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Abstract: The emergence of synchrony essentially under-

lies the functionality of many systems across physics, biol-

ogy and engineering. In all established synchronization

phase transitions so far, a stable synchronous state is con-

nected to a stable incoherent state: For continuous tran-

sitions, stable synchrony directly connects to stable inco-

herence at a critical point, whereas for discontinuous tran-

sitions, stable synchrony is connected to stable incoher-

ence via an additional unstable branch. Here we present

a novel type of transition between synchrony and incoher-

ence where the synchronous state does not connect to the

state of incoherence. We uncover such transitions in the

complexified Kuramotomodel with their variables and cou-

pling strength parameter analytically continued. Deriving

a self-consistency equation for a quaternion order param-

eter that we propose helps to mathematically pin down the

mechanisms underlying this transition type. Local numeri-

cal analysis suggests that the transition is linked to a Hopf

bifurcation destabilizing synchrony, in contrast to branch-

ing point bifurcations established for the transition between

synchrony and incoherence so far.

Keywords: synchronization; phase transitions; explosive

phenomenas

1 Introduction

Self-organized synchronization, the temporal coordination

of states of coupled units, represents a fundamental order-

ing process emerging in nonlinear dynamical systems
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[1]–[4]. Examples range from phenomena in nature such as

the collective flashing of fireflies, the coordinated activity

of pacemaker cells in the heart or spiking neurons in the

brain [5]–[9] to those underlying the function of engineered

systems such as phase-locking in AC electric power grids,

the self-organization of pedestrian stepping dynamics or

of drone communication [10]–[13]. With increasing cou-

pling among the units, asynchronous, incoherent collective

states are replaced by system-wide synchrony with strongly

aligned states. In the thermodynamic limit, a phase tran-

sition emerges with asynchronous states below a critical

coupling strength and (partially) synchronous states above

it. Synchronization phase transitions have been originally

found to be continuous such that the degree of temporal

order (synchrony) gradually increases starting from com-

plete disorder (asynchrony) [14]–[16].

Half a century ago, Kuramoto [15] introduced a paradig-

matic model for the emergence of synchrony among limit-

cycle oscillators. The simplicity and partial analytic acces-

sibility of the Kuramoto model made it the Drosophila of

studies on synchronization and temporal coordination pro-

cesses [3], [4]. In particular, it has opened up a huge field

for exploring synchronization phase transitions of coupled

oscillatory units. Specifically, Kuramoto studied a system

of 2𝜋-periodic phase variables x
𝜇
∈ 𝕊1 = ℝ∕2𝜋ℤ for 𝜇 ∈

[N] :={1, 2,… ,N} and found that the absolute value of the
order parameter [17], [18]

reiΨ = 1

N

N∑
𝜈=1

eix𝜈 = 1

N

N∑
𝜈=1

(i sin x
𝜈
+ cos x

𝜈
) ∈ ℂ (1)

that quantifies the degree of synchrony of the x
𝜇
, gradu-

ally starts increasing from zero once the coupling strength

increases beyond a critical value. Analytic work for oscilla-

tors with frequencies drawn from a unimodal distribution

confirmed the continuous nature of the phase transition to

synchrony. Later work has demonstrated continuous syn-

chronization transitions across many oscillatory systems.

Some work has shown that discontinuous phase transi-

tions may equally occur in different instances [19]–[21], for

bimodal or compact-support frequency distributions [22],

[23] and in certain networks with power-law degree distri-

butions [24]–[27] as well as in experimental studies, e.g.,

Belousov–Zabotinsky (BZ) oscillatory reactions [28].

So far, established discontinuous synchronization tran-

sitions have been viewed to arise from a bistability between

incoherence and synchrony. They occur due to a shift in
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the critical nature of a branching point bifurcation (such

as a pitchfork or a transcritical bifurcation) from super-

critical to subcritical, as theoretically consolidated recently

by Kuehn and Bick [29]. More precisely, for a continuous

synchronization transition, stable synchrony directly bifur-

cates off the incoherent state at a supercritical branching

point. Upon varying a secondary parameter, a discontinu-

ous transition emerges where a state of unstable synchrony

bifurcates off the incoherent state at a subcritical branching

point and then becomes stable via a saddle-node bifurcation

(also known as fold bifurcation, see Section 6), implying

that an unstable branch connects the stable incoherent state

and stable synchronous states. Therefore in both, the estab-

lished continuous and discontinuous transitions between

synchrony and incoherence, the incoherent and the syn-

chronous states are connected to each other, either directly

or via an additional unstable branch.

In this article, we uncover a novel type of phase transi-

tion to synchrony: A discontinuous phase transition where

incoherent and synchronized states are detached from each

other in state space and parameter space such that there

exists no connecting branch bridging them. We mathemati-

cally identify these discontinuous transitions in analytically

continued Kuramoto models exhibiting complex instead

of real state variables and coupling parameters, compare

[30]–[32]. We introduce a quaternion order parameter q ∈
ℍ that generalizes the standard (complex) Kuramoto order

parameter reiΨ defined in Eq. (1). The analytical insights

resulting from the self-consistency equations for q expli-

cate two intriguing findings. First, the synchronous state

is indeed disconnected from the incoherent state, in con-

trast to known discontinuous transitions, where unstable

branches create a bridge between them. Second, the phase

transition is almost always discontinuous, such that discon-

tinuous transitions prevail across parameter space, support-

ing numerical observations, in stark contrast to the balance

between continuous and discontinuous transitions estab-

lished so far [29]. Finally, local numerical analysis suggests

that a Hopf bifurcation, rather than the commonly estab-

lished saddle-node bifurcation, destabilizes the collective

state of synchrony.

