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The original manuscript (Schaefer et al 2015 New J. Phys. 17 015002) contains three typographical errors that we
have corrected below. The scientific results were not affected by the typographical errors and all numerical
simulations were carried out using the correct equations.

1. Demand response via decentral smart grid control

Equation (1) should read

d: de; N
— + Kjd_’ = PPN (1) + Y Ky sin( 0k — 0)), ()
dt t k=1

i.e., thereisa ‘+” sign in front of the sum.

4. Dynamics and stability

4.3. Delayed adaptation: risks from resonances
Equation (31) should read

_arccos(—a/y) 2 "
T Im() Im(4)

neN. (2)
This does not change the periodicity of the solution since Im (4) is constant and not a function of 7.

4.4. Stabilization by averaging
Finally, equation (34) should read

p? y
_ 72 _ 4 oA A (T+D) )
pA) =1 +a/1+2K1/1 < + T(e e+ )_0. (3)

The original equation used an erroneous minus sign.
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Abstract

Stable operation of complex flow and transportation networks requires balanced supply and demand.
For the operation of electric power grids—due to their increasing fraction of renewable energy sources
—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and tempo-
rally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer
demand data, centrally evaluate them given current supply and send price information back to custo-
mers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection
and large required investments, it remains unclear how such central smart grid options guarantee
overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to
the local grid frequency at each customer. The grid frequency provides all necessary information
about the current power balance such that it is sufficient to match supply and demand without the
need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the
power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid
Control is feasible independent of effective measurement delays, if frequencies are averaged over suffi-
ciently large time intervals.

1. Introduction

A major challenge in realizing a future sustainable power supply is the volatile character of many renewable
sources [ 1-3]. The power generation of wind turbines and photovoltaics fluctuates strongly on different time
scales: in addition to the obvious variations between the seasons and during a single day [4], strong fluctuations
occur on much shorter time scales, for instance due to the turbulent character of wind [5]. To match generation
and demand in a fully renewable power grid for the current demand characteristics at every point of time, would
thus require large storage facilities. Current estimates for the storage capacity range up to 400 TWh for the entire
European grid with 100% renewables and no stand-by power plants [4]. In addition to potential environmental
effects, as, e.g., the large landscape consumption for pumped hydro storage facilities, this would require massive
capital investments.

To reduce these enormous numbers, it has been proposed to regulate the consumer demand to match the
fluctuating power generation [6]. This is a massive paradigm shift in the operation of power grids, as mainly the
generation is regulated in current power grids [7, 8]. In the new system, the price of electric energy shall be
adapted to the current generation to provide a stimulus for the consumers to adapt their demand. Most
proposals for such a smart grid are based on a sophisticated information and communication technology
infrastructure. All ‘smart’ power meters communicate with a central computer in order to negotiate the price
and control their demand (see, e.g., [9]). However, such a centralized system would also raise questions of cyber
security and privacy protection [10, 11]. Even more, it has been shown that interdependent systems, such as this,
can become vulnerable to cascading failures [10, 12].

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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An alternative, decentralized approach has been first proposed already years ago, but received a major
interest only recently. The key idea is that the grid frequency provides all information needed to control the grid.
The frequency increases in times of excess generation, while it decreases in times of underproduction [13, 14]. In
current power grids, the primary control of conventional power plants is already based on the frequency:
generation is increased when the frequency decreases and vice versa [ 15]. In a future, fully renewable grid the
consumers could take over this role and regulate their demand autonomously on the basis of the grid frequency.
To make this economically favorable, it was proposed that the price of electric energy for each local consumer is a
direct function of the local grid frequency [16]. Is such a decentralized approach capable of ensuring stable
network dynamics?

Here we analyze systems with prices locally computed as a direct function of local frequency, taking into
account averaging time intervals and effective time delays. We demonstrate that the approach holds risks at
certain time delays if the averaging interval is short. Intriguingly, for sufficiently large averaging interval,
network dynamics is stable, independent of the delays. Our modeling results thus suggest that Decentral Smart
Grid Control provides an efficient measure of ensuring grid stability.

The article is structured as follows. First, we introduce a mathematical model for the frequency dynamics of a
power grid, describe our concept of a Decentral Smart Grid Control to realize the dynamic demand response
(DR) in section 2 and discuss several economic aspects in section 3. The dynamics and stability of a fully
interdependent techno-economical system are then analyzed in detail in section 4. We uncover potential
systemic risks and show how they can be mastered by a proper implementation of the control.

2. DR via Decentral Smart Grid Control

DR is generally based on a flexible consumer price for electric power which is adapted to the current power
generation. In periods of higher demand than generation, prices are high, giving an incentive to the consumers
to reduce their consumption. Current approaches for the implementation of DR are mostly based on centralized
information and communication infrastructure [8, 9], i.e., all information about production and consumption
is collected decentralized, transmitted to one central IT-unit which then sends commands for further
consumption and production to the decentralized actors. Such a system would require large financial
investments and raises concerns about data protection and system vulnerability [ 10—12]. However, such an
expensive IT-infrastructure may not be needed, as the grid frequency already encodes the necessary information
and is accessible everywhere in the grid.

