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Coexistence of Regular and Irregular Dynamics in Complex Networks
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For general networks of pulse-coupled oscillators, including regular, random, and more complex
networks, we develop an exact stability analysis of synchronous states. As opposed to conventional
stability analysis, here stability is determined by a multitude of linear operators. We treat this
multioperator problem exactly and show that for inhibitory interactions the synchronous state is stable,
independent of the parameters and the network connectivity. In randomly connected networks with
strong interactions this synchronous state, displaying regular dynamics, coexists with a balanced state
exhibiting irregular dynamics. External signals may switch the network between qualitatively distinct
states.
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analytically. For networks with inhibitory couplings, we equivalent (cf. [11]) to different well-known models of
Complex networks appear as a variety of natural and
artificial systems, ranging from the World Wide Web and
electrical power grids to metabolic and neural networks
[1,2].While recent studies have focused on their structure
[1], the dynamics in such networks constitute a challeng-
ing issue of current and future research [2]. Even if
the individual vertices of the network are simple dynami-
cal systems, such as limit cycle oscillators, an exact
mathematical analysis of their collective dynamics is
often highly intricate, due to the complex connectivity
structure.

As a prototypical class of dynamical systems interact-
ing on networks, pulse-coupled units have received a
significant amount of interest because of their relevance
to diverse natural systems [3–7] including cardiac pace-
maker cells, flashing fireflies, earthquakes, and biological
neural networks. Particularly in neuroscience, these mod-
els [8] are essential for understanding collective dynamic
phenomena such as synchronization or the propagation
of sensory signals through extended networks [9,10].
Although biological neural networks, like other networks
occurring in the real world, often possess a complex
connectivity structure, most theoretical studies on
pulse-coupled oscillators are either restricted to networks
of globally coupled oscillators and simple regular net-
works, or work in some mean-field limit [3–6].

In this Letter, we study pulse-coupled oscillators inter-
acting on networks with general connectivities, including
fully connected, regular, random, and more complex to-
pologies. We develop an exact stability analysis of the
synchronous state. In contrast to conventional stability
problems, the first order stability operator here is not
linear, but can be expressed by a multitude of distinct
linear operators, the domains of which depend on the
rank order of a specific perturbation. For generally struc-
tured networks, the number of operators increases expo-
nentially with the size of the network. Our analysis
provides a method to treat this multioperator problem
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show that the synchronous state is stable, independent of
the parameters and the connectivity structure.

Proceeding from this result, we demonstrate that the
synchronous state, that displays regular dynamics, coex-
ists with a state of highly irregular dynamics in randomly
connected networks. We suggest a simple mechanism for
switching between these states. These results establish
that the behavior of networks of pulse-coupled units for
a given set of parameters may be dominated by qualita-
tively distinct dynamical states.

We consider a system ofN coupled oscillators [3] which
interact on directed graphs by sending and receiving
pulses. The structure of this graph is specified by the
sets Pre�i� of presynaptic oscillators that send pulses to
oscillator i. These sets determine the sets Post�i� of post-
synaptic oscillators that receive pulses from i. A phaselike
variable �i�t� 2 ��1; 1� specifies the state of each oscil-
lator at time t. The dynamics of a noninteracting oscil-
lator i is given by

d�i�t�=dt � 1: (1)

When oscillator i reaches a threshold,�i�t� � 1, its phase
is reset to zero, �i�t�� � 0, and the oscillator is said to
fire. A pulse is sent to all postsynaptic oscillators j 2
Post�i� which receive this signal after a delay time 
.
Depending on whether the input is subthreshold or supra-
threshold, the incoming signal induces a phase jump

�j��t� 
��� :� minfU�1�U��j�t� 
��� "ji�; 1g (2)

which depends on the instantaneous phase �j�t� 
� of
the postsynaptic oscillator and the coupling strength "ji.
The phase dependence is determined by a twice continu-
ously differentiable ‘‘potential’’ function U��� that is
assumed to be strictly increasing, U0��� > 0, concave
(down), U00���< 0, and normalized such that U�0� � 0,
U�1� � 1 (cf. [3]).

