performed on reconstructed
connectivity matrices for different time windows [30–32].
Other schemes exploit dynamics to determine paths from
observed, via hidden, to observed units [33–35] and typically
require to know the exact number of hidden units a priori.
Yet, how to reveal the number of many hidden units, or
equivalently, the overall network size from time series
recorded from the collective dynamics of accessible units
remains generally unknown.
Here, we show that time series observed from the

transient collective dynamics of a subset of perceptible

network units (accessible to measurement) may robustly
reveal the exact number of hidden units and thus identify
the network size. We demonstrate how specifically group-
ing different transient time series obtained from perceptible
units into a detection matrix yields bounds relating the rank
of such matrix to the size of the full network, see Fig. 1. We
propose a simple detection algorithm to exactly find the
number of hidden units. The number of time series
necessary to reliably identify network size only linearly
scales with network size, thus making size detection
scalable. The proposed method generalizes from linear
and linearized dynamics near fixed points to dynamics near

(a)

(c)

(b)

FIG. 1. Revealing network size from the dynamics of percep-
tible units. (a) Scheme of a network of N units where only n < N
units (colored disks, encircled by dashed line) are accessible for
measurement (perceptible). (b) Transient time series measured
from accessible units, started from different initial conditions
[trajectory colors match observable units in (a)]. (c) Observed
nonlinear, multidimensional time series are arranged into the
detection matrix Tk, satisfying the condition rankðTkÞ ¼ N if and
only if kn > N andM > N, according to Eq. (6) introduced here.
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periodic orbits as well as to collective irregular and chaotic
dynamics, without requiring knowledge of a system model.
Even for systems simultaneously exhibiting nonlinearities,
heterogeneities, and noise, detection may be feasible
and exact.
Theory of detecting network size from observed

dynamics.—Consider a network dynamical system

_z ¼ FðzÞ; ð1Þ

of an unknown number N of coupled units i ∈ f1;…; Ng,
where zðtÞ ≔ ½zðtÞ; z2ðtÞ;…; zNðtÞ�T ∈ RN is the system’s
state at time t ∈ R and F∶RN → RN an unknown smooth
function that defines its rate of change and thereby the
collective network dynamics. For simplicity, we first
present the idea of identifying network size for noise-free
linear dynamics close to fixed points and below discuss
how it generalizes to more complex dynamics, including
periodic and aperiodic irregular dynamics, e.g., noisy and
collective chaotic motion. Close to a fixed point z� where
Fðz�Þ ¼ 0, a first order approximation of Eq. (1) in terms of
xðtÞ ¼ zðtÞ − z� yields

_xðtÞ ¼ AxðtÞ; ð2Þ

where A ∈ RN×N with elements Aij ¼ ∂Fi=∂xjðz�Þ is the
Jacobian matrix of F evaluated at z� and defines an
unknown proxy for the connectivity of the system, i.e.,
Aij ≠ 0 if unit j directly acts on i and Aij ¼ 0 otherwise.
Solving Eq. (2) yields xðtÞ ¼ expðAtÞxð0Þ, where xð0Þ ∈
RN is a vector of initial conditions at t ¼ 0 and expð·Þ
denotes the matrix exponential function.
How can we uncover network size, i.e., find how many

dynamical variables N the system has if we measure the
dynamics of only n < N variables? Without loss of gen-
erality, we observe the first n components of xðtÞ and
all other h ¼ N − n state variables are hidden from meas-
urement. The time series of measured states yðtÞ ≔
½x1ðtÞ; x2ðtÞ;…; xnðtÞ�T ∈ Rn then satisfy the projection

yðtÞ ¼ ½ In 0 �xðtÞ ¼ ½ In 0 � expðAtÞxð0Þ; ð3Þ

where In is the n × n identity matrix and 0 represents the
n × h matrix full of zeros. Thus we obtain the constraint

yiðtÞ ¼
XN
j¼1

θijðtÞxjð0Þ ð4Þ

for every component i ∈ f1; 2;…; ng, where θijðtÞ ¼
½exp ðAtÞ�ij is some unknown, time-dependent function
and xjð0Þ is the jth component of the initial state, equally
unknown for j ∈ fnþ 1;…; Ng. Our central question is
now can we find h ¼ N − n despite these many unknowns?