To analyze the essential frequency dynamics of a large-scale power grid and its coupling to pricing
information we consider an oscillator model based on the physics of coupled synchronous generators and
synchronous motors, which recently attracted a strong interest in physics [17-23]. This model is very similar to
the ‘classical model [15] and the structure preserving model [24] from power engineering, which are routinely
used to simulate the dynamics of power grids on coarse scales.

The state of each rotatory machine jis characterized by the rotor angle 6 (¢) relative to the grid reference
rotatingat 2 = 2z X 50 Hz or 2 = 2z X 60 Hz, respectively, and its angular frequency deviation from the
referencew; = d@;/dt. Every machine has its moment of inertia M; and is driven by a mechanical power

ij“h (t), which is positive for a generator and negative for a consumer. In addition, every machine is driven by
the electric power transmitted via the adjacent transmission lines which have a coupling strength K;. The
dynamics of the machine j is then given by the equation of motion as
2
d°9; do;

N
e ks Pk (1) — N K sin (60— 6;). (1)

k=1

For a more detailed discussion and short derivation of the equations of motion, see appendix A.
For the sake of simplicity, we assume that all damping constants k; = k and moments of inertia M; = M are

identical for a while. The overall angular frequency deviation (@) := %Z j @jis then determined by the equation

of motion
Mi (0) + k{w) = iAP (2)
dt N

where AP = 37 ijeCh is the total power balance in the grid. Equation (2) can be solved analytically with the
result
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(w)(t) = (a))(to)e"“/M + ?I_lz:(l _ e_Kt/M)' .

Fort — oo, the overall angular frequency deviation (@) converges to the value %. This relaxation is typically fast;
most perturbations are cleared in less than a second [15]. In weakly connected grids inter-area oscillations can
last for a minute [3, 26]. Hence, the angular frequency deviation {w) is directly proportional to the power balance
of the entire system. In general, the angular frequency is the same throughout the gridw; = (@) and can easily be
measured, such thatit can be used to control the grid without additional communication infrastructure.

The missing step to realize a Decentral Smart Grid Control is to come up with a one-to-one relation between
thelocal grid angular frequency deviation w; and the current electricity price p; (). A device that measures the
local grid angular frequency and calculates the current price according to this pre-defined function p; (w;) is
cheap and can be implemented in a decentralized way, see [28] for large-scale frequency monitoring. Electric
devices with an on-offload characteristic (e.g. washing, refrigeration, thermal heat pumps, electric cars) could
automatically shift their consumption to times of high grid frequency, relieving the grid in low frequency times.
Ensured by a properly chosen price function p (@), this grid service can be economically reasonable for the
consumer and also for the electricity provider, because the grid operator would have potentially less costs for
primary, secondary and tertiary control. A drastic price increase at low frequencies and cheap electricity at high
frequencies might also change the active consumer behavior. The needed technology is readily available, since
micro combined heat and power systems or photovoltaic systems, already have a comparable control system
included [8, 27].

In particular, we propose a Decentral Smart Grid Control that realizes a dynamic DR in power grids and
analyze some of its core economic and dynamic consequences. The mechanical power ij“h (t) in the equation
of motion (1) is the difference of the generated and consumed power at the jth node of the network. Both
generation and consumption depend on the current energy price p, which is described by supply S(p) and
demand curves D(p), such that we find

PPt () = 85(p;(0) = Di(p,(0). 4)

A supply function S(p) gives the amounts of goods offered, if this good is traded for a certain price p. Here, this is
the amount of power supplied by a generator, if the obtained price is p. Similarly, the demand D(p) gives the
amount of power a consumer would like to consume for a given price p. Generally, the supply curve is
monotonically increasing with p, while the demand curve is monotonically decreasing. The two curves are
exogenous to the model, in fact they are determined by the strategy of the generators, the weather and the
preferences of the consumers.

We suggest a Decentral Smart Grid Control that calculates the price on the basis of the local angular
frequency deviation @ [16]; but measuring and updating the angular frequency in a real grid takes a certain
time. Therefore, the price generally depends on a time-averaged angular frequency deviation @ (¢). Assuming
that the angular velocity is measured over an interval of fixed period length T, we define

() = % ft_tT i (1)dr". (5)

We consider two technical scenarios for the control. First, we consider a control system that adapts only in
discrete time steps of length T'such that the local prices are given by

p;=p(@;(|lt/TIT)), (6)

where| - | denotes rounding towards minus infinity. Second, it can take a certain delay time 7 until the control
system adapts such that the local prices are given by

pj:=p<a_)j(t—1)). (7)

We assume that the price only depends on the frequency and that supply and demand curves are given and keep
their form on the time scales (seconds) described in this article. Hence, the design of an appropriate price
function p (@) is an important step for the implementation of a DR via Decentral Smart Grid Control.

3. Economic aspects

3.1. Benefits of DR
DR may have huge benefits in future energy systems see, e.g., [7, 8, 25, 29, 30]. Here, we briefly summarize the
most important economic aspects, following [7], which hold regardless of the technical implementation: (1)

3
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consumers may reduce their electricity bill by shifting their demand to periods of low prices. (2) In addition, DR
may reduce the global costs of the power system as it allows for a more efficient use of the existing infrastructure
and avoids costs for additional infrastructure. (3) DR may improve system stability by avoiding dangerous peaks
of the demand and thus reduce the probability of power outages. (4) Finally, DR may improve market
performance and reduce the price volatility. In addition to these points, DR is particularly important for future
power grids because its implementation can potentially allow a higher penetration with renewable energies [31].

