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Precise timing of spikes and temporal locking are key elements of neural computation. Here we
demonstrate how even strongly heterogeneous, deterministic neural networks with delayed interactions
and complex topology can exhibit periodic patterns of spikes that are precisely timed. We develop an
analytical method to find the set of all networks exhibiting a predefined pattern dynamics. Such patterns
may be arbitrarily long and of complicated temporal structure. We point out that the same pattern can exist
in very different networks and have different stability properties.
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Repeated patterns of spikes with temporal precision in
the millisecond range have been experimentally observed
in different neuronal systems [1–4]. They correlate with
internal and external stimuli and are thus discussed to be
essential for neural information processing (see, e.g., [5]).
Their dynamical origin, however, is unknown. One pos-
sible explanation for their occurrence is the existence of
excitatorily coupled feed-forward structures, synfire chains
[6–8], which are embedded in a network of otherwise
random connectivity and receive a large number of random
external inputs. Other studies point out that spike patterns
can originate as attractors of deterministic recurrent net-
works if inhibitory interactions dominate [9,10]. These
studies could already treat networks of complicated con-
nectivities and successfully found one specific network
solution for a given pattern. Yet it is still unclear which
set of networks have the potential to realize a given spiking
dynamics. Moreover, the recent studies considered inter-
actions without delays. Delays, however, are known to be
significant in biological neural systems [11] and to have a
strong impact onto even the qualitative dynamics of neural
networks (cf. [12–18]).

It is thus still an open question whether and how a
deterministic network, despite simultaneously exhibiting
delayed interactions and strong heterogeneities, can yet
display precisely timed spiking dynamics. If so, what are
the possible networks that generate a given dynamics?

In this Letter we study a class of spiking neural network
models with delayed interactions. We provide a solution to
an inverse problem for networks of arbitrary connectivity:
We present an exact analytical method to find the set of all
networks, by determining the coupling strengths, such that
they exhibit a given periodic spike pattern of arbitrary
temporal extent. The analysis shows that even arbitrarily
large networks with complicated connection topologies
and strong heterogeneities can yet display patterns of
spikes that are timed precisely. The class of networks
realizing a simple periodic pattern, i.e., one in which

each neuron fires exactly once before the sequence repeats,
is derived and parameterized analytically. The network
may have a mixture of both excitatory and inhibitory
couplings, with the stability of a pattern depending on
the particular coupling architecture.

Consider a network of N 2 N oscillatory neurons that
interact by sending and receiving spikes via directed de-
layed connections. One phaselike variable �l�t� specifies
the state of each neuron l 2 f1; . . . ; Ng at time t. A strictly
monotonic increasing rise function Ul defines the mem-
brane potential Ul��l� of the neuron, representing its sub-
threshold dynamics [12]. In the absence of interactions, the
phases increase uniformly obeying d�l=dt � 1. When �l
reaches its threshold, �l�t�� � �l, it is reset, �l�t� � 0,
and a spike is emitted. After a delay time �ml this spike
signal reaches the postsynaptic neuron m, inducing an
instantaneous phase jump

 �m�t� �ml� � H�m�"ml ��m��t� �ml����; (1)

mediated by the transfer function H�m�" ��� �
U�1
m �Um��� � "� that is strictly monotonic increasing

both as a function of " and of �. Here, "ml denotes the
strength of the coupling from neuron l to m. Sending and
receiving of spikes are the only nonlinear events occurring
in these systems. For simplicity of presentation, we here
focus on nondegenerate events: We consider arbitrary pe-
riodic patterns in which (i) all spikes are sent at nonident-
ical times and (ii) received at nonidentical times, and
(iii) neurons receiving a spike do not generate a new spike
at the same time. We focus on networks of identical
neurons Ul��� � U��� with the same intrinsic interspike
intervals fixed by �l � 1, on identical delays �ml � �, and
patterns without silent neurons (that do not spike within a
pattern due to sufficiently strong inibitory input). Below,
we will explain the underlying ideas of how to find the set
of all networks exhibiting a given pattern as an invariant
solution for this class of systems. Nevertheless, based on
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the analysis presented here, the developed method can be
further extended [19] to cover also different types of neu-
rons, heterogeneously distributed delays and thresholds,
and complicated stored patterns that include degenerate
spikes, multiple firings of the same neuron, and silent
neurons that never fire. Figure 1 illustrates such a general
case.

