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Abstract
The field of bio-inspired computing has established a new Frontier for conceptualizing information
processing, aggregating knowledge from disciplines as different as neuroscience, physics, computer
science and dynamical systems theory. The study of the animal brain has shown that no single
neuron or neural circuit motif is responsible for intelligence or other higher-order capabilities.
Instead, complex functions are created through a broad variety of circuits, each exhibiting an
equally varied repertoire of emergent dynamics. How collective dynamics may contribute to
computations still is not fully understood to date, even on the most elementary level. Here we
provide a concise introduction to bio-inspired computing via nonlinear dynamical systems. We
first provide a coarse overview of how the study of biological systems has catalyzed the
development of artificial systems in several broad directions. Second, we discuss how
understanding the collective dynamics of spiking neural circuits and model classes thereof, may
contribute to and inspire new forms of ‘bio-inspired’ computational paradigms. Finally, as a
specific set of examples, we analyze in more detail bio-inspired approaches to computing discrete
decisions based on multi-dimensional analogue input signals, via k-winners-take-all functions.
This article may thus serve as a brief introduction to the qualitative variety and richness of
dynamical bio-inspired computing models, starting broadly and focusing on a general example of
computation from current research. We believe that understanding basic aspects of the variety of
bio-inspired approaches to computation on the coarse level of first principles (instead of details
about specific simulation models) and how they relate to each other, may provide an important
step toward catalyzing novel approaches to autonomous and computing machines in general.

1. Introduction

Biological information processing systems are multi-scale, ranging from systems of a few molecules and sin-
gle cells to large neural networks (NNs). Complex NNs, such as in the animal brain, can perform a broad
range of information processing tasks [1]. By integrating multi-dimensional sensory signals with memory,
they generate complex self-organized behaviors, often also integrating past experiences in seemingly unrelated
fields. Even though these natural dynamical systems operate in continuous-time, often in continuous-state
(analog) and in intrinsically noisy environments, they are capable of performing robust parallel computations.
Understanding neuronal networks and basic mechanisms underlying their dynamics thus provide a formidable
opportunity to unveil new architectures for artificial computing machines.

Over the past decades, an increasing number of studies on artificial systems attempting to remodel or out-
perform related biological systems has been developed across subjects, from mathematics and physics [1–4] to
computer science and engineering [5–7]. Some already drive the latest information revolution via a paradigm
of machine learning (ML) [8]. ML approaches provide ways to explore large data sets for classification or
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regression, and, more interestingly, to find solutions to computational tasks in an unsupervised manner (with-
out human intervention) by exploiting various correlations of provided data, even if they are not apparent to
a trained human. Another example is dedicated artificial intelligence, where machines extract probabilities of
future events based on innumerable examples, culminating on computers beating the best humans in games
with incredible numbers of configurations as chess [9] and, later, the GO games [10].

Even though powerful, broadly used ML approaches only exploit a few features of biological systems, such
as parallel and distributed computation, mostly on feed-forward architectures. In contrast, biological NNs
exhibit a wide variety of neurons, neural and communication features and network architectures [11–13],
exploiting an equally large variety of emergent dynamics to compute. Their study has already unveiled a vari-
ety of new bio-inspired approaches to computation, such as long-term memory models [14], computation
via precise spike timings [15] or complex trajectories in state space [16–20], signal processing via nonlinear
recurrent interactions [21] and neural plasticity driven approaches to robotics [22] and computer vision [23].
Even though these are not broadly developed or adopted, core aspects of them may in time prove essential, as
for ML after the advent of large unlabeled data sets. Some of the most intriguing approaches exploit dynam-
ical systems to compute and take advantage of dynamics of pulse-coupled systems that communicate only at
discrete instances in time, to efficiently exploit the time domain.

In this article, we focus on the value of studying the dynamics of biological neural systems and basic mod-
els of them to characterize fundamental computing features with potential applications in artificial systems.
We first provide a short overview on novel and prominent bio-inspired approaches to computation such as
layered NNs [8], pattern generators [24] and reservoir computing (RC) [21] to emphasize their complemen-
tarity and show that basic theoretical work on fields like biology and cognition may yield applications and
implementations with high impact; second, we discuss the role of spiking neurons [25, 26] and their poten-
tial for unveiling and implementing novel computational paradigms; finally, we present in more detail the
main dynamical systems’ approaches to discrete decision making for the specific instance of winner-takes-all
(WTA) computations [27]. In particular, we consider in depth two collective dynamics underlying computing,
one based on heteroclinic dynamics [20, 28] and one on state-dependent inhibitory coupling [29], opening up
a pathway toward arbitrarily complex information processing via WTA computation.

2. Bio-inspired perspectives on computation

Bio-inspired computation is a much older field than the latest wave of ML may suggest. Differently from the
problem-solving direction of recent research, its first steps were more concerned with understanding the under-
lying mechanisms of neural systems [30, 31], such as the fundamentals of neuronal activity [32] and memory
formation [33], and attempted, with different levels of success, to provide an understanding of cognition
involving language and memory [34]. The field now known as connectionism [35] provided an alternative
to more traditional symbolic approaches to model and study cognition [31], offering a functional approach
instead. The basic idea is: if we can create artificial NNs with a certain level of detail, modeling a given neural
circuit, we could in principle observe the emergence of discrete patterns of activity which match the behavior
or measured neuronal activity in biological systems, thus providing insights on their underlying mechanisms.
A seminal result related to computation has been achieved early from analyzing simple threshold neurons and
networks of such units, now known as perceptron networks [36]. Such units exhibit binary outputs defined
via a simple threshold. If the input signal is strong enough, the output is one; if not, it is zero. Due to their
mathematical tractability, perceptrons and systems of threshold units received broad interdisciplinary interest,
from biology and cognitive science to exact sciences.

The original perceptron consists of a two-layer network, one input layer and one output layer. Informa-
tion is encoded in the strength (or weights) of the connections between both layers. The generalization of
the perceptron architecture, known as multi-layered perceptrons includes hidden layers between the input
and output layers and allow, in principle, for the encoding of any function [30]. These layered networks are
the precursors of modern ML approaches, as they differ from modern systems mostly regarding the larger
number of layers and the learning rules employed rather than the fundamental architecture: simple nodes dis-
tributed in layers with multiple interconnections in a forward direction, see figure 1(b). Later, the introduction
of the back-propagation algorithms [37] provided the mathematical foundations for teaching desired associa-
tions in deeper networks (many layers), what was not possible, in general, before. Among the many variations
and improvements on this combination of architecture an learning rules, a foundational example is the back-
propagation through time algorithm [38], which provides a way to codify time varying information in certain
recurrent networks, with a similar approach as to layered networks.