2 Quaternion order parameter

distinguishes synchrony from

incoherence

Let us consider the dynamics of networks of units with

complex variables z
𝜇
= x

𝜇
+ iy

𝜇
, with x

𝜇
∈ 𝕊1 and y

𝜇
∈ ℝ,

coupled through sinusoidal interaction functions, thereby

analytically continuing the original Kuramoto model

[30]–[32]. The coupling constant is also continued to

be complex, K = |K|ei𝛼 ∈ ℂ with 𝛼 ∈ (−𝜋

2
,
𝜋

2
)=:ℙ. The

network dynamics satisfies

d

dt
z
𝜇
= 𝜔

𝜇
+ K

N

N∑
𝜈=1

sin(z
𝜈
− z

𝜇
) (2)

for 𝜇 ∈ [N]. To ease derivations of our main results, we

symmetrically draw pairs of natural frequencies 𝜔
𝜇
=

−𝜔
𝜇+ N

2

∈ ℝ for 𝜇 ∈ [N∕2] from (i) an even probability

density with g(𝜔) = g(−𝜔), that induces (ii) a zero mean,⟨𝜔⟩ := ∫ℝ𝜔g(𝜔)d𝜔 = 0, is (iii) peaked at zero with g(0) ≠ 0,

g′(0) = 0, and g′′(0) < 0 and exhibits (iv) infinite, monoton-

ically decaying tails, g(𝜔)→ 0 together with 𝜔g′(𝜔) < 0 as

𝜔→ ±∞.

Direct numerical simulations starting from random ini-

tial conditions [33] intriguingly revealed discontinuous tran-

sitions to synchrony for all 𝛼 ∈ ℙ, see Figure 1a. The tradi-
tionally found continuous transition emerges only if 𝛼 = 0

exactly and in addition the initial values are all chosen in

the real invariant subset, i.e., z
𝜇
(0) ∈ ℝ for all 𝜇 ∈ [N].

Why are discontinuous transitions so persistent? How

does such a transition differ from established explosive

synchronization? To address these questions, we first

Figure 1: Quaternion order parameter characterizes transitions to

synchrony. (a) The classical Kuramoto order parameter (1) as a function

of the coupling strength |K| for different 𝛼. (b) The quaternion order
parameter (3) as a function of the coupling strength |K| for the same 𝛼 as
in (a). Light purple curves: 𝛼 = 0 with y

𝜇
(0) ≡ 0 for all 𝜇 ∈ [N], showing

a continuous transition to synchrony in the classical Kuramoto model;

dark purple curve: 𝛼 = 0 with general initial conditions y
𝜇
(0) ≢ 0; light

green curve: 𝛼 = 0.2; orange curve: 𝛼 = 𝜋

2
− 0.1.). N = 128 and natural

frequencies randomly symmetrically drawn from Gaussian density for all

𝛼.
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distinguish the degree of coherence from incoherence by

introducing a quaternion order parameter

q := 1

N

N∑
𝜈=1

(j sin z
𝜈
+ cos z

𝜈
)

= q0 + q1i+ q2j+ q3k ∈ ℍ, (3)

where i, j, k are basis elements of quaternions ℍ and

an overline indicates complex conjugation [34]. Here,

q0=: Re(q) ∈ ℝ is the real part of q and the qn ∈ ℝ for

n ≥ 1 are the vector part components (Appendix A). In the

same way as the original (complex) order parameter r in (1)

effectively decouples the equations of motion of the original

Kuramotomodel, the quaternion order parameter (3) decou-

ples the analytically continued equations of motion (2) such

that (Appendix B)

d

dt
z
𝜇
= 𝜔

𝜇
− K(q0 + iq1 ) sin z𝜇 + K(q2 + iq3 ) cos z𝜇 (4)

for 𝜇 ∈ [N]. More specifically, Eq. (4) elucidates that each

unit variable z
𝜇
is driven only by itself and the mean-

field q of all other units. Beyond this decoupling, the

norm ‖q‖ :=(∑3

n=0q
2
n

)1∕2
measures the degree of syn-

chrony among the units and directly maps to the classical

order parameter r, eqn. (1) (Appendix C). Uncoupled units

yield an incoherent state, with ‖q‖ = 0 (see below) while‖q‖ = 1 marks complete synchrony with (x
𝜇
, y

𝜇
) = (x

𝜈
, y

𝜈
)

for all 𝜇, 𝜈 ∈ [N]. We remark that the unboundedness of

imaginary variables may result in ‖q‖ > 1. Despite this dif-

ference, the quaternion order parameter well distinguishes

collective dynamical states, especially synchrony and asyn-

chrony, and characterizes different types of transitions to

synchrony, compare Figure 1a and b (Appendix C).