What characterizes a periodic pattern of precisely timed
spikes? Let ti, i 2 Z, be an ordered list of times at which a
neuron emits the ith spike occurring in the network, such
that tj > ti if j > i. Assume a periodic pattern consists of
M spikes. Such a pattern is then characterized by its period
T, by the times ti 2 �0; T� of spikes i 2 f1; . . . ;Mg, and by
the indices si 2 f1; . . . ; Ng identifying the neuron that
spikes at ti. To exclude technicalities in the presentation,
we assume that for all pairs ti and tj of subsequent spike
times of each neuron l, it receives at least one spike within
the interval �ti; tj� \ �ti; ti ��l�. Periodicity entails ti �
nT � ti�nM and si � si�nM for all n 2 Z. This imposes
conditions on the time evolution of the neurons’ phases.
Suppose a specific neuron l fires at K�l� times tik 2 �0; T�,
k 2 f1; . . . ; K�l�g within the first period. For the nondegen-
erate patterns considered, this implies

 �l�t
�
ik
� � 1; (2)

whereas at any other time t 2 �0; T�, t � tik for all k,

 �l�t
��< 1; (3)

to prevent untimely firing. The monotonicity of the transfer
function implies that the periodicity of the pattern is nec-
essary and sufficient [19] for the periodicity of the phases,

 �l�t� � �l�t� nT�; (4)

for all n 2 Z and all t 2 �0; T�. We therefore equivalently
consider �l�t� for t 2 �0; T� with periodic boundary con-
ditions. All times are measured modulo T and spike time
labels i are reduced to f1; . . . ;Mg by subtracting a suitable
integer multiple of M. Let P�i� 2 f1; . . . ;Mg denote the
spike arriving last before the firing time ti such that P�i� �
argminfti � �jjj 2 f1; . . . ;Mgg, where �j � tj � � is the
arrival time of the spike labeled j.

Moreover, let �j � �j�1 � �j be the time differences
between two successive arrivals. We can now rewrite
Eqs. (2) and (3) for neuron l as a set of conditions on the
phases �l��i� at each spike-arrival time �i, in terms of the
firing times tik of that neuron and spike-arrival times �j,

 �l��P�ik�� � 1� �tik � �P�ik��; (5)

 �l��j�< 1� �j; (6)

where k 2 f1; . . . ; K�l�g and j 2 f1; . . . ;Mg, j � P�ik� for
all k. The coupling strengths "ll0 , l, l0 2 f1; . . . ; Ng of a
network realizing a given pattern are now restricted by a
system of

PN
l�1 K�l� � M nonlinear equations andPN

l�1�M� K�l�� � �N � 1�M inequalities originating
from (5) and (6): After a firing of neuron l at time ti where
its phase is zero, conditions (5) and (6) impose restrictions
at each spike-arrival time while the time evolution pro-
ceeds towards the subsequent firing time tj of neuron l, as
illustrated in Fig. 2. As a result, we have

 

H"lsP�i��1
��P�i��1 � ti�< 1��P�i��1;

H"lsP�i��2
�H"lsP�i��1

��P�i��1 � ti� � �P�i��1�< 1��P�i��2;

H"lsP�j�
�. . .H"lsP�i��2

�H"lsP�i��1
��P�i��1 � ti� � �P�i��1� . . .� �P�j��1� � 1� �tj � �P�j��:

(7)

A particular solution [20] to the system (7), provides the
coupling strengths "ll0 , l0 2 f1; . . . ; Ng, of incoming con-
nections to neuron l. Solutions to systems analogous
to (7) for all neurons l define the coupling architecture
of the entire network. Often (7) is an underdetermined
system such that many solutions exist, implying that
many different networks realize the same predefined pat-
tern; cf. Fig. 3.