In complementary architectures with recurrent connectivity, dynamical systems theory combined with
insights from neuroscience has been used for classification or function approximation. For example, two
equivalent dynamical systems approaches were proposed independently by Maass and Jaeger, termed liquid
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Figure 1. Examples of network architectures underlying various computing paradigms. (a) Schematic generic architecture
underlying a computation. Inputs are processed by a network that generates or updates an output state. (b) In layered networks,
forming the basis of standard perceptrons as well as deep learning paradigms. There are only forward connections from any layer
to the next. (c) In a recurrent network, signals are sent also backwards via feedback connections, such that various collective
dynamics may emerge. (d) RC (random) networks are coupled to an output layer, the readout weights, yet not the internal
weights, are adapted during a training phase. (e) A pattern generator transforms a low-dimensional input to a higher-dimensional
one (possibly also exploiting the time domain). (f) In a conceptor network not only a standard input is used to activate a pattern,
but inputs from (lateral) conceptor nodes that adapt recurrent connection strengths (dashed lines).

state computing [39] and echo state machines [40, 41], respectively. Both paradigms combined the intrinsic
memory of recurrent networks with the well established learning algorithms for layered networks. Today, the
unified theory is called RC [21]. In this computing paradigm, a recurrent network (figure 1(c)) with random
connectivity is inserted between the inputs and a (typically) shallow output network (few layers), see figure
1(d). The reasoning is that the recurrent network provides memory to the system and due to the many, typ-
ically nonlinear internal interactions, the system calculates random features of the original signal, therefore,
enriching it (similarly to kernel machines). The classification or regression process is then performed over
this enriched signal with learning occurring only at the shallow, often single-layer, output network. RC, thus,
not only provides a natural way of applying standard ML algorithms to time-varying inputs, but also requires
learning only relatively few parameters of the shallow network, thus reducing learning resources, in particular
learning times. Overall today, RC is a maturing field that has already been implemented in customized hard-
ware, including electronics [42] and the combinations of electronics and optical system [42–44], potentially
on pair with state-of-the-art digital realizations, e.g. in speech recognition [45].

Early research on recurrent networks also laid the foundations to long term memory models [14]. Such
early research demonstrated on the network level (nodes and connections) how reinforcement learning [33],
as envisioned in animal models, can create memories represented as (stable) attractors of a dynamical system.
The seminal works of Hopfield [14] and Hebb [33] provided the fundamental ideas on how a neural system
can learn via examples by reinforcing connections between neurons that are often concurrently active. These
works had a large impact on a variety of field, from biology to applied computer science, with many spinoffs
and variations on the topic. Attractor networks have a downside, though. As the relevant states are stable,
switching between two states becomes non-trivial from a dynamical systems perspective. In short, one must
either strongly move the state of the system in state space or directly reset it, both radical interventions likely
far from a biological systems approach.

Conceptors [46] constitute a recently developed dynamical approach to control the activity of NNs origi-
nally exhibiting stable attractors. Consider a NN encoding a given stable attractor. To encode the attractor, a
learning algorithm must have made some connections in the network stronger and some weaker. A conceptor
neuron associated to this attractor is simply an external neuron that, when active, would amplify such effect,
making the same connections either stronger or weaker, thus highlighting the specific attractor, see figure 1(f).
If a set of attractors is encoded in the same network with an associated set of conceptors, it may be possible to
seemingly turn on and off any given attractor, as desired and controlled by the conceptor neuron(s). Moreover,
by controlling the intensity with which a set of conceptor neurons influences the dynamics concurrently, it is
possible to ‘interpolate’ attractors, to generate smooth transitions between network states, as one conceptor is
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slowly turned off while another is slowly activated. Conceptors, thus, serve as a bio-inspired control systems
for dynamical NNs with potential applications, for instance in controlling locomotion modes for robotics, or
more generally switching between states in abstract NNs.

Another interesting subject in bio-inspired computing is periodic activity created by pattern generator sys-
tems, with applications to locomotion systems. In biology, central pattern generators play a fundamental role
executing complex high-dimensional activity patterns in response to more abstract lower dimensional signals
from the motor cortex [47]. They encode high-level decisions, for example ‘move forward’. The moving order
may be represented in neural activity as simple as the activation of a single neuron, while the movement itself
may require a complex pattern that centrally, i.e. from one network, coordinates the movement of multiple
muscles in multiple limbs. Works on dynamical artificial pattern generators have shown how small recurrent
NN (figure 1(e)), exhibiting either emergent synchronization patterns [24, 48] or controllable chaos [49], can
be exploited to generate complex motions adequate under a variety of conditions, e.g. slow or fast gates, walk-
ing or swimming patterns or even self-untrapping. Artificial central pattern generators, thus, may become, in
time, essential contributors in robotic applications as autonomous agents, because demand for automation
and the complexity of automated tasks are ever increasing.

The small sample of computing paradigms above already shows how bio-inspired paradigms can be
remarkably complementary. While ML networks are trained to identify features in their raw input signals,
resembling (in broad strokes) the cortex, recurrent networks model memory storage and recall via stable
attractors and pattern generators can provide a rich variety of locomotion modes with simple dedicated NNs.

In the next sections, we will first discuss how spiking neurons may help to unveil new computing paradigms
by exploiting the time domain and later, in more depth, the specific topic of discrete decision-making modeled
as a WTA computation performed by spiking NNs.

3. Spiking neurons and spiking NNs

A prominent mark of bio-inspired computing is the use of NNs, with a strong emphasis on the coupling
network. The neuronal models broadly used are simple functions, similar to the original McCulloch and Pitts
model [32]. The resemblance to a neuron is relegated to the summation of inputs from (potentially) many
nodes, in contrast to its single-variable output state. Spiking neurons [25], even though less prominent, may
have a much larger potential for computation, because they can encode information concurrently in space and
on the time domain, yielding a variety of possible encoding schemes, including precise spike-timings [50–52]
and synchronization [20, 28, 53, 54].

The biological neuron is the fundamental building block in the animal nervous system. Its function has
been shown to be wildly varied, from simple information transmission, e.g. for muscle contraction, to the
direct computation of chemical concentration by receptor neurons. More complex computing processes in
the brain arise from emergent dynamics in networks of neurons rather than from single neurons alone. NNs
are complex systems in the sense that their global dynamical and thus computational characteristics cannot
be explained exclusively from the dynamics of their composing neurons. Nevertheless, different individual
neuronal properties play an essential role in the resulting network dynamics.

Neurons are varied in size, their functionality and even their chemistry. Broadly speaking, neurons are
subdivided into two main parts, the dendrites and body acting as the input sites and the axon transmitting the
output, see figure 1(a). The former is tasked, from a functional perspective, with receiving inputs from other
neurons and for initiating short-lasting electrical pulses called action potentials or spikes (figure 1(c)), the axon
delivers such pulses to other neurons. The physical connection between neurons called synapses, where axon
terminals contact dendrite or body of other neurons, come in two main variations: electrical and (electro-)
chemical. Electric connections act like a resistor and enable electrical currents to flow between two neurons
continuously in time, while electro-chemical ones, for example in the human cortex, transmit electricity via
discrete discharges (spikes) of neural transmitter that change the conformation of proteins in the cell wall and
enable (or disable) the throughflux of ions triggered by action potentials. In these synapses, transmitter vesicles
in the presynaptic terminal face neural transmitter receptors in the post-synaptic neuron, maximizing their
effectiveness. The flow of ionic charges either further polarize the cell membrane potential (a characteristic of
an inhibitory connection) or depolarize it and the connection is called excitatory.