3 Self-consistency equation for

locked states

Fixed point solutions of (2) determine generalized locked

states with temporally fixed z∗
𝜇
, both for finite-size systems

and in the thermodynamic limit. For finite N , such a com-

plex locked state is represented by an algebraic equation

0 = 𝜔
𝜇
− Kq∗ sin z∗

𝜇
(5)

implying z∗
𝜇
= sin−1

𝜔
𝜇

Kq∗
for 𝜇 ∈ [N]. As the complex sine

function is entire, such a solution exists for all parameters

K ∈ ℂ∖{0}, all oscillators are locked and there is no drifting
oscillator. Here, we exploited that the symmetric natural

frequencies restrict q∗ to a complex subspace ofℍ such that

q∗
2
= q∗

3
= 0 in (3). In the thermodynamic limitN →∞, such

locked states become

z∗(𝜔) = sin−1
(

𝜔

Kq∗

)
∈ ℂ, (6)

yielding the self-consistency condition

q∗ =
∫
ℝ

(
jsin z∗(𝜔)+ cos z∗(𝜔)

)
g(𝜔)d𝜔

=
∫
ℝ

(
1− 𝜔

2

K2q∗2

) 1

2

g(𝜔)d𝜔. (7)

For simplicity of presentation, we hereafter omit the aster-

isk symbol.

4 Continuous synchronization

transition

The original Kuramoto model (𝛼 = 0) evolves on an invari-

ant manifold ℝN × {0}N if both the initial conditions

z
𝜇
(0) ∈ ℝ and the coupling constantK ∈ ℝ are exactly real.

For 𝛼 = 0 and z
𝜇
(0) ∈ ℝ for all 𝜇 ∈ [N], the quaternion

order parameter becomes real, q ∈ ℝ × {0}3 ⊂ ℍ due to

the symmetric natural frequencies. To yield a self-consistent

real q, the argument of the root in the self-consistency

equation (7) needs to be non-negative, thereby constraining

the range of frequencies 𝜔 such that

q =
Kq

∫
−Kq

√
1− 𝜔

2

K2q2
g(𝜔)d𝜔

= Kq

1

∫
−1

√
1− x2g(Kqx)dx. (8)

For locked states (q > 0), we divide (8) by q and obtain

the critical coupling strength at which a positive order

parameter (q > 0) continuously bifurcates off from the q =
0 solution representing the incoherent state. As q→ 0+,

we obtain 1 = Kcg(0)∫
1

−1

√
1− x2dx = Kcg(0)

𝜋

2
, determin-

ing Kc = 2

𝜋g(0)
. We thereby recover the continuous phase

transition to synchrony known from the original Kuramoto

model [17].
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5 Synchrony detached from

incoherence

Intriguingly, we observe a type of discontinuous phase

transition that is not only fundamentally different from

established continuous but also from established discontin-

uous transitions. In the following, we present three sets of

evidence supporting that the synchronous state is neither

directly nor indirectly connected to the incoherent state

and that the phase transition is persistently discontinuous

across parameter space.

5.1 Quaternion order parameter

To see this, let us consider general 𝛼 ≠ 0 or 𝛼 = 0 and

generic initial conditions z
𝜇
∈ ℂ such that q ∈ ℂ∖ℝ in (7).

In the incoherent state, the probability density in the ther-

modynamic limit is inversely proportional to the oscillator

velocity
d

dt
z
𝜇
given by (4) such that (Appendix D)

𝜌inc(x, y, 𝜔) = 𝜌inc(x + 𝜋, y,−𝜔) (9)

= C(𝜔)||𝜔− K[(q0 + iq1 ) sin(x + iy)+ (q2 + iq3 ) cos(x + iy)]||
(10)

where C(𝜔) is a normalization constant. In analogy to the

real model [17], the symmetry (9) results in qinc = 0 in

the incoherent state (Appendix D). Numerical experiments

indicate that the quaternion order parameter vanishes for

incoherently drifting oscillators in the thermodynamic limit

N →∞ (Figure 2).

In contrast, the synchronous state exhibits solutions

q to (7) with ‖q‖ > 0 which is completely disconnected

from the ‖q‖ = 0 solution for the incoherent state as we

demonstrate next. Assume they were connected and contin-

uously branched off the ‖q‖ = 0 solution. For small ‖q‖ ≪
1, given the properties (i-iv) above, we write the natural

frequency density as g(𝜔) = e f (𝜔) and observe that as ‖q‖→
0+, only small values of 𝜔 contribute. We asymptotically

[35] obtain g(𝜔) = e f (𝜔) ∼ g(0)e
f ′′ (0)
2

𝜔
2

in the integrand as‖q‖→ 0+, up to transcendentally small terms (t.s.t.), so that

we can exploit an asymptotic approximation of Laplace-

type [36], [37]. For instance, for a Cauchy–Lorentz distribu-

tion, g(𝜔) = 1

𝜋

Δ
𝜔
2+Δ2 ∼ e

log(
1

𝜋Δ )− 𝜔
2

Δ2
+O(𝜔4 )

as |𝜔|→ 0, while

for a Gaussian (normal) distributionwe exactly have g(0) =
1√
2𝜋
and f ′′(0) = −1.
Substituting the general asymptotic expansion into (7),

we obtain for Kq ∈ ℂ∖ℝ

q = g(0)
∫
ℝ

(
1− 𝜔

2

K2q2

) 1

2

e
f ′′ (0)
2

𝜔
2

d𝜔+ t.s.t.