By choosing an appropriate function U, this model is
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interacting threshold elements. For instance, for the
leaky integrate-and-fire oscillator defined by the linear
differential equation _VV � I � V [8] (and threshold at
V � 1), one obtainsUIF��� � I�1� e�TIF��, where TIF �
log�I=�I � 1�� is the period of a noninteracting oscillator
and I > 1 is a suprathreshold external current. Oscillators
described by nonlinear differential equations are covered
by the Mirollo-Strogatz approach, too. For instance, the
conductance based threshold model of a neuron [8] leads
to a different, more complicated function UCB��� (for
details, see [11]). All analytical results presented here are
derived for the above, general class of interaction func-
tions. In numerical investigations, we use the functional
formUIF but find qualitatively similar results for different
U. In this Letter, we focus on inhibitorily coupled net-
works (all "ij 
 0 and "ii � 0).

We perform a stability analysis of the synchronous
state [�i�t� � �0�t� for all i] that exists if the coupling
strengths are normalized such that

P
j2Pre�i� "ij � " < 0.

Its period is given by

T � 
� 1� �0 ; (3)

where �0 � U�1�U�
� � "�. To construct a stroboscopic
map, a perturbation ��0� � � � ��1; . . . ; �N� of the
phases, defined by

�i�0� � �0�0� � �i ; (4)

is ordered according to the rank order rank��� of the �i:
For each oscillator i we label the perturbations �j of its
presynaptic oscillators j (for which "ij � 0) according to
their size

�i;1 � �i;2 � � � � � �i;ki ; (5)

where ki :� jPre�i�j is the number of its presynaptic os-
cillators, called in-degree in graph theory [12]. In addi-
tion, we define �i;0 � �i. For illustration assume that an
oscillator i has exactly two presynaptic oscillators j and j0

such that Pre�i� � fj; j0g and ki � 2. For certain pertur-
bations, oscillator i first receives a signal from oscillator
j0 and slightly later from oscillator j. This determines the
rank order (�j0 > �j) such that �i;1 � �j0 and �i;2 � �j.

Using the phase shift function h��; "� :� U�1�U��� �
"� and denoting Di;n :� �i;n�1 ��i;n for n 2 f1; . . . ; kig
we compute the time evolution of phase perturbations
�i � 1, starting near �0�0� � 
=2 without loss of gen-
erality. The stroboscopic time-T map of the perturbations,
�i � �i�T�, is obtained from the scheme
t
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�i�t�
0
 

2 � �i �: 


2 ��i;0



2 ��i;1
 h�
�Di;1; "ij1 � �: �i;1



2 ��i;2.
h��i;1 �Di;2; "ij2 � �: �i;2.
..
 ..



2 ��i;ki
 h��i;ki�1 �Di;ki ; "ijki � �

: �i;ki



2 ��i;ki � 1� �i;ki
 reset : 1 � 0
where the right column gives the phases�i�t� of oscillator
i at times t of pulse receptions or reset given in the left
column. Here the presynaptic oscillator from which os-
cillator i receives the nth pulse during this cycle is labeled
by jn. The time to threshold

T�0�
i :�



2
� �i;ki � 1� �i;ki (6)

is always smaller than the period T. Hence the period-T
map of the perturbation can be expressed as

�i�T� � T � T�0�
i �



2
� �i;ki � �0 � �i;ki : (7)

Expanding �i;ki for small Di;n one can prove by induction
that to first order

�i;ki _�� �0 �
Xki
n�1

pi;n�1Di;n ; (8)

where

pi;n :�
U0�U�1�U�
� �

P
n
m�1 "ijm��

U0�U�1�U�
� � "��
(9)

for n 2 f0; 1; . . . ; kig. This results in a first order map

��T� _�� A� ; (10)

where the elements of the matrix A are given by

Aij �

(pi;n � pi;n�1 if j � jn 2 Pre�i�;
pi;0 if j � i;
0 if j =2 Pre�i� [ fig:

(11)