Mathematical neural models at different levels of detail play a fundamental role not only in applied fields
but also for our understating of the basic functioning of biological systems. Even though highly detailed neural
models, e.g. compartment models, may provide insights on the functionality of small networks or of the neuron
itself, their effectiveness on understanding the broader functionality of large or intricately connected networks
is limited, mainly due to the large number of parameters and variables to consider simultaneously. Simpli-
fied models, such as integrate-and-fire (IF) neuronal models drastically reduce the number of parameters
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Figure 2. Idealized and artificial neuron and their dynamics. (a) Main subdivisions of an idealized neuron: dendrites, body, axon
and terminals (‘synapses’). (b) Schematic of an artificial neuron resembling a biological neuron. Multiple inputs and a single
output targeting several other neurons. (c) Sketch of the dynamics of a biological neuron. Inputs drive the voltage from the resting
potential Vrest until a threshold. At that point, an action potential is elicited, largely independent of future input. (d) Sketch of the
dynamics of an artificial neuron, for which the action potential dynamics is replaced by a simple rule of spike emission and reset
upon threshold crossing.

describing a network. A generic IF network is defined as

dVi(t)

dt
= f (Vi) + Iext(t) + Inet(t), (1)

where Vi is a voltage-like variable, f(·) defines the internal dynamics of the neuron (typically a concave down
function), Iext(t) is an external driving current and Inet(t) is the pulse interaction at time t. Moreover, a thresh-
old condition at Vtr is set, such that if Vi(t) crosses the threshold from below, it is reset according to Vi(t) := 0,
see figures 2(b)–(d). This reduced number of parameters may help to unveil fundamental features underlying
a given collective phenomenon, for example synchronization, balanced dynamics or more complex emergent
dynamics such as chaos and chimera states. The level of detail needed to study a given observed phenomenon,
thus, is a non-trivial matter and gradually removing details is an established approach to define the suffi-
cient conditions for the model. In turn, understanding computation on biological systems may lead to new
paradigms and models for artificial computing. For example, IF neural models are often sufficient to under-
stand many aspects of synchronization modes in artificial and biological systems. In the example above, one
main simplification concerns the spike generation. Instead of modeling the fast rise in voltage follow by a fast
drop (the action potential), the spike generation is substituted by a simple rule: if a threshold is reached, a
pulse is sent and the voltage is reset to its base value. This simplification drastically reduces computing time in
software and, due to the reduced model complexity, also simplifies potential hardware implementations.

As paradigms of artificial computation (the focus of this work), spiking NNs follow the same Occam’s
razor principle ‘as simple as possible, but not simpler’, used to understand emergent dynamics, in order to
reduce architectural complexity while increasing functionality transparency. To date, a variety of computing
paradigms have been unveiled which rely on the pulsatile (spiking) nature of the dynamics of coupling yet not
on any precise form or model of spiking dynamics. From a single neuron perspective, spiking neurons may
either encode information in their precise spike times [15, 50], such that the information is only bounded
by the noise level and the precision of parameters, or in their average spike rate (rate models), expressing,
for example, chemical concentrations. Moreover, network-level phenomena support a variety of computing
paradigms involving emergent dynamics, including synchronicity modes, chaos and local spike rate variability,
some already mentioned in the previous section.

Artificial spiking neurons, thus, may provide an interesting substrate for new bio-inspired computing
paradigms, potentially combining simplicity with fundamental computing properties, as the signal integration
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Figure 3. A schematic representation of a k-WTA computing system. Analogue input signals ξ i are sorted into two groups, the k
strongest, represented by spikes (discrete pulses), and another of N − k weakest, represented by no spikes. k is selected or designed
via global parameters of the underlying spiking NN.

and discrete interactions. In the subsequent parts of this article, we review in some depth two implementations
of decision making via k-WTA emerging from two different collective dynamics emerging in spiking NNs.

4. Decision making via dynamical WTA computation

Biological systems are capable of performing high level discrete decisions, e.g. ‘turn right’, ‘go fly’, ‘eat
now’, or ‘rest’, based on high-dimensional analogue input signals that are integrated in real time. This high-
dimensionality is due, in great part, to the rich, multi-modal nature of the biological sensory systems. How
can (artificial) NNs or in general, coupled dynamical systems encode such functionality?

Promising options are systems implementing a mathematical operation called WTA, because they not only
exhibit discrete outputs given analogue inputs but also naturally emerge in a variety of dynamical systems.
Furthermore, independently of the system type, the number of discrete outputs increases combinatorially with
the number of units composing the underlying physical system, thus providing a large number of output
options (decisions) in rather small systems. WTA or, more generally, k-WTA over N real valued inputs is an
operation that calculates the partial rank order of inputs, sorting them into two sets, the k strongest, and N − k
weakest inputs, where k ∈ N is a system property (at given parameters), see figure 3. The k-WTA function
is interesting, because it may serve as the basic building block for realizing or approximating any function
[27, 55].

In this section, we discuss and compare two different dynamical systems paradigms to implement this
function, namely heteroclinic computing [20] and dynamical inhibition [29], stressing their singular features
where appropriate. In both approaches, we will consider networks composed of IF neurons, because, even
though simple, they capture the two essential (and potentially advantageous) features of biological neurons,
namely, interaction via exchange of spikes (or pulses) and a nonlinear summation over incoming spike trains.
We remark that the essential mechanisms worked out below do not depend on these simplifications as we will
see.

Specifically, in both paradigms, we analyze networks of oscillatory leaky-IF neurons with all-to-all connec-
tions (no self-coupling and thus loops). Each neural unit i ∈ {1, . . . , N} exhibits a voltage-like state variable
xi satisfying the differential equations

dxi

dt
= I − γxi + ξi(t) +

N∑
j=1
j�=i

∑
tj,�∈Pj

ε(xi)δ(t − tj,� − τ), (2)

for xi ∈ [0, xθ ) where xθ is a spiking threshold. The parameter I represents a constant current, γ is a dissipation
parameter, and ξ i an external signal serving as input, possibly including noise. Whenever a threshold is reached,
xi(t−) � xθ , the state variable is reset to xi(t) = 0 and a pulse (spike) is sent to all other neurons, mathematically
reflected in the time t = tj,� of the �th threshold crossing, � ∈ Z, by the neuron j. Without loss of generality we
fixed xθ = 1. The sum in (2) is the contribution of all spikes arriving from the other N − 1 neurons j to i at
time t, where Pj is the set of all times tj,� of spikes sent by neuron j. Moreover, τ � 0 is the fixed coupling delay
between neurons and ε(xi) quantifies the coupling strength as a function of the neuron i’s state variable xi.