= g(0)
2| f ′′(0)|

(
−1
K2q2

) 1

2

+ O(‖q‖)+ t.s.t. (11)

as ‖q‖→ 0. The result (11) implies a contradiction:While the

LHS converges to zero asymptotically as ‖q‖→ 0, the lead-

ing term of the RHS diverges. Hence, the self-consistency

equation does not admit a solutionwith arbitrary small ‖q‖.
Thefinding indicates that synchronous states donot connect

to the incoherent state. Any phase transition to synchrony

is thus necessarily discontinuous without any branch that

bridges synchrony and incoherence (see Appendix E for

more details).

For instance, for a Gaussian distribution g(𝜔) =
1√
2𝜋
e−

1

2
𝜔
2

, the self-consistency equation (7) reads

q = 2i√
2𝜋

(
𝜋

K2q2

) 1

2

U
(
− 1

2
, 0,− 1

2
K2q2

)
(12)

with confluent hypergeometric function U [38] provided

that Kq ∈ ℂ∖ℝ. The relation (12) implicitly determines the

quaternion order parameter for complexified synchrony

(whether it is stable or unstable) as well as illustrates some

Figure 2: In the incoherent state, the quaternion order parameter decays to zero as N→∞. (a) The quaternion order parameter as a function of time

for different system sizes N = 32, 128 and 1024, with 𝛼 = 0.1 and t0 = 1000. The red dashed line indicates time averages ⟨‖q(t)‖⟩t for each system size.

(b) The time-averaged quaternion order parameter as a function of system size N, shown in log-log scale for different values of 𝛼 (same color code in

Figure 1 for different 𝛼). The dashed guideline indicatesO(1∕
√
N) as N→∞. Here, |K| = 0.2 for both panels.
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of its properties, see again Figure 1b and 5. First, ‖q‖ does
not approach zero in any locked state for any |K| > 0; thus,

discontinuous transitions emerge persistently for all 𝛼 ∈
ℙ and without a bridging connection between synchrony

and incoherence. Second, q→ 1 as |K|→∞, and thus the

quaternion order parameter ‖q‖ converges to the classical
Kuramoto order parameter r as the coupling strength |K|
increases.

5.2 Kuramoto order parameter

The Kuramoto order parameter also suggests disconnect-

edness between the synchronized state and the incoherent

state (Figure 3). An asymptotic analysis on the Kuramoto

order parameter (Appendix F) confirms

Figure 3: The Kuramoto order parameter is disconnected to the

incoherence. The Kuramoto order parameter is shown as the coupling

strength |K| varies. Here, we use N = 128 and 𝛼 = 0.2 > 0. The dashed

part of the purple curve indicates unstable synchrony for small |K| while
the solid part of the curve shows stable synchrony. The below-dotted line

indicates the order parameter limit as |K|→ 0+ whereas the

above-dotted line shows the order parameter as |K|→∞.

r%

⎧⎪⎪⎨⎪⎪⎩

√
1+ sin 𝛼

2
= (1) as |K|→ 0+

1 as |K|→∞

(13)

For a small |K|, the Kuramoto order parameter for unsta-
ble synchrony already assumes values of O(1) rather

than O(
1√
N
) as N →∞ for the incoherent state. As|K|→∞, the Kuramoto order parameter asymptotically

approaches unity that characterizes a completely synchro-

nized state. Thus, unless the Kuramoto order parameter

r varies strongly non-monotonically as a function of |K|
(for which we have no numerical support), r = O(1) does

not touch the value r = 0 of the incoherent state for any|K| > 0.1

5.3 Instability via Hopf bifurcation

Finally, a numerical stability analysis of the complex locked

state suggests that complex locked states loose their stability

in a Hopf bifurcation.

The existence of synchrony in the form of a complex

locked state z∗ for all parameters K ≠ 0 enables us to study

its local stability by numerically evaluating the eigenvalues

of the local Jacobian at z∗, see Figure 4. Figure 4a at |K| =
0.6 indicates stable synchrony. As |K| decreases (Figure 4b),
the complex conjugate pair of eigenvalues crosses the

imaginary axis such that their real parts become posi-

tive, suggesting an instability of synchrony through a Hopf

bifurcation.

1 We do not consider the single potential exception at 𝛼 = 3𝜋∕2 ∉ ℙ
that reflects repulsive coupling.

Figure 4: Synchrony destabilizes via a Hopf bifurcation. (a) Eigenvalues (circles) of a Jacobian matrix in a complex plane indicate stable complexified

synchrony at |K| = 0.6 (here, N = 256, 𝛼 = 𝜋

2
− 0.1). The one pair of complex conjugate eigenvalues with largest real part (excluding 𝜆 = 0 that exists

due to phase shift invariance) is indicated by red circles. (b) As the coupling strength |K| decreases, a pair of complex conjugate eigenvalues crosses
over the imaginary axis to positive real parts, indicating destabilization of synchrony.
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6 Distinguished features of novel