Rewriting the constraint (4) in matrix form yields

yðmÞðtÞ ¼ ΘðtÞxðmÞð0Þ; ð5Þ

where ΘðtÞ ∈ Rn×N and yðmÞðtÞ is the mth observable
trajectory at time t generated from complete initial con-
ditions xðmÞð0Þ, different for different m. Considering M
different trajectories yields a system YðtÞ ¼ ΘðtÞX0, where
YðtÞ ≔ ½yð1ÞðtÞ; yð2ÞðtÞ;…; yðMÞðtÞ� ∈ Rn×M is the matrix of
known dynamical states at time t and the matrix X0 ≔
½xð1Þð0Þ; xð2Þð0Þ;…; xðMÞð0Þ� ∈ RN×M collects different ini-
tial conditions. If these trajectories are sampled at k
different time points t1;…; tk, for each trajectory measured
relative to its initial time, we group all values of YðtÞ
evaluated up to time tk into a detection matrix

Tðk;MÞ ¼ ΘðkÞX0; ð6Þ

where Tðk;MÞðt1;…;tkÞ≔ ½Yðt1ÞT;…;YðtkÞT�T∈Rkn×M and
ΘðkÞðt1;…; tkÞ ≔ ½Θðt1ÞT;…;ΘðtkÞT�T ∈ Rkn×N [36]. We
note that here the lower indices k, M refer to the size
(kn ×M) of the detection matrix, not to any element of a
matrix.
Equation (6) linearly relates the detection matrix Tðk;MÞ

assembled from the M different time series sampled at k
different times each to unknown maps ΘðkÞ encoding the
dynamical evolution (i.e., consequences of the flow of the
system) and to the initial conditions X0 with also ðN − nÞM
unknown elements. Despite little is known about ΘðkÞ and
X0, the time series merged into the linear system (6) already
provide valuable information about the network size N.
Specifically,

rankðTðk;MÞÞ ≤ min
n
rankðΘðkÞÞ; rankðX0Þ

o
; ð7Þ

and the rank of Tðk;MÞ generically increases with increasing
the number M of time series [rankðX0Þ ¼ min ðN;MÞ],
as well as with increasing the number of sampling points k
on each of them, because the rank of ΘðkÞ increases
[rankðΘðkÞÞ ¼ min ðkn; NÞ], until the rank is maximal
and equals N. Merging sufficiently many time series,
M > N, of sufficient length k > N=n we obtain
rankðΘðkÞÞ ¼ rankðX0Þ ¼ rankðTðk;MÞÞ ¼ N. At this point,
adding more time series, i.e., increasing M, or extending
observations on each of them, i.e., increasing k, does not
further increase rankðTðk;MÞÞ so computing the rank of the
detection matrix Tðk;MÞ assembled from time series of
the subset of the n measured units yields the network size
N via Eq. (6). Thus,

ĥ ¼ rankðTðk;MÞÞ − n ð8Þ
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is the estimated number of hidden units. Interestingly, there
is no principal lower bound on how small nmust be for this
relation to hold theoretically. In practice, measurement
errors, noise, and limits in the detection matrix condition
number [37] limit feasible ratios n=N; see our analyses.
Algorithm for detecting network size from time series

data.—One practical way of inferring network size through
the rank inequality (7) is to numerically compute the
ordered singular values σ ¼ ðσ1;…; σbÞ of Tðk;MÞ such
that σ1 ≥ σ2 ≥ … ≥ σb, where b ¼ minfkn;Mg specifies
the number of singular values, and to detect the largest
Δmax of the gaps