We can then require additional properties from the net-
work. For instance, a connection from a neuron l to m can
be absent (requiring the coupling strength "ml � 0), taken
to be inhibitory ("ml < 0), excitatory ("ml > 0) or to lie
within an interval. In particular, we can specify inhibitory
and excitatory subpopulations. In certain cases, such as for
networks of leaky integrate-and-fire neurons [21], U��� �
U���� � �1� exp������=�1� exp�����, � > 0, or
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FIG. 1 (color). Complicated spike pattern in a small network
(N � 15). (a) Network of eight integrate-and-fire (green) and
seven Mirollo-Strogatz (blue) neurons with distributed thresh-
olds �l 2 �0:5; 2:0� and delays �ml 2 �0:1; 0:9�. Each directed
connection between any two neurons is randomly chosen to be
present with probability p � 0:6. Connections are either excita-
tory (black) or inhibitory (red) (thicknesses proportional to
coupling strengths). (b) The spiking dynamics (green and blue
bars according to neuron type) of the network shown in (a)
perfectly agrees with the predefined pattern (period T � 1:3) of
precisely timed spikes (black bars underlying the colored ones).
The pattern includes several simultaneous spikes. Three neurons,
l 2 f4; 11; 12g, are switched off (nonspiking).
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Mirollo-Strogatz neurons [12], U��� � Ub��� �
b�1 ln�1� �exp�b� � 1���, b > 0, a solution of (7) can
be found in a simple way, because the system is then
reducible to be linear in the couplings or polynomial in
its exponentials.

Networks realizing a given pattern do not always exist.
This can already be observed from a simple example:
Consider a pattern with no spike arrival between two spikes
sent by the same neuron. Because of its free evolution

between the spiking times, their time difference must equal
the free period; hence a predefined pattern with different
interspike interval is not realizable by any network.

For a simple periodic pattern, the system (7) is guaran-
teed to have a solution, as long as basic requirements (e.g.,
the delays being smaller than the neurons’ intrinsic inter-
spike intervals) are obeyed. Without loss of generality the
neuron firing at time tl is labeled l, i.e., sl � l for l 2
f1; . . . ;M � Ng. An analytic parameterization of all net-
works realizing such a pattern is then given by
 

"lP�l��1 � H�1
�l��P�l��1�

��P�l��1 � tl�;

"lP�l��k � H�1
�l��P�l��k�

��l��P�l��k�1� ��P�l��k�1�;

"lP�l� � H�1
1��tl��P�l��

��l��P�l��1� ��P�l��1�;

(8)

in terms of the neurons’ phases �l��i�, l, i 2 f1; . . . ; Ng at
the spike-arrival times. Here k 2 f2; . . . ; N � 1g and
H�1
 ��� is the inverse of H"��� with respect to ". The

phases �l��i� are subject to the restrictions (6). This pa-
rameterization shows that an N�N � 1�-dimensional sub-
manifold of networks realizing the pattern exists in "ij
space. Additional features entail additional conditions on
the phases at the spike-arrival times: For instance, exclu-
sion of self-interaction is guaranteed by the conditions
�l��l� � � if there is no spike-arrival in (tl, �l), and
�l��l� ��l��l�1� � �l�1 otherwise, reducing the dimen-
sion of the submanifold of possible networks by N.
Moreover, requiring the couplings to be purely inhibitory
leads to the accessibility conditions

 �l��P�l��1� 	 �P�l��1 � tl; (9)

 �l��j�1� ��l��j� 	 �j; (10)

where j � P�l�. We can therefore successively choose
�l��P�l��m�, m 2 f1; . . . ; N � 1g, starting with m � 1.
Inequalities (9) and (10) hold with reversed relations for
purely excitatory coupling. Purely inhibitory realizations
exist if a pattern has period T > 1 (larger than the neuron’s
intrinsic interspike interval); otherwise �l�t

�
l � � 1 is not

accessible from �l�tl� � 0. Similarly, purely excitatory
realizations exist if a pattern has period T < 1.