4.1. Heteroclinic computing
Heteroclinic computing is a framework that exploits heteroclinic networks [56] or, more generally, networks
of unstable states to compute [57, 58]. In such networks in state space, each node is a saddle periodic orbit,
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Figure 4. A network of neuron-like units and the resulting network of unstable states in state space. (a) A graph representing a
NN in real space, composed of N = 5 identical neurons connected all-to-all (I = 1.04, τ = 1.59, ε = 0.025). Nodes represent
neurons, links represent physical connections. (b) A graph representation of the network of states emerging from the system in
(a). Nodes represent saddle periodic orbits and directed links represent heteroclinic orbits. (c) A three-dimensional
representation of the vicinity of a saddle orbit in state space, sampled at x5 = 0, showing one saddle point (sampled form the
orbit) surrounded by the basins of attraction of two other saddles, x1 > x2 and x1 < x2, where 1 and 2 stands for the indices of the
neurons in the unstable cluster. The set of state space points where x1 = x2 defines the stable manifold.

i.e. a periodic orbit with both stable and unstable directions. Each connection between two such nodes is a
heteroclinic orbit, that is, a directed connection between the stable manifold of a saddle with the unstable
manifold of a second saddle, see figure 4. Networks of unstable states naturally emerge in symmetrical systems
of identical phase- or pulse-coupled oscillators [59, 60], reducing the number of parameters of the model
to the number of parameters defining one (oscillator) neuron and one single connection, independently of
the system size N > 2. These properties, thus, facilitate remarkably the search and design of complex or large
symmetrical networks of states exhibiting heteroclinic-like dynamics.

Computations are performed if external input signals ξi(t) break the system symmetry and thereby break
the heteroclinic connection. Sufficiently small signals typically induce long ‘complex’ periodic orbits that pass
near a sequence of several ‘simple’ saddle periodic orbits, that we term periodic sequences of unstable states.
It was shown in [20, 28] that such orbits can robustly encode k-WTA functions in phase-coupled as well as
in pulse-coupled oscillator networks. In this section we first explain in detail how this encoding takes place
and later show how such states can be decoded for further processing. We specify our model for heteroclinic
dynamics by defining

ε(xi) = ε, (3)

in equation (2), i.e., as a simple positive constant.

4.1.1. Saddle periodic orbits
It has been shown that networks of neural oscillators with excitatory couplings (ε > 0) and connection delays
(τ > 0) evolving according to (1) exhibit a form of synchronization with fixed inter-spike times [61] and two
or more groups of identically synchronized neurons. The mechanism behind such dynamics is twofold. First,
spikes from a given neuron may trigger simultaneous threshold crossings and thereby resets in more than one
(other) neuron, synchronizing their states exactly and simultaneously. Second, due to the delay, the neuron
eliciting a spike will always reset a time τ before the neurons that are reset by the spike it sent, leading to the
formation of subgroups of synchronized neurons or simply ‘clusters’. If the frequencies of the neural oscillators
composing the network are similar enough, this sequence of resets via supra-threshold incoming pulses may
become cyclic, leading to a periodic orbit (in the absence of noise). A third option is that a pulse sent by a
given neuron is received by a group of non-synchronous neurons at small xi values, implying that these will
not cross threshold, and thereby, further desynchronize causing an instability.

If all resets during one orbit’s period are triggered by incoming pulses (supra-threshold events), the orbit is
stable, because any small variation in the voltages of synchronized neurons is reduced to zero within one cycle
(see figure 5(a)). The orbit is indeed superstable because the distance of the perturbed orbit to the unperturbed
one does not decay exponentially but instantaneously. If one or more resets are not triggered by incoming
spikes, small asynchronicities among neurons originally in one synchronized group will grow larger during
each cycle due to the desynchronization mechanism described above. Incoming pulses will have different con-
tribution to each neuron due to nonlinear (concave down) voltage curves [57], and the orbit (linearly) unstable
(see figure 5(b)). If a periodic orbit exhibits stable and unstable manifolds, it is a saddle periodic orbit. During
this work we call any ‘short’ saddle periodic orbit (one pulse per neuron until the sequence repeats) simply as
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Figure 5. Dynamical response to an instantaneous perturbation. All panels: small system of N = 3 neurons, each line
(black solid, blue dashed, black dotted) represents the voltage of one neuron. After the system converged to a periodic orbit
(gray background), the system is perturbed by adding a small random vector. (a) A stable periodic orbit in which there is one
cluster with two synchronized neurons and one singleton. The state variables xi of all neurons cross threshold and are reset by
incoming spikes, thus the perturbation is erased after one cycle (one spike emission per neuron); parameters are I = 1.05, τ = 1,
ε = 0.1. (b) A saddle periodic orbit in which there is one cluster and one singleton. After the perturbation, the cluster
desynchronizes and the system leaves the original orbit; parameters as above with τ = 0.63. (c) The arrow indicates the moment
two neurons in (a) resynchronize after a spike arrive. (d) The arrow indicates the moment two neurons in (b) fail to resynchronize
after a spike arrive. The spike promotes further desynchronization.

a ‘saddle state’ and the ‘long’ orbits resembling sequences of such saddle states as a ‘complex (periodic) orbit’
[20, 59, 62, 63]. We discuss features of the latter in the following subsection.

4.1.2. Switching dynamics and complex periodic orbits
In the previous section we introduced the concept of saddle periodic orbits. Here we will characterize networks
of such saddle states in state space and how they promote encoding of inputs as complex periodic orbits. For
illustration, we first consider a small network with N = 3 neurons. For parameters τ = 0.64, c = 0.11 and
I = 1.05, this system exhibits saddle states in which there is one cluster with two synchronized neurons with
identical states, e.g. x1(t) = x2(t) for all times t, and one singleton consisting only of one neuron with state
variable component x3. Such states are also polysynchronous states in the sense of Izhikevich, see reference
[64], with permutation symmetry S2 × S1. That is, for the example above, their are 3!

2!1! = 3 saddle states that
differ only in their neuron labels but are otherwise identical, in particular tracing out (up to permutation)
the same trajectory in state space and exhibiting the same stability properties. For a simple representation, we
denote each saddle as a cluster vector

(c1, c2, c3) = Sc1c2c3 with ci ∈ {a, b}, (4)

where each vector component i indicates if neuron i is part of a cluster, labeled as ‘a’, or is a singleton, label as
‘b’. Therefore, for this specific system, the emerging three saddle states are denoted Saab, Saba, and Sbaa.