transition

The discontinuous transitions to synchrony we uncovered

are thus drastically different from widely known discontin-

uous and explosive transitions [25], [26]. Key recent work

[29] found that the transition to synchrony occurring with

increasing coupling strength often smoothly changes from

continuous to discontinuous (or vice versa) upon varying

an additional parameter, say 𝛾 . The core mechanism for

such change in transition type has been identified as follows

(Figure 5a): Varying 𝛾 (continuously) changes the transition

between subcritical and supercritical. Two examples illus-

trated in detail include pitchfork and transcritical bifur-

cations. For all discontinuous transitions arising through

Figure 5: Disconnected branches induce novel type of discontinuous

transitions. (a), (b) Schematics of the order parameter r (1) as a function

of coupling strength |K|. (a) Traditionally, incoherent and synchronous
states are connected, and changes from continuous to discontinuous

transitions emerge through local bifurcations (e.g. branching points BP±

such as transcritical or pitchfork) upon varying an additional parameter

(here named 𝛾 ), compare Ref. [29]. As 𝛾 varies, a branching that connects

the incoherent state with the synchronous state changes from

supercritical (BP+) to subcritical (BP−), thereby inducing hysteresis

through a saddle-node (SN) bifurcation in the thermodynamic limit.

(b) Persistently discontinuous phase transitions we present emerge

through two disconnected branches (no branching point). Top panel: Only

for 𝛼 = 0 and for a measure-zero set of initial conditions (y(0) ≡ 0), a

continuous transition occurs through a supercritical branching point

(BP+). Stable synchrony emerges via a Hopf bifurcation (HB) upon

increasing the coupling strength [32]. For both panels, solid curves

indicate a stable state while dashed curves mark unstable states.

any such mechanism, an unstable branch remains that con-

nects the synchronous to the asynchronous incoherent state.

Thus, established discontinuous transitions to synchrony

connect the synchronous and incoherent states through an

unstable branch. In traditional discontinuous transitions,

stable synchronous states appear through a saddle-node

bifurcation, with the associated unstable branch connect-

ing to the incoherent state (Figure 5a bottom subpanel).

The reverse, a disappearence of synchrony constitutes an

example of a well-known scenario of discontinuous, explo-

sive, or catastrophic phenomena [39]. Moreover, the tran-

sition is continuous in “half” the parameter space, say for

𝛾 > 0, whereas it is discontinuous in the other half, for

𝛾 < 0.

In contrast, the transition between synchrony and inco-

herence we uncovered (Figure 5b) exhibits intriguing novel

characteristics:

(i) The state of synchrony appears to be entirely discon-

nected from the incoherent state.

(ii) Synchrony achieves (de-) stabilization via a Hopf

bifurcation rather than a saddle-node bifurcation

(Figure 4).

(iii) The transitions are discontinuous almost everywhere

up to a single point in parameter space (𝛼 = 0) and

special initial conditions (z
𝜇
(0) ∈ ℝ for all 𝜇 ∈ [N]).

Thus discontinuous transitions are persistent.

7 Summary and outlook

The above results thus indicate the existence of a novel

transition between synchrony and incoherence that not

only is generically discontinuous, but is mediated by a Hopf

bifurcation that destabilizes the synchronous state. The syn-

chronous state therefore appears to be disconnected from

the incoherent state, in contrast to established synchroniza-

tion transitions [4], [17], [29].

Exactly determining the point at which the incoherent

state becomes unstable constitutes a challenge, in particular

in large systems, because the incoherent state just consti-

tutes a complicated transient trajectory in finite systems.

In the thermodynamics limit, while the quaternion order

parameter we proposed has helped analyze the type of tran-

sition (continuous vs. discontinuous), as the system consists

of two-variable units, we were not successful in pinning

down their joint distribution functions and the associated

time evolution equations.

More generally, open challenges involve understand-

ing potential new types of phase transitions indicating

the emergence of temporal (or structural) order. Coupled

nonlinear systems with states and parameters analytically
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continued to become complex as in the Kuramoto model

[30]–[32] discussed here, may lead the way in exploring

such challenges. Indeed, in the past, such a continuation has

led to fields like PT-symmetric quantum mechanics, fractal

geometry, and contributed to the foundations of the statis-

tical physics of phase transitions [40]–[44]. For instance,

recent work already provides a few hints about which new

forms of collective dynamics may emerge in other complex-

ified models such as the Winfree model [45] or networks

of neurons [46]–[48]. A quaternion order parameter may

help not only to quantify order but also to qualitatively

distinguish transition types, as we have demonstrated by

the example of complex locked states above. We speculate

that it may, in particular, help identify further novel types

of transitions that are induced by the existence of state

variables in addition to phases.
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Appendix A: Quaternion order

parameter and its components

In the main text, the quaternion order parameter is defined

as

q := 1

N

N∑
𝜈=1

(j sin z
𝜈
+ cos z

𝜈
)

= q0 + q1i+ q2j+ q3k ∈ ℍ, (A.1)

where i, j, k are basis elements of quaternions ℍ and

an overline indicates a complex conjugation. Using prop-

erties of complex sine and cosine functions such as

sin(x + iy) = sin x cosh y+ i cos x sinh y and cos(x + iy) =
cos x cosh y− i sin x sinh y, the real andvector part compo-

nents of the quaternion order parameter (A.1) are explicitly

written as

q0 =
1

N

N∑
𝜈=1

cos x
𝜈
cosh y

𝜈

q1 = − 1

N

N∑
𝜈=1

sin x
𝜈
sinh y

𝜈

q2 =
1

N

N∑
𝜈=1

sin x
𝜈
cosh y

𝜈

q3 =
1

N

N∑
𝜈=1

cos x
𝜈
sinh y

𝜈
. (A.2)

for complex dynamical units z
𝜇
= x

𝜇
+ iy

𝜇
for 𝜇 ∈ [N].