Δj ¼ logðσjÞ − logðσjþ1Þ ð9Þ
on the logarithmic scale. To safely detect the network size
N given a known number n of measured units from
iteratively increasing the number of measurements M
[see Fig. 1(c)], we propose the following algorithm.
(1) Start, given the lower bound n ≤ N, with a

set of M ¼ nþ 1 measurement trajectories yðmÞðtÞ,
m ∈ f1;…;Mg. (2) Choose k ¼ ⌈ðM=nÞ⌉ different time
instants tκ ∈ ft1;…; tkg separated byΔt ¼ ttot=k, where ttot
is the total duration of each time series considered and t1 its
start time. (3) Construct the detection matrix

Tðk;MÞ ¼

2
664
yð1Þðt1Þ … yðMÞðt1Þ

..

. ..
.

yð1ÞðtkÞ … yðMÞðtkÞ

3
775 ð10Þ

from the measurements yðmÞðtÞ and compute its b ¼
minfkn;Mg ¼ M singular values σðTðk;MÞÞ. (4) Compute
logarithmic gaps Δj as in Eq. (9). (5) Save the largest gap

ÑðMÞ
n ≔ maxfΔjg, where j ≥ n and j ∉ fn; 2n;…g ∪

fnþ 1; 2nþ 1;…g, avoiding gaps at integer multiples
of n. (6) To robustly identify size also in case N is such
an integer multiple, repeat steps 2–5 for n − 1;…; n − 4
measured units (thus ignoring actually measured units) and

take as the estimate N̂ðMÞ ≔ medianfÑðMÞ
n g. (7) If N̂ðMÞ

does not increase further, stop and define N̂ ≔ N̂ðMÞ as an
estimate of network size; otherwise, repeat steps 2–6 with
one additional measurement, M → M þ 1.
Here, step 2 ensures that finally, we will have kn > N

because M > N, see the examples below.
Performance of network size detection.—To test the

predictive power of our theory combined with the simple
algorithm provided we inferred the network size for five
different classes of network dynamics: (i) noiseless, dif-
fusively coupled one-dimensional linear units collectively
converging to stable fixed points, (ii) phase-oscillator
networks close to periodic phase-locked states, systems
of N three-dimensional coupled oscillatory units that
exhibit (iii) regular periodic as well as (iv) irregular chaotic
collective dynamics, and (v) noisy, heterogeneous systems

with nonlinear dynamics. For settings (i) and (ii), we define
the class of diffusively coupled systems of single-variable
units via Eq. (1) with FiðzÞ ¼ ωi þ

P
N
j¼1 Aijfðzj − ziÞ,

where f∶R → R is a smooth function and ωi ∈ R is a
constant driving signal. We provide all model and simu-
lation details in the Supplemental Material [38].
For the simplest setting of linear noiseless systems,we take

fðxÞ ¼ cx [38] with stable fixed point z� [Figs. 2(a)–2(c)].
The estimated rank of the detection matrix (6) indicated by a
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FIG. 2. Singular values of detection matrix yield network size.
(a),(b) Singular values σj of detection matrix Tðk;MÞ displayed for
networks of (a),(c),(e) linear, diffusively coupled units and (b),
(d),(f) nonlinearly coupled Kuramoto oscillators near a phase-
locked state (directed random graphs of N ¼ 100 units with in-
degree g ¼ N=10, n ¼ 30 measured, see Supplemental Material
[38] for more details). The largest gap ΔN reveals network size.
Insets: Example trajectories. (c),(d) Size of ΔN relative to largest
Δj for j < N rises above detection threshold at unity (horizontal
dashed line). Every data point averaged over 20 independent
random networks (M ¼ 1.5N). (e),(f) For increasing number of
experiments M, the inferred number N̂ðMÞ of units proportionally
increases until it stays constant at N̂ðMÞ ¼ N once M > N. Inset:
Minimum number Mmin of experiments to achieve N̂ðMÞ ¼ N for
networks of different sizes N (red squares, n ¼ N=3 measured
units). All results well fit the prediction Mmin ¼ N þ 1 (solid
line). For Kuramoto dynamics, the prediction isMmin ¼ N þ 2 as
one measurement time series is used as a reference.
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pronounced gap in its singular value spectrum accurately
predicts network size [Fig. 2(a)] and is reliable already if only
about 10% of the units are measured [Fig. 2(b)]. Measuring
larger fractions n=N of units rapidly further improves
distinguishing the largest gap ΔN from other gaps Δj. For
nonlinearly coupled systems of phase oscillators
[fðxÞ ¼ c sinðxÞ, ωi ∈ ½−0.1; 0.1�, see [38] ], performance
is similarly high despite locally linear approximations
[Figs. 2(d)–2(f)].We expected this similarity in performance,
because phase-locked states map to fixed points in a
corotating frame of reference and linearization of the sine
function constitutes a well-conditioned approximation
for jxj ≪ π=2.
Complex transient dynamics and biological networks.—

