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The emergence of large-scale connectivity underlies the proper functioning of many networked systems,
ranging from social networks and technological infrastructure to global trade networks. Percolation theory
characterizes network formation following stochastic local rules, while optimization models of network
formation assume a single controlling authority or one global objective function. In socioeconomic
networks, however, network formation is often driven by individual, locally optimal decisions. How such
decisions impact connectivity is only poorly understood to date. Here, we study how large-scale
connectivity emerges from decisions made by rational agents that individually minimize costs for
satisfying their demand. We establish that the solution of the resulting nonlinear optimization model is
exactly given by the final state of a local percolation process. This allows us to systematically analyze how
locally optimal decisions on the microlevel define the structure of networks on the macroscopic scale.
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The proper functioning of networked systems funda-
mentally relies on their established large-scale connectivity.
The global connectivity of social, economic, and techno-
logical networks, such as the internet, trade, and trans-
portation networks, enables global communication and
exchange, but also the rapid spreading of diseases [1–7].
The loss of connectivity, or even of a single connection,
may cause catastrophic effects such as the collapse of
ecological networks, blackouts of power grids and other
infrastructures, or even a global economic crisis [8–15].
Understanding how global connectivity emerges thus con-
stitutes a key challenge in the field of network science.
Two major theoretical approaches have been established

for revealing core properties of the emergence of large-scale
connectivity. Firstly, the theory of percolation provides
fundamental insights about network formation processes
by assuming that new links are established stochastically
according to some local rule [16,17]. For such percolation
models, a variety of distinct structure-forming phenomena
have been observed, where diverse network topologies
emerge even for simple link formation rules [7,18–24].
Secondly, global optimization models explain network
formation controlled by a central authority or driven by a
single global objective function. These models have been
studied to construct and understand aspects of the structure
of various man-made and biological networks [25–32].

The formation of many socioeconomic networks, how-
ever, is driven by local agents making individual decisions
based on optimizing their own goals. Such settings result in
networks constrained by many individual, yet interacting
optimization problems. A similar motivation underlies
game-theoretic models of network formation [33–41].
These models allow a more detailed analysis of the
formation process and the stability of the resulting network.
Unsurprisingly, however, they are often hard or even
impossible to solve, especially for larger networks, thus
limiting mechanistic insights.
In this Letter we study network formation processes

based on rational agents that individually optimize their
own local objective function. Given costs for production
and transaction (including transport) in an underlying
transport network, each agent satisfies its own demand
at minimal costs [42,43]. We establish an exact mapping
between the solutions of the resulting nonlinear optimiza-
tion problems and the states of a local percolation process.
This enables us to systematically investigate optimal
collective network formation and to reveal discontinuous
transitions of the network structure and hysteresis. These
effects are independent of the network topology or specific
choices of the cost functions. The proposed framework thus
bridges global (deterministic) network optimization and
stochastic local percolation.
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From optimization to percolation.—We analyze a net-
work formation model based on the following fundamental
network supply problem (Fig. 1). Consider an underlying
network of N nodes and M links, describing agents and
potential transportation routes, where each agent must
satisfy its demand. We study the network of trades that
evolves between the nodes, similar to bond percolation on
an underlying network or random graph [16].
Specifically, we assume each node i ∈ f1;…; Ng is an

agent with a fixed demand Di. The agent satisfies this
demand by purchasing supplies Ski ≥ 0 from any nodes k,
including itself, under the constraint that

P
kSki ¼ Di.

(Throughout the Letter sums run over all nodes, here
k ∈ f1;…; Ng, unless otherwise noted.) Each agent tries
to achieve this with minimal cost

Ki ¼
X

k

KP
ki þ KT

ki; ð1Þ

including both production costs KP
ki at node k as well as

transaction costs KT
ki between the two nodes (see Fig. 1).

The production costs depend nonlinearly on the pur-
chases Ski

KP
ki ¼ pkðSkÞSki; ð2Þ

since the costs per unit pkðSkÞ typically depend on the total
production Sk ¼

P
j Skj at node k. Often, the production

costs per unit are decreasing, dpk=dSk < 0, accounting for,
e.g., increased efficiency with increased production, com-
monly referred to as economies of scale.
The transaction costs are proportional to the amount of

transported goods Ski and to the effective distance Tki
between the two nodes,

KT
ki ¼ pTSkiTki; ð3Þ

where Tki ¼
P

ete is given as the sum of the distances te of
all edges e along the (shortest) path between k and i in the
underlying transport network. The factor pT denotes the
transaction costs per unit good and unit distance, describing
effects of fuel costs or delivery times.
All agents solve their individual nonlinear optimization