Appendix B: Quaternion order

parameter effectively decouples

equations of motion

As the complex order parameter decouples the original

Kuramoto equations, the quaternion order parameter (A.1)

decouples the analytically continued equations of motion

such that

d

dt
z
𝜇
= 𝜔

𝜇
+ K

N

N∑
𝜈=1

sin(z
𝜈
− z

𝜇
) (B.1)

= 𝜔
𝜇
− K

(
1

N

N∑
𝜈=1

cos z
𝜈

)
sin z

𝜇

+ K

(
1

N

N∑
𝜈=1

sin z
𝜈

)
cos z

𝜇
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= 𝜔
𝜇
− K sin z

𝜇

1

N

N∑
𝜈=1

(
cos x

𝜈
cosh y

𝜈

− i sin x
𝜈
sinh y

𝜈

)
+ K cos z

𝜇

1

N

N∑
𝜈=1

(
sin x

𝜈
cosh y

𝜈
+ i cos x

𝜈
sinh y

𝜈

)
= 𝜔

𝜇
− K(q0 + iq1 ) sin z𝜇 + K(q2 + iq3 ) cos z𝜇 (B.2)

for 𝜇 ∈ [N]. This form makes the mean-field nature of the

model clear. Each oscillator, in effect, is driven by itself z
𝜇

and the mean-field (the quaternion order parameter) q of

all other units.

Appendix C: Relation between

classical and quaternion order

parameters

The quaternion order parameter effectively decouples

complexified equations of motion as in (B.2).

Direct numerical integration of (B.1) indicates that

synchrony emerges as a fixed point solution to (B.1),

called a complex locked state denoted by z∗
𝜇

for

𝜇 ∈ [N]. Thus, we assume that the quaternion order

parameter (A.1) also becomes stationary and denote

it q∗ = q∗
0
+ q∗

1
i+ q∗

2
j+ q∗

3
k. When symmetric natural

frequencies, i.e. 𝜔
𝜇
= −𝜔

𝜇+N∕2 for 𝜇 ∈ [N∕2], are imposed
on oscillators, we assume that a complex locked state reads

z∗(𝜔
𝜇
) = −z∗(𝜔

𝜇+N∕2) for 𝜇 ∈ [N∕2]. It then follows in

(A.2) that q∗
2
= q∗

3
= 0. Finally, the complex locked state

reads

z∗
𝜇
= sin−1

(
𝜔
𝜇

K(q∗
0
+ iq∗

1
)

)
= sin−1

(
𝜔
𝜇

Kq∗

)
(C.1)

for 𝜇 ∈ [N]. Numerical simulations also indicate the result

described here.

In the thermodynamic limit, a complex locked state

z∗(𝜔) = sin−1
(

𝜔

Kq∗

)
gives a relation between the quater-

nion order parameter and the classical Kuramoto order

parameter. To see this, we consider

x∗(𝜔) = sgn(𝜔) sin−1
√

1

2

(
1+ c2 −

√
1+ c4 − 2c2 cos 2 𝜃

)
(C.2)

where we define c := 𝜔|K|‖q‖ , and 𝜃 :=𝛼 + arg(q). Then,

the classical Kuramoto order parameter reads

r =
|||||||∫ℝ

(
i sin[x∗(𝜔)]+ cos[x∗(𝜔)]

)
g(𝜔)d𝜔

|||||||
=

∫
ℝ

cos[x∗(𝜔)]g(𝜔)d𝜔 =
∫
ℝ

(
1− sin2[x∗(𝜔)]

)1∕2
g(𝜔)d𝜔

=
∫
ℝ

(
1

2
− 𝜔

2

2|K|2‖q‖2

+ 1

2

√
1+ 𝜔

4

|K|4‖q‖4 − 2𝜔2 cos 2 𝜃|K|2‖q‖2
⎞⎟⎟⎠
1∕2

g(𝜔)d𝜔 (C.3)

in terms of q. In particular, as |K|→ 0+, the Kuramoto order

parameter in (C.3) becomes r ∼
√

1−cos 2 𝜃
2

+ O(|K|2 ). This
is consistent with the unstable complexified synchrony r ∼√

1+sin 𝛼

2
, via the relation arg(q) ∼ 𝜋

4
− 𝛼

2
as |K|→ 0+. Also,

it follows that r→ 1 as |K|→∞ as discussed in the main

text.

For finite-size systems, one may conclude that the clas-

sical Kuramoto order parameter is obtained via

r = 1

N

N∑
𝜈=1

(
1

2
− 𝜔

2
𝜈

2|K|2‖q‖2

+ 1

2

√
1+ 𝜔4

𝜈|K|4‖q‖4 − 2𝜔2
𝜈
cos 2 𝜃|K|2‖q‖2

⎞⎟⎟⎠
1∕2

(C.4)

as long as the quaternion order parameter q is measured

through the self-consistency equation (in the main text).