The idea introduced above is readily generalized to systems
of higher-dimensional units and more complex forms of
collective dynamics, including, in principle, arbitrary peri-
odic or chaotic motion. Now consider that z� is not a fixed
point of the dynamics Eq. (1) but any point in state space.
We locally approximate near z� the nonlinear flow Φtð·Þ
[39] defined for all solutions zðtÞ of the original nonlinear

differential equation (1) via zðtÞ ¼ Φt½zð0Þ� from some
initial conditions zð0Þ. The difference vector δzðtÞ ¼
zð1ÞðtÞ − zð2ÞðtÞ of two close-by trajectories indexed 1
and 2 then satisfies (see Supplemental Material [38] for
a step-by-step derivation)

δzðtÞ ≐ DΦt−t� jz�δzðt�Þ; ð11Þ

where DΦt−t� jz� denotes the Jacobian matrix of Φt−t� ð·Þ
evaluated at z� and the symbol “≐” indicates first order
approximation in the components of δzðt�Þ. Employing a
projection equivalent to Eq. (3) above, we now take the
time series of the measured units to be

yðtÞ ¼ ½ In0 �δzðtÞ; ð12Þ

the matrix generating the dynamics to have elements

θijðtÞ ≔ ðDΦt−t� jz�Þij ¼
∂Φi;t−t�

∂zj
����
z�
; ð13Þ

and re-obtain Eq. (4) for the difference variables. We
emphasize that the resulting equations are mathematically
identical to Eq. (4) such that combining time series data

(a)

(c) (d)

(b)

FIG. 3. Network size from complex transient dynamics. Pro-
jection of sample trajectories of one unit i for (a) periodic and
(b) chaotic dynamical regimes. Each time, the system passes a
certain region on the attractor (highlighted by a dashed square), a
random perturbation is applied to the components z1;i (insets).

(c),(d) Using deviations δzðmÞ
1;i ðtÞ ¼ zðmÞ

1;i ðt − t�mÞ − zð1Þ1;i ðt − t�1Þ for
each perturbation experiment m to construct Tðk;MÞ reveals the

correct system size N̂ðMÞ ¼ N, if a sufficient fraction n=N of units
is measured. All data points averaged over 20 random network
realizations of N ¼ 100 units with degree ten, exhibiting Rössler
oscillatory dynamics, with state ziðtÞ ¼ ðz1;iðtÞ; z2;iðtÞ; z3;iðtÞÞ,
and diffusive coupling between z2 components. In the examples
shown, the z1 components of units i are perturbed and measured.
Despite the coupling being in the z2 components, network size
identification is accurate at N̂=N ¼ 1.