Since jn in (9) and (11) identifies the nth pulse received
during this cycle by oscillator i, the first order operator
depends on the rank order of the perturbations, A �
A�rank����, and the map A� is piecewise linear. In gen-
eral, signals arriving almost simultaneously at the same
oscillator induce different phase changes, depending on
the order of arrival: For the above example of an oscil-
lator i with exactly two presynaptic oscillators j and j0

and equal coupling strengths, "i;j � "i;j0 , the first of the
two arriving signals has a larger effect, encoded in the
pi;n, than the second, by virtue of the concavity of U���
[cf. Eq. (2)]. The respective matrix elements Ai;j and Ai;j0
are differences between certain pi;n and therefore have
different values depending on which signal is received
first. This is induced by the structure of the network
together with the jumplike interactions. For networks
with homogeneous, global coupling different matrices A
can be identified by appropriately permuting the oscilla-
tor indices. In general, however, this is impossible.

Hence, in this stability problem, given a network struc-
ture, one generally has to deal with an exponential num-
ber of operators instead of a single stability matrix. We
treat all these operators simultaneously: It is straight-
forward to show that for all matrices A (independent
of the rank order of a perturbation and the parameters)
the matrix elements are non-negative, Aij � 0. Because
of time-translation invariance all A are normalized row-
wise,

P
j Aij � 1 for all i, and exhibit a trivial eigenvalue
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FIG. 1. Coexistence of (a) synchronous and (b) irregular
dynamics in a random network (N � 400, p � 0:2, I � 4:0;
" � 16:0, and 
 � 0:035). (a),(b): Trajectories of the potential
U��i� of three oscillators [angular bars: time scale (horizontal)
�t � 8; potential scales (vertical) (a) �U � 8, (b) �U � 2;
spikes of height �U � 1 added at firing times]. (c),(d):
Distributions (c) p� of rates and (d) pCV of the coefficients
of variation, displayed for the irregular (dark gray) and syn-
chronous (light gray) dynamics.
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�1 � 1. Moreover, the diagonal elements are identical and
smaller than 1, Aii � A0 < 1. The synchronous state is
thus stable, because the inequality

max
i

j�i�T�j 
 max
i

X
j

jAijjj�jj


 max
i

X
j

jAijjmax
k

j�kj

� max
k

j�kj; (12)

is satisfied for all matrices A.
For a convex potential function U, where U00 > 0, and

excitatory interactions ("ij � 0) the synchronous state is
stable as well. The above proof applies if the total input "
is not suprathreshold, i.e., " < 1�U�
�. Thus whereas
excitatory interactions must not be too strong for appli-
cability of the proof, inhibititory interactions may be
arbitrarily strong.

For robustness of the stable synchronous state it is
required that the nontrivial eigenvalues of the matrices
A are separated from the unit circle. An instructive
example is given by a network of integrate-and-fire
oscillators, U��� � UIF���, where all matrices (11) are
degenerate if "ij � "=ki for all j 2 Pre�i�. In this case,
the eigenvalues of a single matrix completely characterize
the dynamics in the vicinity of the synchronous state.
Numerically, we find that in large random networks in
which every connection is present with probability p all
nontrivial eigenvalues are located in a disk D � fz 2 C :
jz� A0j 
 rg of radius r that is centered at A0 < 1 and
separated from the unit circle. An estimate for the radius,
r � �1� A0��p�1 � 1�1=2N�1=2 for N � 1, can be ob-
tained from the theory of Gaussian asymmetric random
matrices [13]. We find that this estimate agrees well with
our numerical results [14]. This indicates that in the limit
of large N, all nontrivial eigenvalues are concentrated
near z � A0 and are thus separated from the unit circle by
a gap.