problem [Eq. (1)] simultaneously, defining the network of
optimal purchases Ski. The resulting state of this network
then corresponds to a Nash equilibrium [44], where no
agent can reduce its cost by changing its purchases given
that all other purchases remain constant.
Results.—A simple, yet efficient solution to this problem

can be found for nonincreasing production cost per unit pk:
in this case any agent i chooses a single supplier i�, such
that Si�i ¼ Di and Ski ¼ 0 for k ≠ i�. In general each agent
would have to check each node in the network to find its
optimal supplier. Interestingly, if the demand of all agents is
identical, Di ≡D, this optimal supplier can be found
locally: An agent i just has to query its direct neighbors
about their current suppliers to find its optimal supplier i�.

Here, we provide a brief intuitive argument: Any
purchase of agent i has to be transported via one of its
neighbors j. Since transaction costs are additive over the
transport links and all agents have identical demand, agent
j effectively solves the same optimization problem as agent
i (minus the transaction costs from j to i). When j finds its
optimal supplier, this supplier is also a potential optimal
supplier of agent i when transporting via j. Thus, agent i
simply compares the suppliers of all its neighbors (all
potentially optimal suppliers, one for each possible path of
transport). One of these must then be the optimal supplier
for agent i (see Supplemental Material Secs. I and II for a
rigorous proof and details of the simulation [45]).
We investigate this local percolation model starting with

large transaction costs, pT ¼ ∞, and, correspondingly,
only internal production i� ¼ i and Sii ¼ Di. As pT
decreases, the transaction costs decrease and agents min-
imize their total costs by establishing external purchases Ski
from nodes with lower production costs. Finally, trans-
action costs disappear at pT ¼ 0 and all agents will have
the same supplier minimizing their production costs
(Fig. 2). We study the size Cði�Þ of the connected
components (clusters) in the network defined by these
purchases, this means the number of agents fi1; i2;…g
with the same supplier i�. As for standard percolation we
record the size C1ðpTÞ of the currently largest cluster (and
C2 for the second largest cluster and so on). In the
following examples we consider linearly decreasing pro-
duction costs per unit pkðSkÞ ¼ bk − aSk, where a ≥ 0
directly quantifies the strength of the economies of scale.
The results are qualitatively unchanged for all forms of
decreasing pk (see Supplemental Material [45]).
Discontinuous percolation and hysteresis.—We illus-

trate the emergence of connectivity in a random spatially
embedded network in Figs. 3(a) and 3(b), revealing the
importance of economies of scale. Weak economies of
scale (small a) lead to a continuous growth of the largest
cluster. Sufficiently strong economies of scale lead to a
discontinuous evolution of the size of the largest cluster in

FIG. 1. Network supply problem. Each agent i satisfies its
demand Di by purchasing supplies Ski from nodes k at minimum
costs via the available transport routes (dashed lines). The costs
Ki ¼

P
k K

P
ki þ KT

ki for these purchases include production costs
KP

ki at node k and transaction costs KT
ki between the nodes

[Eq. (1)]. The production costs depend on the total production
Sk ¼

P
iSki at node k [Eq. (2)]. The transaction costs are

proportional to the effective distance Tki of the transport route
between the nodes [Eq. (3)].
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the network. A microscopic decrease of the transaction
costs triggers a cascade of decisions: As the cluster size
increases, the production costs of its supplier decrease and a
large fraction of agents join this connected component. In
the language of percolation, a giant connected component
emerges in a continuous (weak economies of scale) or
discontinuous (strong economies of scale) phase transition.
Moreover, multiple stable states exist for sufficiently

strong economies of scale. In an intermediate interval of
transaction costs pT the network settles on one of the
possible structures, depending on the previous state of the

network: hysteresis emerges. Thus, a large cluster may
remain stable after it has emerged for decreasing pT , even
when pT is increased again [Figs. 3(b) and 3(c)].
Underlying mechanism.—To understand the mechanism

underlying these different transitions, we analyze a math-
ematically tractable system in detail. We consider a net-
work of all-to-all coupled units with demand Di ¼ 1=N
separated by effective distances te ¼ 1 for all edges e. We
take bi ¼ i=N for i ∈ f1;…; Ng, approximating the uni-
form distribution bi ∈ ½0; 1� in the limit of large system
size N.
We now track individual decisions by considering the

cost per unit KiðkÞ agent i pays for purchases at node k.
Since transaction costs across all links are identical, the first
link to be established will be between the node with the
highest production cost (node N) and the one with the
smallest (node 1). This happens when the cost per unit
KNð1Þ for agent N to import from node 1 become smaller
than the cost KNðNÞ to buy internally: KNð1Þ ¼
1=N − 2a=N þ pT < 1 − a=N ¼ KNðNÞ, that is for
pT < pN