Appendix D: Quaternion order

parameter vanishes for the

incoherent states

As in the main text, the oscillator density for the incoherent

state in the thermodynamic limit is inversely proportional

to the velocity
d

dt
z such that

𝜌inc(x, y, 𝜔) =
C(𝜔)||𝜔− K[(q0 + iq1 ) sin(x + iy)+ (q2 + iq3 ) cos(x + iy)]||

(D.1)
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where C(𝜔) is the normalization constant. In Eq. (D.1),

the oscillator density satisfies a symmetry property

𝜌inc(x, y, 𝜔) = 𝜌inc(x + 𝜋, y,−𝜔) and the natural frequency
density is assumed to be even g(𝜔) = g(−𝜔). It then

follows from these two symmetries that the quaternion

order parameter for the incoherent states vanishes such

that

qinc = ∫
ℝ
∫
𝕊1

∫
ℝ

𝜌inc(x, y, 𝜔)(jsin(x + iy)

+ cos(x + iy))g(𝜔)d𝜔dxdy

= −
∫
ℝ
∫
𝕊1

∫
ℝ

𝜌inc(x, y, 𝜔)(jsin(x + iy)

+ cos(x + iy))g(𝜔)d𝜔dxdy = 0 (D.2)

in the thermodynamic limit.

Appendix E: Detached

discontinuous phase transitions to

synchrony for general frequency

densities

In the main text, we exploited natural frequencies obtained

from the relation 𝜔
𝜇
= −𝜔

𝜇+N∕2 for 𝜇 ∈ [N∕2] where the
quaternion order parameter (A.1) is restricted to become a

complex number. Here, we provide a detour to persistently

discontinuous phase transitions to synchrony, not relying

on the quaternion order parameter restricted to complex

numbers. The analysis below confirms the same result as

in the main text.

To this end, we reformulate the complexified

Kuramoto equation (B.1) into a Riccati form, which then

satisfies
d

dt
h
𝜇
= i𝜔

𝜇
h
𝜇
+ K

2
Γ1 −

K

2
Γ2h

2
𝜇

(E.1)

for 𝜇 ∈ [N] where we define h
𝜇
:= eiz𝜇 , Γ1 := 1

N

∑N

𝜈=1h𝜈

andΓ2 := 1

N

∑N

𝜈=1h
−1
𝜈
. Following Kuramoto’s self-consistency

method in the thermodynamic limit, an equilibrium solu-

tion reads

h =
i𝜔±

√
K2Γ1Γ2 −𝜔

2

KΓ2

(E.2)

that results from an algebraic equation 0 = i𝜔h+
K

2
Γ1 − K

2
Γ2h

2. The plus sign branch in (E.2) leads to a

self-consistency equation

Γ1 =
∞

∫
−∞

h(𝜔)g(𝜔)d𝜔

=
∞

∫
−∞

i𝜔+
√
K2Γ1Γ2 −𝜔

2

KΓ2

g(𝜔)d𝜔. (E.3)

Defining a macroscopic observable R :=
√
Γ1Γ2 ∈ ℂ, we

obtain a self-consistency equation for a complexified syn-

chrony, which reads

KR2 =
∞

∫
−∞

√
K2R2 −𝜔

2g(𝜔)d𝜔 (E.4)

where R characterizes well different states of order and

disorder in the synchronization transition process, as the

quaternion order parameter does so.

Continuous phase transition to synchrony When both

the initial condition and the coupling constant are exactly

real, i.e. 𝛼 = 0 and |h
𝜇
| = 1 for 𝜇 ∈ [N], the macroscopic

order parameter becomes the magnitude of the classi-

cal Kuramoto order parameter and thus R ∈ ℝ. To yield

a self-consistent real R, the argument of the root in the

self-consistency equation (E.4) needs to be non-negative,

thereby constraining the range of frequencies 𝜔 such that

R =
KR

∫
−KR

√
1− 𝜔

2

K2R2
g(𝜔)d𝜔

= KR

1

∫
−1

√
1− x2g(KRx)dx (E.5)

where x := 𝜔

KR
. Taking R→ 0+, the critical coupling strength

is obtained via 1 = Kcg(0)∫
1

−1

√
1− x2dx = Kcg(0)

𝜋

2
, as in

the main text. We thus recover the continuous phase transi-

tion to synchronyknown from the original Kuramotomodel.

Persistence of discontinuous transitions Following the

same logic in the main text, in general, the self-consistency

equation (E.4) for a complex locked state KR ∈ ℂ∖ℝ reads

as |R|→ 0
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R =
∞

∫
−∞

√
1− 𝜔

2

K2R2
g(𝜔)d𝜔

= g(0)
∫
ℝ

(
1− 𝜔

2

K2R2

)1∕2
e

f ′′ (0)
2

𝜔
2

d𝜔+ t.s.t

= g(0)
2| f ′′(0)|

( −1
K2R2

)1∕2
+ O(|R|)+ t.s.t (E.6)

While the LHS converges to zero asymptotically as |R|→
0, the leading term of the RHS diverges. Hence, the

self-consistency equation does not admit a solution with

arbitrarily small |R|. The finding indicates that synchronous
states do not connect to the incoherent state. Any phase

transition to synchrony is thus necessarily discontinuous.