The above analysis shows that for inhibitory coupling
the synchronous state is stable, independent of the pa-
rameters and the network structure. Numerical simula-
tions show that for a network at given parameters this
synchronous state often coexists with one or more other
attractors. A particularly important example which oc-
curs in randomly connected networks with strong inter-
actions is a balanced state (cf. [5,15]) that exhibits
irregular dynamics. In this balanced state, found origi-
nally in binary neural networks [15], inhibitory and
excitatory inputs cancel each other on average but fluctu-
ations lead to a variability of the membrane potential
and a high irregularity in firing times (see also [5]).
Figures 1(a) and 1(b) display sample trajectories of the
potentials U��i� of three oscillators for the same random
network, making obvious the two distinct kinds of coex-
isting dynamics.

The dynamical differences are quantified by a histo-
gram p� of oscillator rates [Fig. 1(c)]
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�i � �hti;n�1 � ti;nin�
�1; (13)

the reciprocal values of the time averaged interspike
intervals. Here the ti;n are the times when oscillator i fires
the nth time. The temporal irregularity of the firing
sequence of single oscillators i is measured by the coef-
ficients of variation

CVi � ��2i h�ti;n�1 � ti;n�2in � 1�1=2; (14)

defined as the ratio of the standard deviation of the
interspike intervals and their average. A histogram pCV

of the CVi [Fig. 1(d)] shows that the irregular state
exhibits coefficients of variation near one, the coefficient
of variation of a Poisson process. Such irregular states
occur robustly when changing parameters and network
topology; on the other hand, the size of the basin of
attraction of the synchronous state is also significant
and increases with increasing delay 
.

The coexistence of two qualitatively different kinds of
dynamics leads to the question of how regular dynamics
can be induced when the system currently is in an irregu-
lar state and vice versa. A simple mechanism to synchron-
ize oscillators that are in a state of irregular firing is the
delivery of two sufficiently strong external excitatory
(phase-advancing) pulses that are separated by a time
�t 2 �
; 1�, cf. Fig. 2. The first pulse then leads to a
synchronization of phases due to simultaneous supra-
threshold input [cf. Eq. (2)] . If there are traveling signals
that have been sent but not received at the time of the first
pulse, a second pulse after a time �t > 
 is needed that
synchronizes the phases after all internal signals have
been received. This synchronous state is not affected by
small random perturbations, whereas large random per-
turbations lead back to irregular dynamics (Fig. 2).
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FIG. 2 (color online). Switching between synchronous and
irregular dynamics (N � 400, p � 0:2, I � 4:0, " � 16:0, and

 � 0:14). Firing times of five oscillators are shown in a time
window �t � 240. Vertical dashed lines mark external pertur-
bations: (i) large excitatory pulses lead to a synchronous state;
(ii) a small random perturbation (j��ij 
 0:18) is restored;
(iii) a sufficiently large random perturbation (j��ij 
 0:36)
leads to an irregular state. Bottom: Time evolution of the
spread of the spike times after perturbation (ii), total length
�t � 0:25 each.
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Mechanisms for both directions of switching may be
realized in biological neural networks by external neur-
onal populations: While strong external pulses may be
generated by external neurons that are highly synchron-
ized, a random perturbation can be realized by neurons
which fire irregularly.

Most previous studies of the dynamics of networks of
pulse-coupled units focused on regular networks or
worked in some mean-field limit [3–6]. These studies
often relied on the analysis of bifurcations from one state
to another as an external parameter is changed. Based on
the stability analysis developed here, that applies to net-
works with general connectivity, we have demonstrated
that regular synchronous dynamics may coexist with
irregular dynamics in sufficiently complex networks.
The coexistence of qualitatively different states at iden-
tical parameters indicates that bifurcation approaches
may often not give a complete picture of the network
dynamics, if the network structure is too complex. This
fact may well apply not only to networks of pulse-coupled
units but also to the dynamics of many other complex
networks. In addition, our results emphasize that in com-
plex networks of pulse-coupled units the occurrence of
temporally regular and irregular firing patterns may
typically reflect the collective state of the network rather
than the dynamics of individual units.

The analysis presented in this Letter demonstrates that
the dynamics in certain complex networks can be re-
vealed by considering the vertices as units with simple
dynamical properties, e.g., intrinsic oscillators. Such
systems provide promising starting points for future
studies addressing the dynamics in networks, now that
important aspects of their complex structure have been
understood [1].
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