(a) (b)

(c) (d)

FIG. 4. Exact size detection in biological circuits simultane-
ously exhibiting nonlinearities, heterogeneities, and noise. (a) Ad-
jacency matrix of a coupled Michaelis Menten kinetic network
(N ¼ 100, link weights in gray scale) and (b) its collective noisy
dynamics (units of ten randomly selected units displayed,
η ¼ 10−4). As for coupled periodic and chaotic systems,

deviations δzðmÞ
i ðtÞ¼zðmÞ

i ðt−t�mÞ−zð1Þi ðt−t�1Þ are used for the
reconstruction. (c) Increasing the number M of measurements
taken into account in the detection matrix reveals the network size
once M > N in the absence of noise. (d) The minimum number
Mmin of experiments required to obtain an exact size prediction
N̂ðMÞ ¼ N forM ≥ Mmin, in dependence of the noise level η > 0.
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as before into a detection matrix yields the network size
exploiting the same principles and steps as above. In
simulations, we consider zð2Þð0Þ ¼ z� for simplicity and
thus consider t� ¼ 0 and positive times t > 0. Figure 3
illustrates successful network size identification for high-
dimensional periodic motion and for collective chaotic
dynamics.
To illustrate applicability to biological circuits, we tested

networks displaying Michaelis Menten kinetics, a para-
digmatic model of biochemical reaction dynamics (see
Fig. 4 and the Supplemental Material [38]). Intriguingly,
exact size detection is feasible even in such systems
simultaneously exhibiting nonlinearities, heterogeneities,
and noise. Most interestingly, detection may be exact
despite noise. An increasing number of time series taken
into account still enables exact size identification, N̂ ¼ N.
See also Supplemental Material [38] Fig. S1 for a system-
atic evaluation of the influence of noise [40].
Discussion and conclusions.—In summary, we proposed

a theory for determining the network size from time series
data sampled from a potentially small subset of perceptible
units. The novel perspective offers a generic tool for
detecting the network size from a fundamental theorem
of linear algebra applied to linear constraints on a suitably
constructed detection matrix. The main conditions for
applicability are that (i) M > N trials are experimentally
feasible and that (ii) the sampling is such that data points
on a given trajectory are sufficiently close in state space for
the dynamics obtained from local linearization to well
approximate the real dynamics. While the time steps
t2 − t1;…; tk − tk−1 need to be the same in each measure-
ment, we emphasize that only very few time points, down
to k ¼ 2, are needed in principle. Moreover, even in
modular networks where most perceptible units are located
in one module, network size detection may work reliably
(see also Supplemental Material [38] Fig. S2).
Compared to the state of the art, the conditions under-

lying network size identification can be considered mild,
for at least two reasons. First, because so far only one or
potentially a few individual hidden nodes are identifiable at
all [30–32] whereas our approach enables the identification
of an extensive number of simultaneously hidden nodes.
These may even be the majority of all nodes in the network.
Second, because time series analysis methods of finding the
attractor dimension (that constitutes a lower bound of and
sometimes could equal the dimensionality of state space,
and thus the number N of active variables) requireM0 ≫ N
data points and in addition are typically limited to moderate
or even small N of the order of 10 or lower [42]. For
example, to obtain faithful attractor dimensions that con-
stitute lower bounds onN, as many asM0 > 104 data points
may be required for systems with N ¼ 3 active variables
[43], whereas our method requires M0 ¼ kM data points
with moderate or small k ≥ 2 and M just slightly larger
than N.

A related challenge is network observability [44–47],
that is to identify a sufficient set of units such that
measuring these units’ states reveals the collective state
of the entire network. In contrast, our work aims at
identifying the number of units in a network, not their
states. It is thus conceptually different and exhibits much
weaker requirements.
Previous approaches to detect hidden nodes are capable

of detecting a single hidden node in an otherwise com-
pletely perceptible network: Some [48] employ nonlinear
Kalman filters to fit the parameters of a given model and
use the covariance matrix of the fitting error; others first
approximate the dynamics via differential equations and
then determine the existence and location of the hidden unit
through heuristic methods [30–32]. Our theory instead
reliably captures many hidden units, is data driven, relies on
sampled time series, and thereby requires no model a priori.
Furthermore, it provides a mechanistic perspective that not
only determines the existence but also reveals the exact
number of hidden units. It may thus also complement
embedding methods for determining attractor dimensions
[42] that identify the number of active variables from
stationary time series, thereby opening up a way to broaden
insights about the collective dynamics of multidimensional
complex systems [47].
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