3.2. The grid as a market
In the current proposal of a Decentral Smart Grid Control there is no central computer which controls the
demand of the consumers and no central exchange to determine the electricity price. The control is realized ina
decentralized way using local frequency measurements, thus requiring no long-distance communication. Is this
sufficient to provide an efficient market, i.e., to reach an economic equilibrium?

To answer this question we first note that the stable stationary operation of a power grid requires that all
machines rotate in synchrony, i.e., the frequency must be the same everywhere

®;(t) = (@) forallje{1,..., N}. (8)
Otherwise the power flow between two nodes jand k
Pji(t) = K sin (0(1) — 0;(1)), 9)

would be oscillating and average out over time. The synchronous state must be dynamically stable for small
disturbances to be damped out [15, 32] and the grid may self-organize to a synchronous state with steady power
flows [18, 22, 33]. Substituting the condition w; (t) = (w) into the equations of motion (1) shows that the
synchronous state is determined by the equation

N
Ki{w) = S; (pj) - D; (pj) - ZKjk sin (Gk - 19]-) forallj € {1,..., N}. (10)
k=1

Summing up the equations for all jand using Kj; = K; yields

ZSj(pj)=ZDj(pj)+ZKj(w). (11)

J

This shows that a dynamical equilibrium of the grid also implies the economic equilibrium of the market, i.e.,
the supply equals the demand including transmission losses. Hence, we have to analyze the dynamic stability of
the combined techno-economical system to evaluate its stability properties. This will be done in detail in
section 4.

For now, we assume that the grid is in equilibrium with (@) = 0 ata price p,. To analyze the stability of this
equilibrium, we linearize the supply and demand curves close to the equilibrium:

ds;

Si(p;)=5i(ra) + o () - o)
D;j(p;)=Di(pa) + dd% () = pa) (12

The modeling or measurement of supply and demand curves then reduces to the measurement of the elasticity
of supply and demand. Generally, the supply increases with the price while the demand decreases such that
5;20 andd; < 0 and thusin particular

sj—d;> 0 forallj. (13)

Here, we used course-graining, i.e., not every consumer is represented by one demand function but several
consumers are aggregated to form one node in the network and hence supply and demand curves are assumed to
be smooth.

3.3. Price and frequency fluctuations
The new aspect of our proposal of a Decentral Smart Grid Control is the direct encoding of the electricity price in
the grid frequency. Thus, the grid frequency must be allowed to vary in certain boundaries so that fluctuations of

4
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Figure 1. In DR via Decentral Smart Grid Control, variations of the electricity prices imply variations of the grid frequency. (a)
Histogram of plausible fully flexible consumer prices deduced from spot prices at the European energy exchange [36]. (b) Price-
frequency relation according to (b1) equation (14), with slopee = 10 (ct kWh™!)/(2z Hz) and (b2) equation (15), with

a = 10 (ct kWh™})/(2z) and § = 1 Hz, respectively. (c) Histogram of the corresponding frequency fluctuations.

the price are directly related to fluctuations of the frequency. Currently, frequency variations are limited due to
technical reasons [34]. In the European grid +200 mHz are acceptable in normal operation and up to

+800 mHz can occur in extreme cases for short times before emergency measures such as load shedding are
initiated [35]. This sets the order of magnitude at which the frequency may vary. Accordingly, we consider a
frequency range of (50 + 0.5) Hz.

In figure 1 we analyze the possible variations of the price and the frequency in more detail. Panel (a) shows a
histogram of plausible values of the consumer price, if this price is strictly coupled to the variable spot market
price for Germany in 2012 [36]. To obtain plausible consumer prices, we add 9 ct kWh ™" for distribution and
service, 7 ct kWh ™" fees plus 19% VAT on the total. The variations of the electricity price directly relate to
variations of the grid frequency as described above. We consider a linear price curve for all nodes

p(Ej)=pQ—€X5j, (14)

withp, = 24.1ct kWh ™', as shown in panel (b1). Foraslopee = 10 (ct kWh™')/27z Hz, the price curve maps the

operational range (@; + £2) /27 € [49.5, 50.5] Hz toa priceinterval p € [19.1, 29.1] ct kWh™1, which covers
98% of the observed fictitious consumer prices. A histogram of the resulting frequency variations is shown in
panel (c1). In 2% of all time slots prices outside of this interval were recorded which can even become negative.

To treat such events accordingly, a nonlinear function must be chosen which maps a fixed finite frequency
interval to all possible prices, i.e., to the real line. Still, the slope of this function should be bounded around the
operational point £ = 50 Hz. These requirements are satisfied by an inverse sigmoidal function. As a particular
example, we here consider the function

@
2() = b - gtanh—l(ﬂ_ﬁf], ()
which maps all angular frequency deviations in the interval @; € (—zf, + zf)toaprice p € (—oo, + c0). The
operational range can thus be fixed beforehand, and emergency measures can be specified, if frequencies outside
this range are measured. Choosinga@ = fe yields the same slope of the price curve around the reference
frequency as the linear price function (14). Indeed, using # = 1 Hz the statistics of the observed frequencies in
figure 1 hardly change in comparison to the linear price function, see panels (b2) and (c2). The corresponding
frequencies change significantly only for extreme price events, which now map to the operational range
(@; + 2) / 27 € [49.5, 50.5] Hz as desired. A similar statistic is found for other sigmoidal functions. The precise
form of such a nonlinear price function can be designed by the grid operators on the basis of actual market and
consumption data.