Direct numerical simulations show that these three saddle states form a robust heteroclinic network, i.e.
the dynamics will not leave the network after sufficiently small perturbations, but rather switch between states
in it. As shown in figure 6, the stability of these saddle states is such that, given a one-time perturbation
Δ = (Δ1,Δ2,Δ3) to the phases of all neurons in a initial saddle state Saab, without loss of generality, either
triggers the switch

Saab
(Δ1>Δ2,Δ3)−−−−−−−−→Sbaa or Saab

(Δ1<Δ2,Δ3)−−−−−−−−→Saba, (5)

independently of the perturbation component δ3 in the singleton direction. Equation (5), thus, defines a basic
transition rule between saddle Saab and the other two saddle states. We remark that consistently permuting the
indices in equation (5) yields the transition rules starting from any of the two other saddles in this network of

states, Saba
(Δ1>Δ3)−−−−−−→Sbaa, Saba

(Δ1<Δ3)−−−−−−→Saab, Sbaa
(Δ2>Δ3)−−−−−−→Saba and Sbaa

(Δ2<Δ3)−−−−−−→Saab. Together, these saddle
states with the six possible heteroclinic connections form a (fully connected) network of states, see figure 7,
i.e. all states can be reached after one state-switch. In general, i.e. for larger N and other parameter settings,
heteroclinic networks are typically not fully connected. Rather, only a small subset of other saddle states is
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Figure 6. Heteroclinic network response to an instantaneous perturbation. After the system converged to the saddle periodic
orbit Saab , a random vector Δ = (Δ1,Δ2,Δ3)T is added to slightly perturb all neurons at time about t = 79. (a) If Δ1 > Δ2 the
transition Saab → Sbaa is observed. (b) If Δ1 < Δ2 the transition Saab → Saba is observed. In both cases the perturbation on unit 3
decays to zero after one cycle (due to supra-threshold input only). The observed saddle-to-saddle transition occurs on a
heteroclinic orbit. Solid, dashed and dotted lines indicate voltages x1(t), x2(t), and x3(t). Display as in this figure, parameters are
I = 1.05, τ = 0.64, ε = 0.11.

reachable from any starting saddle state, see figure 4(b). However, this simple example of N = 3 units con-
stitutes an instructive example, because many properties of a larger network, including the number of orbits
and states increase combinatorially with the system size, often supra-exponentially. For example the number
of saddle states (#saddles) increase as

#saddlesm,n,μ =
N!

(n!)m−1(μ)!

1

m
, (6)

that is, the number of ways we can distribute N elements into m − 1 sets of size n and one set of size μ, and
those sets over a circle. We assume the saddle states have a number m − 1 cluster of size n and one cluster of
size μ.

Above we described how an instantaneous, one-time perturbation induces specific saddle-to-saddle
switches in a heteroclinic system. But how to encode time continuous signals using heteroclinic networks?
As shown in [20], for sufficiently weak symmetry-breaking input signals, nearly periodic orbits visiting the
vicinity of a sequence of (formerly) saddle orbits is established after a transient. The orbit reached is fully
determined by the initial network state and its transition rule.

As an example, we schematically depict in figure 7(b) and show in figure 8 how a small, temporally constant
symmetry breaking input signal ξ = (ξ1, ξ2, ξ3) with ξ3 > ξ2 > ξ1 induces a complex periodic orbit visiting
the vicinity of two saddle orbits,

Saab
(ξ2>ξ1)−−−−−→Saba

(ξ3>ξ1)−−−−−→Saab, (7)

independently of details of the initial condition. Applying this continuous signal is equivalent to recursively
applying the corresponding one-time perturbation withΔ3 > Δ2 > Δ1. This happens because the right-hand
side of equation (2) is a simple integration of all sources of current, i.e. only the total difference of integrated
current between two neurons in a given interval matters for the effective perturbation. Stated differently, the
overall effective differences in the rates of change of the xi matter.

Which information about the input signal is encoded in this resulting orbit? Observing the orbit without
any knowledge about the input signal, we find: after the first switch, that ξ2 > ξ1 (see transition rules); similarly,
after the second switch, that ξ3 > ξ1. Notice that, it is not known whether ξ3 is larger or smaller than ξ2. In
fact, the perturbation vector with ξ2 > ξ3 > ξ1 yields the same periodic sequence (7). Therefore, this system
computes the two strongest inputs out of three, a two-WTA computation over three inputs. The resulting
percept (distinguishable set of input) is {ξ3, ξ2} > ξ1, meaning that both ξ3 and ξ2 are larger than ξ1 but no
relation between ξ2 and ξ3 is known from observing that complex periodic orbit. Therefore, given a general
input signal (ξ1, ξ2, ξ3), the system sorts the set of inputs into two groups, the k = 2 strongest inputs and the
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Figure 7. Heteroclinic network and signal-induced complex periodic orbit. (a) A graph representation of a heteroclinic network
composed of three saddles and six heteroclinic orbits. (I = 1.05, τ = 0.64, ε = 0.11). Nodes represent saddles, directed links
represent heteroclinic orbits. (b) Input signals with ξ1 > ξ2 > ξ3 induce complex (stable) periodic orbit approaching the vicinity
where formerly two heteroclinic connections where located, here represented as a walk on the graph.

Figure 8. Fixed inputs generating complex periodic orbits N = 3. A fixed input signal ξ = (0, 10−5, 2 × 10−5), see equation (2),
induces a long periodic orbit approaching the vicinity of two (formerly) saddle states, resembling a cyclic sequence of two states.
Gray background represents times in the vicinity of saddles. (a) Each dash represents the time in which the corresponding neuron
sent a spike. (b) Each line represents the voltage dynamics of one of the N = 3 neurons composing the system. (I = 1.05,
τ = 0.64, ε = 0.11).

N − k = 1 weakest input. By permuting this result, we find the complete list of possible percepts,

for {ξ1, ξ2} > ξ3 : Saba → Sbaa → Saba; (8)

for {ξ3, ξ2} > ξ1 : Saab → Saba → Saab; (9)

for {ξ1, ξ3} > ξ2 : Sbaa → Saab → Sbaa. (10)

We note that, in particular for larger networks, the observed complex periodic orbit, not the percept, also
depends to some degree on the saddle state the system resides in initially.

In summary, reiterated one-time perturbations or continuous signals serving as inputs are encoded in the
NN as individual transitions between two saddle states and complex periodic orbits, respectively. Continu-
ous signals enable computing a k-WTA function over the input signals’ components. Importantly, this result
is not singular to this small system, but a general feature of symmetrical heteroclinic networks of the type
presented here. Moreover, systems of (non-spiking) coupled phase oscillators equally exhibit such dynamics,
yet for them already an instantaneous symmetry-breaking perturbation induces a repeated switching process
among saddles (that slows down with time), see e.g. [56].