T ¼ 1 − 1=N þ a=N. Similarly, we can calculate
when the next link between agent N − 1 and node 1 is
established: KN−1ð1Þ¼ 1=N−3a=NþpT < ðN−1Þ=N−
a=N¼KN−1ðN−1Þ, that is for pT < pN−1

T ¼ 1–2=Nþ
2a=N. The other agents follow the same pattern.
Considering the two links, we now have to distinguish

two cases: if a < ac ¼ 1, then pN−1
T < pN

T and the agentsN
and N − 1 will establish their links sequentially at different
values of pT . The largest cluster will grow continuously
with a slope of ð1=NÞ=ðpN−1

T − pN
T Þ ¼ 1=ða − 1Þ.

However, if the economies of scale are stronger
(a ≥ ac ¼ 1), the cost at node 1 decrease sufficiently for
the next link to be established immediately since
pN−1
T ≥ pN

T . The cluster grows discontinuously in a single
cascade. If the economies of scale are even stronger
(a > ac ¼ 1), the cluster is stable with respect to single

FIG. 2. Local percolation induced by optimization. Every agent
chooses a single optimal supplier to satisfy its demand if the
production costs per unit pkðSkÞ decrease with increasing
production (economies of scale). When the transaction costs
per unit pT are large, all agents make only local purchases from
their own node. As pT decreases, the transaction costs decrease
and agents start to purchase from other nodes. Some potential
transportation routes (dashed lines) become active trade links
(arrows). This trade network grows along the shortest paths in the
network as transaction costs become smaller. As the transaction
costs disappear (pT → 0), the network will become globally
connected. All agents then share the same supplier, minimizing
their production costs. If the demand of all agents is identical
Di ≡D, the solution to the supply problem can be found locally
and is given by the final state of a local percolation model.

(a) (b) (c)

FIG. 3. From continuous to discontinuous transitions and hysteresis. The type of the transition to a single globally connected
component changes depending on the strength of the economies of scale in the cost function. (a) Example of a small random network
embedded in the unit square. The parameters bi ∈ ½0; 1� are given by the real part of a smooth random function bðx; yÞ generated from
210 × 210 discrete Fourier modes with mean amplitude 0 and variance Sðωx;ωyÞ ¼ ðω2

x þ ω2
yÞ−2 (see also Supplemental Material Sec. III

[45]). (b) Single realizations (dashed lines) of the evolution of the relative size of the largest cluster for a random planar network with
N ¼ 104 nodes and average and standard deviation (solid lines and shading) over 100 random realizations of the bi. (c) The predicted
behavior for a completely connected network in the mean field limit N → ∞ (see text). Weak economies of scale (a < ac) lead to a
continuous growth of the largest cluster. Sufficiently strong economies of scale (a > ac) lead to a discontinuous transition. Reversing the
process, i.e., increasing the transaction costs, leads to a direct reversal for weak economies of scale, but hysteresis is observed for strong
economies of scale.

PHYSICAL REVIEW LETTERS 120, 248302 (2018)

248302-3



agents changing their supplier for larger values of pT ,
causing hysteresis when increasing pT . This qualitative
behavior is independent of the network topology in the
sense that for sufficiently large economies of scale the

transition will always become discontinuous (see
Supplemetal Material [45]).
Impact of network topology.—Besides changes in pro-

duction and transaction costs, the growth of the trade
network is also determined by changes of the transport
routes, that means by the underlying physical transportation
network. For the same economies of scale we find different
routes of network formation depending on the structure of
the network. If the network diameter (the longest shortest
path between any two nodes) is small, the paths in the
network are short and only one cluster emerges. If the
diameter is large, multiple large clusters appear. This
difference is already evident when comparing the spatially
embedded (large diameter) and complete network (small
diameter) for a ¼ 1 [compare Figs. 3(b) and 3(c)].
To systematically study this effect we fix the economies

of scale a ¼ 1 and consider a network class introduced by
Watts and Strogatz [23]. Starting from a regular ring
network with a large diameter where each node is con-
nected to its k neighbors, each link is randomly rewired
with probability qrew. This introduces shortcuts and reduces
the diameter of the network. If the diameter is large [qrew
small, Fig. 4(a)], different suppliers can attract large
clusters of agents from their local part of the network
when pT decreases. Fig. 4(c) illustrates the maximum size
of the n-th largest cluster, showing that multiple large
clusters emerge for qrew ≤ 10−5 (less than one shortcut per
node). Only for small values of pT do these clusters interact
and finally merge in small cascades to a single giant cluster.
If the diameter is small [qrew large, Fig. 4(b)], only a single
cluster emerges, attracting nodes from all parts of the