We note that figure 1 is based on the German spot market prices, which show huge fluctuations compared to
other energy markets [39]. Furthermore, one major effect of a comprehensive DR would be to suppress extreme

5
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price fluctuations anyway [7, 14]. Hence, we expect that the fluctuations shown in the figure represent extremes,
and that they would be significantly smaller in energy systems with DR and (virtual) storage.

4. Dynamics and stability

Dynamical stability is a basic requirement for power grid operation [3, 15]. For DR via Decentral Smart Grid
Control, a stable dynamic equilibrium ensures that the energy system is also in an economic equilibrium as
shown above. However, stability properties may become much more involved due to the interdependency of the
technical and the economical subsystem. Interdependencies may introduce new systemic risks to dynamical
network systems [12, 37].

The interaction of the DR system with the grid depends crucially on their time scales. In contrast to current
energy markets, the price can be adapted in almost real time, limited only by the time needed for a frequency
measurement. Here, we analyze the dynamical stability of the full techno-economic system and identify new
systemic risks for different scenarios and discuss how to master these risks.

4.1. Instantaneous adaption

We first investigate a DR that is fast compared to the grid dynamics. Assuming an instantaneous adaption of the
demand, i.e.,T = 7 = 0inequations (6) and (7), the effective power ij“h (t) in equation (1) becomes a
function of the current angular frequency deviation o ;. In particular, we consider a linear relation of price and
angular frequency deviation

pj=Pg —€w;(t). (16)
Linearizing the supply and demand curves around p , as in equation (12) yields
d*0; do; dg; X )
M]? + KJ? = S](pg) - D](PQ) - €(5j - d])g - EK]]( Sin (ak - 9]> (17)

By equation (13), an instantaneous economic response thus increases the effective damping constant to

eff

K;

=Kj+€(5j—dj)>1<j- (18)
Therefore, it always lowers the return times after perturbations, see equation (3).

4.2. Slow adaptation in discrete time steps

A second, more realistic scenario is that the Decentral Smart Grid Control is much slower than the grid
dynamics. Here, we consider a discrete time control system, where the price function is the same for all nodes
and given by (6). Both supply and demand are updated periodically with periodicity T > 3. M; / 2 K.
Assuming that the grid is dynamically stable for the given parameters, the angular frequency deviation will relax
to

AP
(w) = D

— with AP = Y'S;(p) — Dj(p). (19)
i j

On this basis, a new market price p' is calculated. Assuming an affine-linear price function as in equation (14)
and using the linearized supply and demand curves (12), we find

2isi— 2;d;
P —pg =—5% (p = pa)- (20)

This yields an oscillating dynamics of the market price, which is stable if and only if

ZjKj

- (21)
stj_ Z,‘ d;

€< €y =

setting a strict upper limit for the slope of the price function. The potential instability fore > ¢, is caused by an
overreaction of the suppliers and consumers to market incentives. Similar rebound effects can generally occur in
DR systems [8], such that this problem is not specific to the current proposal.

An example for the possible dynamics of the techno-economical system is shown in figure 2 for a model grid
with three generators and three consumers with values inspired by the IEEE 9-bus test grid (see panel (e)). We
assume that the price elasticities
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Figure 2. Dynamics of a model grid with Decentral Smart Grid Control in discrete time steps of T'= 60 s. System stability depends
crucially on the slope of the price curve, being stable for (a,b) € = 1 (ct kWh™!)/(27 Hz) < € and unstable for (c, d)
€ =5 (ct kWh™!)/(2x Hz) > €. We plot the dynamics of (a, c) the local prices pjand (b, d) thelocal frequencies (2 + @) / 2
starting from an initial price p, = 25 ctkWh ™" above the equilibrium price p,, = 24 ct KWh™". The angular frequency deviations i
vary only very little from node to node as shown in the inset in panel. (b) These residual oscillations relax on longer time scales such
that the system in (a, b) converges to a fixed point withw; = (w)and p; = p ({(w)). The model grid is depicted in panel, (e) where
generators colored in red and consumers in blue. The remaining system parameters are given in the main text.

ds;/d dD;/d
5= % and Ep= # (22)
i/ Pa ifP Pa
are the same for all nodes and givenby Es = + 0.3 and Ep = —0.3 in agreement with empirical results [38—40].

The price and subsequently the demand and supply are adapted after a time step of T=60 s. We assume an
equilibrium price p,, = 24 ctkWh™' and a damping constantx; = 0.2 /s X Mjwith M; = 10* kgm?® x Q. All
transmission lines have the same transmission capacity K =200 MW. For these parameters, the system is stable if
andonlyife < €4 &~ 3 (ct/kWh)/(2z Hz). Otherwise the prices and the grid frequency will diverge after a small
perturbation as shown in figure 2.

We note that this result can be interpreted as an application of the famous cobweb theorem from
microeconomics [41] to Decentral Smart Grid Control. The generalized equilibrium condition (11) can be seen as
the intersection of the loss curve Zj k {w) and the net supply curve AP ({w)) = Z]‘ Si(p((w))) — Dj(p((w))).
Theloss takes the role of an effective demand function with fast relaxation, while the net supply is adapted much
slower. The cobweb model then states that the economic system will relax to an equilibrium, if the slope of the loss
curve is larger than the slope of the net supply curve, which yields the stability condition (21).