Let us generalize the computational mechanism to a NN of size N � 3. The basic building block of symmet-
ric heteroclinic networks of the type studied here, are the symmetry-class preserving switches between saddles.
That is, the initial and final states (and their stability properties) are identical up to an index permutation. This
constraint leads to saddle states that typically exhibit a total number m of different clusters, i.e. groups of iden-
tically synchronized neurons. All but one of these clusters are of the same size n, from which only one is not
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Figure 9. Two sequences of states along complex periodic orbits. For input signals ξi+1 < ξi and initial states (ababa) and
(cccaaabbbaaaaabbbbb), these sequences are established. In both examples, none of the m sets of μ elements (right of dotted line)
ever synchronize among themselves, neither do the m − 1 sets of n − μ elements (left of dotted line). Synchronization and
desynchronization (comparisons) occurs across set types, either to the left or to the right of the dotted line.

reset by incoming pulses (‘unstable cluster’4), and a single smaller cluster of size μ, which is always reset by
incoming pulses. The total number of neurons in the network then satisfies N = (m − 1)n + μ where n > μ.
For the symmetry of such saddle states to be preserved, the ‘unstable’ cluster must break into two, leaving a
new stable small cluster of size μ and the remaining n − μ neurons must synchronize with the original small
cluster, thus being of size n again. After an overall shift in voltage differences between clusters (in relation to
the smaller cluster), an originally stable cluster becomes unstable, thus marking the arrival at another saddle
state. Thus, each saddle approach reveals which are the k strongest (or the k weakest) input components via
the splitting dynamics of the unstable cluster. For example, states with symmetry S2 × S2 × S1 or S8 × S8 × S3

could exhibit, respectively, the transition rules

Saabbc
(ξi+i<ξi)−−−−−→Scbaab, (11)

Saaaaaaaabbbbbbbbccc
(ξi+1<ξi)−−−−−−→Scccbbbbbaaaaaaaabbb, (12)

where a labels the unstable cluster and b and c label the stable clusters. As shown for our example with N = 3,
equations (11) and (12) implicitly encode all possible switching rules between saddles in those networks. In
other words, in the first example (N = 5, m = 3, n = 2, and μ = 1), at each approached saddle, the strongest
input components over the cluster labeled a is computed whereas in the second example (N = 19, m = 3,
n = 8, and μ = 3), the strongest three input components over the cluster labeled a are computed via the
splitting of the eight neurons composing this cluster.

What do such networks compute on the systems level, i.e. by combining all the individual computations
(switches) along a complex periodic orbit? Let us first consider the two switching rules 11 and 12. For inputs
signal ξi+1 < ξi, the orbits illustrated in figure 9 are achieved.

In the most general case of the class of systems studied here, and exemplified in figure 9, each orbit rep-
resenting a percept is composed of saddles with m − 1 clusters of sizes n and one of size μ. These states can
be also characterized by m sets of μ neurons that are (almost) always in-set synchronized (during the whole
complex periodic orbit) and other m − 1 sets of n − μ neurons that are (almost) always synchronized in-set
(also during the whole complex periodic orbit). Therefore, the overall computation is restricted to the compar-
ison between each of the m sets ofμ elements to the m − 1 sets of n − μ elements, which repeatedly synchronize
and desynchronize across set types conform the system state-switching rules, see figure 9. In practice, we cal-
culated the computed partial rank order by counting the overall number of elements in each of the types of
sets, that is, the computed k is either equal to

k = m × μ, (13)

if the neurons receiving the μ largest inputs over the unstable cluster repeatedly move to form the new small
cluster of size μ, or

k = (m − 1) × (n − μ), (14)

4 We remark that mathematically, only states or sets in state space can be stable or unstable and we here refer to one cluster, i.e. subset of
components of the state vector, to be ‘unstable’ meaning that the saddle periodic orbit is unstable to desynchronizing these components.
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Figure 10. Two sequences of states representing the same percepts. For N = 5 and parameters I = 1.04, τ = 1.59 and, ε = 0.025,
the system exhibit a network of state with transition rule as in equation (11). The resulting network of states is shown in panel
(a). For inputs with ξi+1 < ξ i for all i, one of two periodic orbits approaching one of the two sequences in panel (b) is performed,
in doted or dashed arrows. All other states (not present in the sequences) lead to a short transient toward one of the sequences.

if the neurons receiving the smallest inputs move accordingly (this is a system property). For example, in the
above example of N = 5 network we have μ = 1 and m = 3, resulting in k = m × μ = 3 and for our example
with N = 19, μ = 3 and m = 3, resulting in k = 9.

4.1.3. Percept multiplicity and decoding complex periodic orbits
A computationally interesting aspect of all systems computing a k-WTA function is the combinatorial scaling
of the number of percepts with the system size. Specifically, the number PNk of percepts for a system with N
inputs computing the largest k inputs is given by

PNk =
N!

k!(N − k)!
, (15)

i.e. the number of ways we can sort N inputs into a groups of k inputs and a another group containing the N − k
inputs. Nevertheless, the orbit representation of a percept (spike train combinations) is not always unique. On
the contrary, the number of orbits representing the same percept Mm,n,μ increases combinatorially as

Mm,n,μ =
((m)(n − μ))!

((n − μ)!)m

1

m
× ((m + 1)μ)!

(μ!)m+1

1

(m + 1)
, (16)

with the system size N = (m − 1)n + μ, see reference [65]. Which orbit is established depends solely on the
initial state and the fixed input, for an example, see figure 10. Basically, this is the number of ways we can
distribute m × μ elements inside m sets of size μ and those sets over a circle multiplied by the ways we can
distribute (m − 1) × (n − μ) elements in m − 1 sets and those sets over a second circle.

This potentially large number of orbits representing the same percept could in principle hinder a hetero-
clinic computing feasibility by requiring readouts of high complexity, large size, or requiring an combinatori-
ally increasing time for decoding what the complex periodic orbit may symbolize. Recent research [65] shows
that this is not the case and that readouts growing linearly with the number of neurons on the system exhibit-
ing the heteroclinic network are possible to construct. We now describe the general building blocks of such
decoding schemes.

An effective readout, thus, must cope with the exponential increase of percepts with system size and, at the
same time, with the exponential increase of orbits representing the same percept (multiplicity). The solution is
twofold. First, we identify properties common to all orbits representing the same percept. It was shown in [65]
that one such marker is the small cluster and its composing neurons, because either only neurons receiving
the k strongest inputs or only the N − k receiving the weakest inputs ever assume such position (independent
of system details). Thus, in principle, any readout capable of discerning between a set of (almost) concurrent
pulses of size n and another set of (almost) concurrent pulses of size μ should be capable of decoding the
percept. Second, due to the NN symmetry, all orbits representing percepts are identical after a proper neuron
index permutation, thus the connectivity to a readout can also be generated via such a permutation. Together,
this solution provides an overall readout whose size or complexity increase linearly with the system size and
generate a simple binary output, i.e. spike trains emitted, representing an ‘on’ state and no spikes emitted,
representing an ‘off’ state.

Figure 11 shows one simple decoder that uses a suitable ratio between inhibitory connections and excitatory
ones to detect the percepts. It is composed of N neurons, one for each neuron in the main system. Neurons
with the same index have a excitatory connection, neurons with different indices have inhibitory connections.
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Figure 11. Schematic of a neural decoder for heteroclinic computing. Blue solid arrows represent excitatory connections; red
dashed arrows represent inhibitory connections. If sufficiently many inhibitory pulses arrive at the same time as an excitatory one,
they prevent a output pulse; if less than n inhibitory pulses arrive at (almost) the same time as an excitatory one, a pulse is elicited.