Appendix F: Kuramoto order

parameter as |K|→ 0+ and|K|→∞
A system of complexified Kuramoto oscillators z

𝜇
= x

𝜇
+

iy
𝜇
∈ ℂ is governedby (2). The system (2) for𝛽 := 𝜋

2
− 𝛼 = 0

(𝛼 = 𝜋

2
; purely imaginary coupling) reads

d

dt
x
𝜇
= 𝜔

𝜇
− |K|

N

N∑
𝜈=1

cos(x
𝜈
− x

𝜇
) sinh(y

𝜈
− y

𝜇
) (F.1)

d

dt
y
𝜇
= |K|

N

N∑
𝜈=1

sin(x
𝜈
− x

𝜇
) cosh(y

𝜈
− y

𝜇
) (F.2)

for 𝜇 ∈ [N]. A complex locked state, i.e., a fixed point solu-

tion, is achieved by setting (F.2) to zero, leading to x(0)
𝜇

=
0 for all 𝜇 ∈ [N]. Substituting this into (F.1), we reach an

algebraic equation

𝜔
𝜇|K| = 1

N

N∑
𝜈=1

sinh(y(0)
𝜈

− y(0)
𝜇
) (F.3)

for 𝜇 ∈ [N]. Assuming that y(0)
𝜇

= − sinh−1(b�̃�
𝜇
) where

�̃�
𝜇
:= 𝜔

𝜇|K| , the parameter b is determined by

1

b
= 1

N

N∑
𝜈=1

√
1+ (b�̃�

𝜈
)2. (F.4)

For details, see [32]. Hence, the complex locked state for a

purely imaginary coupling reads

z(0)
𝜇

= x(0)
𝜇

+ iy(0)
𝜇

= 0− i sinh−1(b�̃�
𝜇
) (F.5)

for 𝜇 ∈ [N].

In [32], the asymptotic series expansion up to the first

order well characterizes a complex locked state for 𝛽 → 0+:

z∗
𝜇
= −g𝛽 tanh(y(0)

𝜇
)+ iy(0)

𝜇
+ O(𝛽2 )

= g𝛽
b𝜔

𝜈
∕|K|√

1+
(
b𝜔

𝜇|K|
)2 − i sinh−1

(
b𝜔

𝜇|K|
)
+ O(𝛽2 ) (F.6)

where

g =

N∑
𝜈=1

cosh y(0)
𝜈

N∑
𝜈=1

cosh y(0)
𝜈

+
N∑
𝜈=1

sinh y(0)
𝜈

tanh y(0)
𝜈

> 0 (F.7)

is a positive parameter.

It is noteworthy that, from (F.6), we obtain the leading-

order asymptotic behavior of a complex locked state:

z∗
𝜇
∼

⎧⎪⎪⎨⎪⎪⎩

1

2
𝛽 + i

1

2
log

( |K|2
4b2𝜔2

𝜇

)
, if 𝜔

𝜇
> 0

− 1

2
𝛽 − i

1

2
log

( |K|2
4b2𝜔2

𝜇

)
, if 𝜔

𝜇
< 0

(F.8)

for 𝜇 ∈ [N] as 𝛽 → 0+ and |K|→ 0. Considering this asymp-

totic behavior, we obtain

r =
||||||
1

N

N∑
𝜇=1

eix
∗
𝜇

|||||| ∼
|||| 12

(
1+ ei𝛽

)|||| =
√

1+ sin 𝛼

2
(F.9)

as 𝛽 → 0+ and |K|→ 0. Although this asymptotic behavior

is derived for 𝛽 → 0+ and |K|→ 0, numerical simulations

suggest that (F.9) remains valid for any 𝛼. This analysis is

consistent with the results in Appendix C to any 𝛼 ∈ ℙ.
In the limit of |K|→∞, a system of complexified

Kuramoto oscillators (2) behaves like a system of identical

complexified oscillators (𝜔
𝜇
= 0 for all 𝜇 ∈ [N] in a rotat-

ing reference frame). This system has a complete synchro-

nization solution as a fixed point: x∗
𝜇
= 0 and y∗

𝜇
= 0 for

all 𝜇 ∈ [N]. The Jacobian matrix evaluated at the complete

synchronization reads

J =
(
cos 𝛼 − sin 𝛼

sin 𝛼 cos 𝛼

)
⊗ J̃1 = R(𝛼 )⊗ J̃1 (F.10)

where (J̃1 )𝜇𝜈 := − |K|𝛿
𝜇𝜈

+ |K|
N

for 𝜇, 𝜈 ∈ [N] and

R(𝛼) ∈ SO(2) is a rotation matrix. Here, Eig(J̃1 ) =|K| × {0,−1,… ,−1} and also the eigenvalues of the

rotation matrix R(𝛼) are either ei𝛼 or e−i𝛼 . Therefore, we

obtain

1|K|Eig(J) = {0, 0,−ei𝛼,−e−i𝛼, · · · ,−ei𝛼,−e−i𝛼}. (F.11)
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Therefore, the complete synchronization
(
x∗
𝜇
, y∗

𝜇

)
= (0, 0)

becomes stable for 𝛼 <
𝜋

2
while unstable for 𝛼 >

𝜋

2
.
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