4.3. Delayed adaptation: risks from resonances

New risks may emerge when the Decentral Smart Grid Control acts on similar time scales as the dynamics of the
grid such that the two system become truly interdependent. We first consider the case of a delayed feedback, i.e.,
we consider the price function (7) withz > 0 but without averaging (T'=0), i.e., consumers measure their local
frequency and try to adapt as fast as possible but need their intrinsic time 7 to react. To obtain analytic solutions
for the interdependent techno-economical system, we use a very simple system: we linearize the supply and
demand curves (12) and consider only two nodes with equal technical and economical parameters, i.e.,

M, = M,k = kp,51 = s, andd] = d,. Defining our new variables as the phase difference A9 = 6, — 0, and the
angular frequency difference of the two nodes Aw = @; — w;, the equations of motion read

iAQ =Aw
dr
%Aw =2P — aAw — 2K - sin(40) — yAw,, (23)

where we introduced the abbreviationsa = k/M, K = K;,/M,y = € (s; — d1)/M,2P = (S,(p,) — Di(py) —
$2(pg) + Da(pg)) /M and Aw, = Aw (t — 7). In the following, time is measured in seconds, #and y in s 'and
Pand Kin s 2. This notation is similar to the one used in [19]. Delayed differential equations need a history
function as initial condition, which we chose tobe Aw (t < 0) = Aw, - (1 + 0.1 tanh (¢/2)) for our dynamical
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Figure 3. Decentral Smart Grid Control can stabilize or destabilize the grid. Panels (a)—(d) show the frequency difference Aw/(27) and
effective power P = 2P — yAw, for an elementary two-node network as a function of time for two different delays, according to
(23). For the delay 7; = 0.75 s the effective power becomes large simultaneously to the frequency difference, i.e., the generator
produces more energy than needed, when the frequency is already too high, see (a) and (b). Hence, the system gets destabilized
completely. On the contrary, the effective power and frequency difference are shifted by half a period for 7, = 1.5 s such that the
system is stabilized, see (c) and (d). Initial conditions were A0y = 0, Awy = 1 Hzand the parametersy = 0.25 s, a = 0.1 57},
P = 152K = 8s 2 wereapplied.

simulations. Furthermore, we used standard mathematica routines [42] to solve the ordinary and delayed
differential equations.

The delayed adaption of supply and demand can both stabilize and destabilize the grid dynamics as shown in
figure 3. The physical reason of this effect can be easily understood. The frequency-adaptive ‘effective’ power
Py (t) = 2P — yAw, in equation (23) can be seen as a resonant driving acting on an oscillating system. Such a
driving term will either damp or amplify the oscillations depending on whether the driving is in-phase or out-of-
phase. The phase shift of this driving term is directly given by the delay 7, such that the stability of the system
depends crucially on the value of 7. To illustrate this result, we compare the dynamics for two different values of ¢
in figure 3. For r; = 0.75 s the driving is in-phase, the oscillations are amplified and the grid becomes unstable
with potentially fatal results, whereas r, = 1.5 s stabilizes the system.

To obtain a global view of the stability and the role of the system parameters we analyze the dynamical
stability around the steady-state operation of the grid given by the fixed point

AG*, Aw* ) = | arcsin B ,01. (24)
(27, 207) = ssn( ).

A solution exists only if the transmission capacity is larger than the power which has to be transmitted, K > P
[32]. Thelinear stability of a dynamical system is determined by the eigenvalues of the Jacobian matrix. For a
delayed system [43—45], we have to calculate the Jacobian of both the non-delayed system, based on equation (23),

L(iAg) g (EM) . 1
J = 0A0 \ dr O0Aw \ dt _ (25)
=1 5 (4 o (d ~| 2K cos (AG*) —a|

—| —Aw| —| —Aw

aAH(dt ) aAa)(dt )
and the derivatives for the delayed term

aAae (%M) aAa (%M)
T @ 0 0
Jo = ~(0 5} (26)

_0 (iAw) _6 (iAw)
040, \ dt 0Aw, \ dt
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Figure 4. The stability exponent Re (1) plotted as a function of the delay 7 for an elementary two-node network. The dynamic becomes
unstable, i.e., Re (1) > 0, for certain values of the delay time 7 periodically spaced on the real axis, if y > a. Parametersarey = 0.1 57/,
a=0.1s"1,P=1s2andK = 8 s and the root with highest real part of equation (27) was obtained numerically using Newton’s

method.

where we consider exponential solutions, see [45]. The stability eigenvalues A are then determined by the
solution of the characteristic equation

det(]o + e, — /1]1) =2+ al + 2K cos (AH*) + dye™ = 0. (27)

Small perturbations induce an oscillatory motion with eigenfrequency Im (4) and period 2z/Im (4). The
amplitude grows or decreases exponentially ase®® W* such thatRe (1) > 0 is the condition for a dynamic
instability. This is possible only if the frequency adaption is strong enough compared to the damping of the
system,

Re (1) =2 0 ispossibleonlyif y > a, (28)
as shown below. When the delay 7 changes, we observe a periodic pattern of stable and unstable parameter values
asshown in figures 4 and 5. As explained above, destabilization occurs in the case of an in-phase driving which
happens when 7 is an integer multiple of the period of the eigenoscillations of the system.