Figure 12. Heteroclinic dynamics and decoder output. A network of N = 19 neurons and saddle state symmetry S8 × S8 × S3,
encoding an (k = 9)-WTA function. (a) The voltages xi of all neurons in the main system sampled whenever x1(t) = 0. It shows
the dynamic cluster formation and reformation. (b) The output of the decoder. The overwhelming majority of spikes are sent by
the neurons receiving the k = 9 strongest inputs. Network parameters: I = 1.04, τ = 1.59, γ = 1 and ε = 0.0058. Readout
parameters: I = 1.04, τ = 1.61, γ = 1.8, inhibitory coupling strength ε− = −0.1, excitatory coupling strength ε+ = 1.4 and
τdec = 0.29.

The coupling strengths to the readout neuron are such that if μ or less pulses arrive (almost) at the same time
at a neuron in the readout, a pulse is generated; if more than μ (almost) synchronized pulses arrive, no pulse
is generated. The readout layer has no internal (recurrent) connections. Because it is composed of the same
neuron model as the main system, the readout adds only three new parameters to the system, the global value
of the inhibitory ε− and excitatory ε+ coupling strengths, and a small delay for the excitatory connections τ dec

to guarantee that all inhibitory pulses are computed before the (only) excitatory one (for almost synchronized
neurons).

In figure 12, we present an example applied to a network of N = 19 neurons exhibiting state symmetry
S8 × S8 × S3 and transition rules as in equation (12). Apart from a small number of false positives (spikes
where theory predicts none in an ideal, noiseless), three sets of three neurons clearly fire the most, thereby,
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decoding the signal. As demonstrated before [65], one more layer with a single excitatory connection per
neuron, between neurons with the same index, may serve as a high-pass filter and, thus, exploit the difference
in output frequencies to avoid any false positive.

4.2. Dynamical inhibition
As an alternative to k-WTA via heteroclinic dynamics, reconfigurable k-WTA may be implemented by fully
symmetrical networks of inhibitory neurons. Specifically, recent work [29] demonstrated that proportional
inhibition is suitable to create reconfigurable computational units, where k can be nearly freely chosen by
varying one parameter. In the example we discuss here, we set ε(xi) in equation (2) to

ε(xi) = −cxi, (17)

where c is a global constant between zero and one and xi is the voltage of the neuron receiving the inhibitory
pulse. In this model, τ = 0 and I > 1, such that each neuron in isolation becomes oscillatory by repeatedly
reaching the spiking threshold at value xθ = 1. In contrast to other implementations that require a careful
parameter tuning to select k, in these networks of inhibitory neurons k is a simple monotonic function of the
global scaling coupling constant c (for fixed input components differences), and thereby reconfigurable.

The overall dynamics is driven by two coacting effects, see figure 13. The first is a compression of voltage
differences xi − xj after a spike is elicited. Each time a neuron is reset, its inhibitory spike will decrease the volt-
age of all other neurons. Because this decrease is proportional to the voltage of the receiving neuron, all voltage
differences between neurons will also decrease (not including the neuron emitting the spike). The second is the
voltage separation caused by the reset itself. Apart from very large c values, the voltage differences between the
neuron emitting the spike and all other neurons will typically increase because, due to the concavity (down)
of the voltages’ curves, more time is spent close to xi = 1 than zero. Figure 13 shows the compression and sep-
aration of voltage differences taking place for a network of N = 4 neurons. At the moment neuron one (blue
solid line) reaches the threshold and is reset to zero, all other neurons are inhibited and their voltages reduced
to about 70%. Their voltages differences are thus also reduced to 70% of the original.

In the absence of external inputs, the system is symmetrical but its initial condition (voltage of each neu-
ron) generically is not. The intrinsic frequency of all neurons are identical. Under these conditions, the system
self-organizes in such manner that all neurons spike orderly and sequentially, see figure 14. The order itself is
defined entirely by the initial voltage order, i.e. neurons with larger initial voltages fire first. Intuitively, such
an ordering should emerge, because if the frequency of all neurons are the same (same speed), no neuron can
ever overtake another, therefore all neurons spike sequentially. Our ongoing work [66] indicates that not only
neurons spike sequentially, but also the inter-spike interval is the same, independent of the initial neuronal
voltages, because it is the only non-trivial stable attractor. Pulses arriving too late or too early would trig-
ger a self-correction, as they would either cause a larger decrease in voltage or smaller, respectively, than if it
would arrive in time, see the first reset illustrated in figure 14(b). The exact inter-spike interval is a (parameter
dependent) system property and variations of the inter-spike interval duration decrease exponential with each
cycle.

Figure 13. Dynamic compression and separation of voltages differences. The voltage xi of each of the N = 4 neurons as a
function of time. The smallest voltage difference d1 between the neuron being reset and the others, measured before the reset is
smaller than d4 measured after the reset, a separation occurs and d4 > d1. The largest voltage difference d2 between the neurons
not being reset measured before the reset is larger than this difference d3 measured after the reset, a compression occurs and
d3 < d2. (I = 1.04, τ = 0, c = −0.3).
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Figure 14. Self-organized (almost) equally spaced spike sequence. (a) The spike sequence generated by a network of N = 4
neurons in the absence of input signals. (b) The voltage xi of all neurons as a function of time. The initial voltages are set as shown
at t = 0. (I = 1.04, τ = 0, c = −0.3).

Figure 15. Two-WTA over four input signals. (a) The spike sequence generated by a network of N = 4 neurons in for input
signals ξ4. (b) The voltages xi of all neurons as a function of time. The initial voltages are set as shown at t = 0. (I = 1.04, τ = 0,
c = −0.3).

Even more interestingly, k-WTA computations may take place if a subset of k neurons, due to external input
signals, are able to overtake the other N − k neurons, and prevent the spikes from the later group. Although
overtaking has been observed an explained in a class of spiking neural oscillator networks with symmetry [67],
it remains unclear under which conditions overtaking may occur in symmetry-broken systems, depending on
the input current differences ξ i − ξj and the value of the network parameter c. The simplest case occurs when
input currents ξi exhibit large differences ξi − ξj, what would, in turn, induce neurons to have large differences
in their intrinsic frequencies. If the differences are large enough, independently of c, one or more neurons (the
k winners) may repeatedly overtake the others (the N − k losers) by simply being much faster. A second, more
reliable way is to set c > 0, which allow a broader range of input differences, also only slightly faster neurons,
to overtake others. The resulting voltage separation from the compression combined with the voltages set
back from the resets promotes overtaking by slightly faster neurons. See figure 15 for an example. When the
computation is taking place, k neurons fire in sequence, while the other N − k neurons are kept sub-threshold,
even if, at times, they may stay always at large voltages close to xi = 1.

The computed k is controllable, as shown numerically [29], and analytically predictable, see reference [66].
The precise combination of the c value and the input differences ξi − ξ j defines which k is computed by the
system. Interestingly, as shown in figure 16 (calculated numerically), the computed k’s appear as horizontal
bands in parameter space, thus computing the same k for a broad range of input differences. This is fortunate,
because if the interval of possible input differences is fixed, it is possible to reliably reconfigure the system
computation, the k, by simply adjusting the single global parameter c. For our specific example with networks
size of N = 4, up to four neurons may spike as a response to an input signal, so k ∈ {1, 2, 3, 4}.