Is a pattern emerging in a heterogeneous network stable
or unstable? We numerically investigated patterns in a
variety of networks and found that in general the stability
properties of a pattern depend on the details of the network
it is realized in; see Fig. 3 for an illustration. Depending on
the network architecture, the same pattern can be exponen-
tially stable or unstable, or exhibit oscillatory stable or
unstable dynamics. For any specific pattern in any specific
network, the linear stability properties can also be deter-
mined analytically, similar to the exact perturbation analy-
ses for much simpler dynamics in more homogeneous
networks [14,16]. More generally, in every network of
neurons with congenerically curved rise functions and

1 10 20

1 10 20

t1

t4
t5

t6

tim
e

t1

t4
t5

t6

tim
e

1

2

3

4

5

6

1

2

3

4

5

6

c

a b

d
t/time

t/time

T

T

FIG. 3 (color). (color) Two different networks (a),(c) realize
the same predefined pattern [(b),(d) gray lines]. A small random
perturbation is applied at the beginning of the second period. The
network dynamics (spike times relative to the spikes of neuron
l � 1, color coded for each neuron), found by exact numerical
integration [23] shows that in network (a) the pattern is stable
and thus regained after a few periods (b); in network (c) it is
unstable (d) and eventually another pattern will be assumed.
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FIG. 2 (color). (color) Restriction of a neuron’s dynamics
between its firing events (7). In this example, two spikes arrive
between the firing times ti and tj of neuron l. The solid line
indicates one possible time evolution of the phase �l�t�.
Between the firing times, �l�t� may follow any path within a
possibly semi-infinite polygon (gray shaded; green dashed lines
show other possible trajectories). A too large phase at �P�i��1

contradicts (7) and will lead to early firing (dark red dashed line).
The phase at �P�j� is fixed (red dot). Any other phase inconsistent
with the equality in (7) would lead to a firing time earlier or later
than predefined (light red dashed lines).
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with purely inhibitory (or purely excitatory) coupling, a
nonlinear stability analysis shows that the possible non-
degenerate patterns are either all stable or all unstable. For
instance, in purely inhibitory networks of neurons with rise
functions of negative curvature, such as integrate-and-fire
neurons, every periodic nondegenerate spike pattern, no
matter how complicated, is stable.

In summary, we presented a method to find the set of all
networks realizing a predefined periodic pattern of spikes,
and for imposing additional constraints, for instance spec-
ifying absent connections and choosing inhibitory or ex-
citatory subpopulations. A predefined simple periodic
pattern is particularly interesting because a network real-
izing it is guaranteed to exist; here we parameterized
analytically all such networks.

In general, these results demonstrate that precise, repro-
ducible dynamics arises even in high-dimensional hetero-
geneous complex systems where it might be unexpected.
The design method of solving an inverse problem pre-
sented here, capable of finding all networks that exhibit a
predefined dynamics, might thus be of interest in the theory
of coupled oscillators and complex networks and contrib-
utes a novel perspective to theoretical neuroscience. The
method can be extended to include heterogeneities in all
parameters and nondegenerate patterns [19], hidden neu-
rons outside a core network, as well as nonperiodic pat-
terns, by dropping the periodicity constraint (4).

In particular, our results shed a new light on how pat-
terns of precisely timed spikes may emerge in deter-
ministic neural network dynamical systems, even for bio-
logically realistic architecture. For instance, these net-
works may simultaneously exhibit strongly heterogene-
ous parameters, complicated topology, and substantial
and distributed delays. However, future work still needs
to fully answer how experimentally observed synchroniza-
tion [2] as well as recurrent patterns of spikes [1,3,4] really
arise. Important topics of theoretical research include, for
instance, (i) the exact dynamics of networks of excitable
neurons that are either excited by recurrent network inputs
or by external stimuli [22], (ii) spike patterns that are not
periodic but separated by intervals of irregular activity
[24], as well as (iii) cortical songs which are sequences
of patterns occurring repeatedly in the same order but
varying in the timing between patterns [3,4]. Studies in
these directions could further clarify mechanisms used for
information processing in such networks. In particular, it
will be exciting to see whether biological neural networks

rely on stochastic features of topology and input [8] or the
exact wiring diagram and precise single neuron dynamics
play a significant role in creating a temporal code.
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under Grant No. 01GQ0430.
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