To proof these statements we first note thatRe (1) < 0 fory = 0 orz = 0 aslongasa > 0. We now consider

the parameter values where Re (1) changes its sign such that the system becomes unstable. Decomposing the
characteristic equation (27) into real and imaginary parts and setting Re (1) = 0 yields the conditions

“Im (A)? + 2K cos (AH*) + 7 TIm (A) sin(z Im (4)) = 0, (29)
aIm (4) + y Im (4) cos(z Im (1)) = 0. (30)
The second equation can be solved for 7 with the result

27

T (A)n, n €N, (31)

7 = arccos(—aly) +

One directly sees the periodicity in the delay 7, where the period 2z/Im (4) is equal to the period of the
eigenoscillations of the system. Furthermore, thearccos(—a/y) isreal only ify > @, which yields a necessary
condition for the destabilization by delay. Note that this statement is equivalent to the one from section 4.2,
namely the damping of the system has to be larger than the price influence to always guarantee stability.

In addition to the local stability analysis, we also consider the grid dynamics after a large perturbation. We
integrate the equations of motion for along time period until #,,, = 600 s with initial conditions randomly
drawn from a subset of the phase space Q = [—x, 7] X [—30, 30] Hz, see also [46], and evaluate whether the
system relaxes to a stable operation, i.e., whether it converges to the fixed point (24), or not. As a criterion for
stable operation we assume an angular frequency deviation of Aw ( t = tmax) < 0.1 Hz. Theresults are
visualized in figure 5, panels (a)—(c), where we plot the stability in a color code (light green: stable, dark blue:
unstable) as a function of the initial location in phase space for different values of 7. The results confirm the
finding of the linear stability analysis. Depending on the value of 7 the global stability is altered dramatically. For
7 = 0.8 s the fixed point is linearly unstable and the system does not relax for almost all initial conditions. On the
contrary, adelay of 7 = 5 sleads to an almost perfect stability; the grid converges for almost all initial states.
Notably, the regions of initial conditions leading to stable or unstable behavior are not clearly separated because
the actual boundary of these regions has a rather complex geometric structure already in the non-delayed case.
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Figure 5. The global stability of a two-node network with Decentral Smart Grid Control is quantified by the volume of the basin of
attraction and compared to linear stability. Both measures predict instability for similar delays z. A visualization of the basin of
attraction for different values of the delay 7 is shown in panels (a)—(c). Light green dots represent initial conditions that converge to the
fixed point while dark blue dots assume a limit cycle or converge too slowly. Parametersarey = 0.25s™,a = 0.1 s™,P = 1 572,
K = 8 s7% and 10 000 different initial conditions were used. In panel (d) the basin volume Vg, (discrete plot, light green) is plotted as
afunction of 7 in comparison to the stability exponent Re (1) (dark blue). We used the same parameters but only 1000 different initial
conditions.

The global stability of a fixed point of a dynamical system can be quantified by the volume of its basin of
attraction. The ‘basin size’ Vg5, can be determined numerically using a Monte Carlo method as the ratio of
initial conditions converging to a stable operation to the total number of initial conditions. Figure 5 panel (d)
shows how the basin volume depends on the delay time 7 in comparison to the linear stability exponent Re (4).
As expected, Visin tends to zero in the case of linear instability, Re (1) > 0. Maxima of Vi, of different height
are observed in the stable parameter regions, including an almost perfect stabilization for r ~ 5 s. However,
these maxima do not coincide with the minima of Re (4). As both the linear stability and the basin volume
predict similar delays to be problematic for the system, we focus on the computationally easier to handle linear
stability in the following.

4.4. Stabilization by averaging
Measuring the local grid frequency will generally take some time in a real-world system. We thus consider the
dynamics of the elementary model grid for the price function (7) including both delayz > 0 and averaging over
aperiodT > 0. The equation of motion for the angular frequency difference Aw = dA@/dt then reads
d . t
—Aw = 2P — aAw — 2K sin(A0) — r / Aw (t' — 7)dt’. (32)
dr T Jer
The integration can be carried out in a straightforward way by using (23) such that we obtain the modified
delayed dynamical system
diAa) = 2P — adw — 2K sin(40) - %[Aa(t — 1) —40(t - T - 17)]. (33)
t
To evaluate the stability of the steady state (24), we have to calculate the eigenvalues A for a system with both the
delay rand thedelayT = T + 7. The Jacobian of the non-delayed system is given by (25) as above and for the
delay terms only %91 ( %Aw) = —% and %614 ( iAco) =+ % are non-zero. The stability eigenvalues A are then
given by the roots of the characteristic equation [43]
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Figure 6. Frequency averaging stabilizes Decentral Smart Grid Control for delayed feedback. Averaging over an interval of sufficient
length T guarantees stability forallz > 0. The figure displays a scheme of the system in panel (a) and the stability exponent Re (4) for
the system according to characteristic equation (34) as a function of delay 7 as well as the averaging length T'in panel (b). A transparent
layer is added atRe (1) = 0. Cuts for two different but fixed averaging times T'in panel (c) and for two different but fixed delays z in
panel (d) are added. Parametersarey = 0.25s™!,@ = 0.1 s™',P = 1 s72and K = 8 s~ and Newton’s method is used to obtain .

p? y
— 2 _ 4 oAt _ —A(T+D) )
p(A) = =A% + ald + 2K,[1 e +T(e eHIH0) = g, (34)

Figure 6 shows the real part of the stability eigenvalue Re (1) as a function of the delay 7 and the averaging
time T. Instabilities are observed for certain values of , if T'is small as discussed above. But for a sufficiently high
T, the system stays stable regardless of the time 7. The actual values of the stability exponent Re (1) for large
T >> y are comparable to the one of the system without any price adaptation.