Another particular feature of this system class is the computation’s independence of the network size. That
is, the computed k value only depends on c and the Δξ and not on N. This implies that not only the dynamics
but the exact computation is preserved after adding or removing neurons from the network (up to removing
N − k neurons). This is possible because the inhibited neurons effectively do not participate in the global
network dynamics, as spiking NNs only exchange information via spikes. The same feature that provides such
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Figure 16. Robust and reconfigurable computation shown in parameter space. Computed k as a function of the coupling
parameter c and input signal differences Δξ for networks of size N = 4 and N = 50. (a) The computed k as a function of c and
the input difference Δξ in an N = 4 network. The computed k appears in broad bands, showing robustness in parameter space
for small k. (I = 1.04, Vi(0) = 0 for all i). (b) The computation of larger k requires an ever increasing precision on c. In (b),
inputs were fixed and linearly distributed between 0 and 0.003. (Δξ = 6 × 10−5, I = 1.04 and Vi(0) = 0 for all i).

resilient computation, imposes a practical limit on the possible k values computable. As show in figure 16(b),
selecting larger k requires an ever increasing precision on c. From another perspective, because the computed
k is independent of the network size, the results in figure 16(a) must hold for larger N values apart from the
region marked as k = 4, which must nest all regions computing k > 3.

Finally, this approach does not require a readout, because only the neurons receiving the k strongest inputs
spike. Therefore, already in a usable form either for interpretation or for transmission for further processing.

5. Discussion

Bio-inspired computing is an ever-growing field branching in a variety of directions, from robotics to data
analysis and neurosciences. An exhaustive review of bio-inspired computing, off course, is out of the scope of
this work, as it would not be feasible in any single article. By looking back toward some of its core roots, we
outlined, compared and discussed some of its major branches.

The two first sections of this article attempts to convey how complementary different bio-inspired comput-
ing concepts can be. For example, ML approaches are deeply rooted in layered networks, for which powerful
learning rules are available. Pattern generators, in contrast, may be more suitably realized by recurrent net-
works, for which the emergence of collective nonlinear dynamics is an intrinsic property. Neither approach,
though, could optimally replace the other.

The third section is dedicated to circuits of spiking neurons. We have highlighted how the same approach
of studying simplified neuronal models may help not only unveiling the underlying mechanism promoting
computation on natural systems but also implementing artificial computing models. This acquired knowledge,
in turn, may inspire unprecedented approaches to artificial computing.

We dedicated section four to present, in some depth, two NN approaches to implement discrete decision-
making via k-WTA dynamics, namely heteroclinic computing and dynamical inhibition. Heteroclinic com-
puting exploits the dynamics near networks of unstable states to compute a partial rank order of the inputs.
Related works have suggested heteroclinic dynamics may play a fundamental role in modeling and encod-
ing information in the brain [11, 18, 68–71]. We analyzed fundamental aspects of this encoding, in particular
complex multi-dimensional spike trains, and how to decode it to a human friendly representation with simple,
low-complexity decoders. Dynamical inhibition provides a novel way to implement k-WTA, where neuronal
oscillators that have (at least) slightly higher frequencies, repeatedly inhibit some neurons with lower frequen-
cies, such that only the former spike. The inhibitory coupling proportional to the current voltage xi(t) of the
neuron receiving the spike at time t, yield systems that are capable of computing the same function for a broad
range of input differences.

These implementations add to a broader context of dynamical k-WTA computation, for example via bump
states [72], dynamical neural fields [73] or cross inhibition [74]. Even though they all implement an identical
set of k-WTA functions, each paradigm brings its own particular features. Heteroclinic computing exhibit
sensitivity to arbitrarily small inputs (down to the noise level and parameters precision), while dynamical
inhibition provides re-configurable computations (k selection) via a single global parameter. Alternatively,
dynamical neural field implementations not discussed here provide soft-WTA computations that are robust to
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different sources of perturbations, because they rely on the average activities of local and global populations
[72, 73, 75].

We hope this article serves as a brief introduction to some of the variety and richness of bio-inspired
computing models and how they may complement each other. In particular, we put in perspective the recent
results on discrete decision making via k-WTA with dynamical systems. We believe that such systems are suit-
able as NN implementations, also in hardware, as they naturally compute discrete (binary) functions out of
multi-dimensional and multi-modal analogue signals and, thus, may well play a role in the next generation of
intelligent machines.
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Appendix A. Piecewise analytical integration and initial conditions

All simulations in this article have been performed via a piecewise analytical integration of equation (2). Notice
that, between any two discontinuous evens, that is, pulse receptions and neurons’ resets, the neurons are
effectively uncoupled and this equation has an analytical solution. When uncoupled, because V(t) is a mono-
tonically increasing function of t, until it reaches a fixed threshold (where it resets), each neuron has a well
defined oscillation period T and we can, thus, map the voltages into an internal ‘clock’ variable ρ ∈ [0, T [,
which is also reset to zero each time V → 0, see [76] for details. To update the network state for a time Δt we
first map the starting voltage V0, in the considered interval, into the internal ‘clock’, which for our IFN is given
by

ρ0 =
1

γ
log

(
I

I − γV0

)
; (A.1)

second, we advance the ‘clock’ Δt units of time,

ρ+ = ρ0 +Δt; (A.2)

and third, we map the result back to the state variable V via

V+ =
I

γ
(1 − exp−γρ+), (A.3)

where V+ is the voltage at the end of the time interval. Thus, by computing the times in which such events take
place, we can integrate the system analytically for the time step between two consecutive events. After each of
these time steps (at the event times), we compute the appropriate contribution from the arriving pulses (see
equation (2)) or resets (V → 0). Altogether, these update sequence yields the system’s time evolution.

To keep this stepwise analytical approach also when noise is applied, thus avoiding numerical integration,
we approximate a Gaussian noise source by only evaluating its effects after small intervals of time δt, such
that the overall dynamics is still a sequence of discrete events. To avoid the effects of numerical synchroniza-
tion, which could lead to large deviations in the system’s dynamics (which relies on synchronization or lack
thereof), the sampled times at which the noise is evaluated are not fixed, but drawn from a Poisson distribu-
tion (independently for each neuron), yielding a variable time step with a well defined mean value. The noise
contribution η after an interval δt is modeled as:

η =
√
δtNrand(σ, 0), (A.4)

where Nrand(σ, 0) is a random number drawn from a normal distribution with variance σ and centered at
zero. In practice, our algorithm simply checks for the next event among: neurons reaching the threshold, a
pulse arriving in a neuron or a scheduled noise update. After that, the new state is analytically updated until
the time of the next event, and the contribution of the event itself is computed.
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Concerning the initial conditions, the initial ‘voltages’ in our simulations are typically close to the orbit
being investigated and can be read from each figure at time t = 0 if not stated otherwise. Notice though, that for
heteroclinic computing the exact value of the initial voltage differences between clusters are not as important
for the initial condition, because the stability properties relies on the ‘in-cluster’ voltage differences, i.e. starting
with the correct clustering will typically lead to the correct orbit in a self-organized manner (part of the stable
manifold) [57].
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