(a) (b)

(c) (d)

FIG. 4. Impact of the network structure on the percolation
transition. Size and discontinuities of large connected compo-
nents for an underlying Watts-Strogatz small world network
(N ¼ 104, k ¼ 8, see Supplemental Material Sec. III and Sec. V
[45]). (a),(b) Single realizations for the size of the components
Cði�Þ of three specific large suppliers. In a network with large
diameter [panel (a), qrew ¼ 10−5] multiple clusters grow simul-
taneously and merge for small pT . In a network with small
diameter [panel (b), qrew ¼ 10−2] one large cluster emerges in a
single cascade. (c) Maximum size of the n-th largest cluster as a
function of the topological randomness qrew (error bars omitted
for visibility). (d) Largest change of the size of the largest cluster
(error bars indicate the standard deviation). Averages are taken
over 100 realizations.

(a) (b) (c)

(e) (f) (g)

(d)

FIG. 5. Preferred modes of transport change network evolution. Global connectivity induced by locally optimal decisions in a model
of a world transport network (see Supplemental Material Sec. VII for details [45]). (a) Evolution of the size Cði�Þ of specific clusters
identified by a supplier i� when transport via sea is more expensive than transport via land (by a factor TS ¼ 5). Because of the high
costs of sea transport, the network diameter is large and multiple large clusters can emerge in different parts of the world. (b)–(d)
Network structure and active trade links for different values of the transactions costs pT . Land routes are preferred to transport via sea.
(e) Evolution of the size of the emerging cluster for small sea transport costs (TS ¼ 0.2). Because of sea routes connecting most
countries cheaply, the network diameter is small and only one large component emerges in a single large cascade. This transition
happens for larger pT as the overall diameter of the network is much smaller. (f),(g) The state of the network immediately before and
after the transition.
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network. The largest cluster then grows in a single cascade
until it fills the entire network [Figs. 4(c) and 4(d)].
To illustrate this effect with a realistic network topology,

we consider an elementary model of a world transport
network (Fig. 5). The nodes of the network represent
individual countries or regions and links represent transport
routes via land between neighboring countries or shipping
routes via sea (for a detailed description of the model
parameters and all data see Supplemental Material Sec. VII
[45]). Similarly to the small-world network, we explore
different network structures by varying the costs for
different modes of transportation, modifying the effective
distances of transport via land and sea. If transport via sea is
expensive, the network has a large diameter, similar to the
random planar network [Figs. 3(a) and 3(b)]. Multiple large
clusters appear in different regions of the world and merge
when pT becomes small [Figs. 5(a)–5(d)]. Conversely, if
transport via sea is cheap, the network becomes densely
connected with a small diameter, similar to the complete
graph [Fig. 3(c)], and a single largest cluster grows in a
sudden cascade [Figs. 5(e)–5(g)].
Discussion.—Taken together, we have proposed a class

of network formation models that demonstrates how
fundamental aspects of local economic decisions impact
global network formation. In contrast to random link
addition extensively studied before [16,22,47], link addi-
tion in this model is driven by individual decisions: each
node minimizes its own costs to satisfy a fixed demand by
establishing a trade network across a given network of
(potential) transport routes. The model class is general in
the sense that the illustrated phenomena are independent of
both the details of the network topology as well as of the
details of the cost functions. Specifically, whereas we have
analyzed the model with linearly decreasing production
costs per unit, linearity is not required. Any decreasing
cost function yields qualitatively the same results (see
Supplemental Material [45]).
In an analytically solvable limit we showed that the

solution of the resulting interacting optimization problems
exactly maps to the final state of a local percolation process,
thereby enabling a systematic analysis of the transition
from localized trading to a macroscopically connected trade
network. Importantly, the network evolution exhibits hys-
teresis, such that decreasing an external factor (e.g., the
transaction cost per unit) may induce global interactions but
increasing the same factor does not immediately reverse
this system-scale impact.
These results directly link deterministic, optimization-

based approaches of network formation [26–30,32–35,
38–41] and prototypical percolation processes [7,18–24]
based on purely random link addition. Specifically, the
model illustrates the connection of (discontinuous) perco-
lation to geographically distributed trade networks [42,43].
More generally, our framework shows how economic
factors and the actual connectivity may shape the structure

of socioeconomic networks through individual locally
optimal decisions.
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