The results shown here are very interesting: while a delay in adaptation poses a stabilization risk to the grid,
averaging the measured signal for a certain time removes the short time fluctuations that could resonantly drive
the system and thereby guarantee a stable operation state. Still, the nodes can adapt to changes of the generation
on all time scales slower then T, which provides an effective DR management system.

4.5. Therole of the network topology

The larger the grid becomes, the more complex behavior it is able to show. Here, we consider a network with four
nodes to test our results. Two consumers (P = (S — D)/M < 0) are supplied by two generators

(P = (S = D)/M > 0).Each generator is coupled to a consumer to balance the power production/consumption.
In addition, the generators are coupled to each other. As above we assume that all technical and economic
parameters are the same for all nodes of the network. The equations of motion can be read in appendix B.

Risks from resonant driving emerge in a grid with delayed response and T'= 0 as discussed above. The grid
becomes unstable in certain regions of parameter space which are periodically spaced on the 7-axis. In a complex
network, there are generally many different eigenmodes with different frequencies. The parameter regions
where these modes can be excited generally overlap, such that the grid becomes unstable for most values of the
delay 7 as shown in the dark blue curves of panels (c), (d) in figure 7. Only for a very fast response z — 0 the
dynamic is stabilized.

We conclude that either a delayed adaption must be avoided, or alternatively, an averaging over a sufficiently
long period T must be introduced as well. Figure 7 panel (b) shows the stability exponents Re (1) as a function of
rand T for the four-node network. Increasing T to values well above 7 restores stability also for ‘dangerous’
values of 7 as shown in the light green curves of panels (¢), (d) in the figure.

5. Conclusion and outlook
In summary, we have proposed Decentral Smart Grid Control, a direct and decentralized frequency-price

coupling to achieve a reliable DR in the collective network dynamics of power grids. The required information,
the grid frequency, is easily accessible from everywhere in the system. As a consequence, DR via Decentral Smart
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Figure 7. In networks only non-delayed systems, i.e., 7 = 0, T'= 0 stabilize the system while for a delay z > 0, an averaging timeT > 0
is required. Hence, averaging is even more important to ensure stability for larger systems. The figure displays a scheme of the system
in panel (a) and the stability exponent Re (1) for the system as a function of delay 7 as well as the averaging length T'in panel (b). A
transparent layer is added at Re (1) = 0. Cuts for two different but fixed averaging times T'in panel (c) and for two different but fixed
delays 7 in panel (d) are added. Parametersarey = 0.25s™!,a = 0.1 s™',P = 1 s7?and K = 8 s7% and Newton’s method is used to
obtain A.

Grid Control offers a huge potential with both technical and economic benefits, in particular in grids with a large
fraction of renewable sources.

First, the load information needs not be collected and evaluated centrally so that additional infrastructure for
collection and for sending back central price information, is not required. This removes privacy and data
security issues and should drastically lower the costs of hardware required for future power grids. The only
technical device required would be a frequency meter at each customer complemented with a simple price
function either programmed or implemented in hardware. Second, our results suggest that for sufficiently short
feedback delays, as well as for longer delays with sufficient averaging, joint grid and economic stability is
guaranteed. Stated simply, such grid would be a stable market: a stable dynamic equilibrium implies economic
equilibrium. In contrast, whether joint economic and dynamic stability could be guaranteed in any other, more
centralized DR setting, is, to the knowledge of the authors, yet unknown.

Decentral Smart Grid Control does need some modifications of the current system. For instance, the
currently implemented strict rules for frequency regulation need to be relaxed to allow for some (small)
variability, see section 3.3. Moreover, meters and price response algorithms need to be implemented at the
customers’ side, which might need convincing arguments. However, such decentralized control might still be
much simpler to implement politically as customers need not fear data privacy issues and grid operators would
not be required to install massive, network-wide and highly reliable hardware and computing power.

Generally, determining dynamic stability is typically involved for any interdependent socio-technical or
techno-economic system, especially when the time scales of the system (here, the grid) and the control are
similar. We have uncovered several new systemic risks in potential control options for dynamic DR in smart
grids. The above results indicate that essential risks may be mastered by an appropriate design of the control in
terms of decentralized and direct frequency-price coupling. This speaks for Decentral rather than Central Smart
Grid Control of dynamic DRs.

We recommend to consider Decentral Smart Grid Control as a viable and possibly inexpensive alternative to
central measures of DR. Since at least small and possibly unknown delays seem possible, prices should be
calculated directly on the basis of a sliding average of the local grid frequency.
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Appendix A. Swing equation

In the main part, we analyze a coarse-grained oscillator model based on the physics of coupled synchronous
generators and synchronous motors, recently derived and numerically evaluated by Filatrella et al [17] and
extended to complex networks by Rohden et al [ 18]. To achieve the large-scale network reduction, we aggregate
coherent synchronous generators. Coherency of two generators means that there is no difference in their
rotating angular frequency at any point in time. Together with the associated loads in that area, this coherent
group is replaced by a single rotating machine with the index j € {1,..., N}, which summarizes the physical
properties of that group. In the language of network science, one group corresponds to one node of the network.

The moment of inertia M; of that rotating machine and its mechanical power input ij“h

sum up linearly from
all generators and loads of the coherent group [15]. In some groups there is more power generated than
consumed such that ij“h > 0. If there is more power consumed than produced, we have PjmeCh < 0.The
transmission network delivers power from nodes with power excess to nodes with power need.

The state of a coherent group of rotating machines is determined by its angular frequency and the rotor or
power angle 6 (¢) relative to the reference axis rotating at the nominal grid angular frequency £ = 2z X 50 Hz
or = 2z X 60 Hz. Correspondingly, w; = d6;/dt gives the angular frequency deviation from the reference
. The dynamic is governed by the swing equation [15, 17, 24]

d*; do;
M; ? + K a
where Pjel is the electrical power that is transmitted to or from other rotating machines and x; measures the
damping, which is mainly provided by damper windings. (Commonly, the symbol D is used for the damping
coefficient in the swing equation. In order to avoid confusion with the demand function introduced in the main
text, we here use the symbol k instead. ) If the mechanical power at a node j is constantly higher than the

— P}nech _ Pfl, (A.1)

corresponding electrical power (AP, = P]-meCh - Pjel > 0), then the angular frequency deviation @ ; increases until
the local mismatch in power AP, dissipates due to damping. Note that all formulae use the angular frequencies
while the numbers are divided by 2z for the plots to obtain frequencies.

To analyze the dynamics of the grid beyond the overall angular frequency deviation{(w) := %Z jwj,we
must take into account the details of the electrical coupling of the rotating machines along the edges of the
transmission grid. The apparent power at the grid node j is given by

N
Sj=V; I, (A.2)
k=1
with the complex-valued voltage V;and the currents

Ijk:}’jk<vj_vk)) (A.3)

where yji is the admittance of the transmission line between nodes j and k. In power engineering one generally
uses the nodal admittance matrix Y, whose elements are defined as

vy for j#Fk
Yy = ) (A.4)
zf Yie j=k
The apparent power at node j is then written in the compact form
N
Sj=V; Y Y;Vi. (A.5)
k=1
We neglect the ohmic resistance of the transmission lines as they are typically much smaller than the shunt
admittances [47], hence the admittance Yj; = iBjy is purely imaginary. Furthermore, we assume that the
magnitude of the voltage is constant throughout the grid,| V;| = V; forallnodes j € {1,..., N}. Then, the
apparent power simplifies to
N
S]‘= ZVOZBjkI:Sin (ek—ej) +iCOS(9k—9j)]. (A.6)

k=1

The electric power Pjel is given by the real part of this expression. Substituting this result into the swing
equation (A.1) thus yields the equations of motion
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2 FO5 4o, = prech () 25 s (60— 0)) (A7)
1?""(]?— j _;Oﬂfsm k= %) :
The factor K j := Vi Bjx thus gives the maximally transmittable power between nodes k and j. Therefore, we call
it the coupling strength. It is zero, if two rotating machines are not coupled along a direct transmission line.

Due to the second order term, equation (A.1) describes an oscillatory system of phase angles. As the phases
oscillate, also the local angular frequency deviations @ (¢) = d6; (¢) / dr oscillate, a phenomenon well-known in
power engineering [15, 21]. In the direct neighborhood of an equilibrium point in state space the oscillations are
nearly harmonic and can be decomposed into a set of eigenmodes, corresponding eigenfrequencies and
corresponding eigenvectors. The eigenfrequencies depend crucially on the connectivity of the power grid. Ina
densely connected grid, oscillations are typically fast (> 1 Hz), while the so-called inter-area oscillations in
weakly coupled grid are significantly slower. For instance, inter-area oscillations between Turkey and the rest of
the European power grid with a period of up to 7 s have recently been observed [26].

We note that this model is derived from the physics of rotating machines [15], or alternatively by assuming
frequency-dependent loads [24]. This description includes hydro power as well as power plants based on nuclear
and fossil fuel, which dominate today’s grid. It is expected that a rising penetration of renewable energy sources
will decrease the effective inertia in the future, which may however be compensated by advanced power
electronic devices [48]. The future development of these aspects is still under debate and beyond the scope of the
present article.

Appendix B. Four node system

In section 4.5 we used a four node system. The equations of motion for this system are

%@: Aw; forallje {1, ..., 4}

iAcu1= B — aAw; + K - sin (92 - 01) + K - sin (93 - 61) - %(01, - Hlf)

dt

%ACOZ =P — adw, + K - sin (91 - 92) - %(021 - 62]’")

%Am =B — adw; + K - sin (91 - 93) + K- sin (94 - 93) - %(937 - 93T)
%Aw4=P4—aAa)4+K-sin<93—94) - %(94,—9@), (B.1)

with@;, = 0;(t — r)and ;7 = 0;(t — T — ) forallj.
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