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Abstract—This paper presents a machine learning-based tech-
nique for quality assessment of electrocardiogram (ECG) signals
in wearable Internet of Things (IoT) sensors. Quality assessment
at the network edge aids in the elimination of corrupted data
prior to storage or transmission. In this work, we used a k-
nearest neighbor (k-NN) binary classifier for identifying whether
the acquired sensor data is of acceptable quality for further
processing and transmission. Feature vectors used for classifi-
cation were derived from the raw signal using skewness and
kurtosis based signal quality indicators (SQIs), and these SQIs
do not require any prior processing or knowledge of fiducial
points in the ECG signal. The proposed approach achieved a
classification accuracy of 97.18% with an estimated complexity
that corresponds to 12.72 fJs Energy-Delay-product (EDP) in
terms of multiplications used. To further reduce computational
complexity and power consumption, an approximate multiplier
was used, and this method exhibited an accuracy of 96.48%.
The EDP, while using an approximate multiplier for classifying
a single record was found to be 34.5% lower at 8.333 fJs, and is
within the power budget of a typical IoT device.

Index Terms—Signal Quality Assessment, IoT Sensors, Elec-
trocardiography, Approximate Multiplier

I. INTRODUCTION

Long term monitoring of physiological signals like electro-
cardiogram (ECG), acquired using Internet of Things (IoT)
sensors and analyzed in the cloud, can facilitate early de-
tection of Cardio Vascular Diseases (CVDs). Various types
of noise, such as electrode contact noise, muscle artifacts,
and motion artifacts, often contaminate ambulatory recordings
of physiological signals. Moreover, the transmission of large
amounts of data from an IoT sensor to the cloud can pose
a challenge. Hence, the quality of the acquired signals must
be assessed in the IoT sensor prior to transmission to the
cloud, enabling the use of these signals in subsequent analyses.
Therefore, energy-efficient and time conservative algorithms
for data integrity assessment need to be implemented in the
IoT sensors. Assessment of signal quality at the network edge
helps to 1) reduce data redundancies, 2) avoid transmission of
corrupted data, and 3) optimize storage and battery resources
in IoT devices [1].

In this article, we address the issue of signal integrity
assessment at the edge for a single channel IoT wearable
ECG system. This is achieved by using a k-nearest neighbor
(k-NN) binary classifier to separate signals into either class
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of acceptable or unacceptable diagnostic/monitoring quality
using signal features for training and prediction. The use of
the proposed sensors in the medical domain calls for easily
understandable systems. Studies have shown that case-based
reasoning with the potential to use retrieved cases to explain
predictions, where similarity is the basis of explanation, have
higher user approval ratings when compared to rule-based
reasoning [2], [3]. k-NN classifiers, which use distances for
similarity assessment for classification, are shown to be suit-
able for case-based reasoning models, along with the ability
to adapt to changes over time through the retention stage
[4]. Furthermore, in k-NNs, no assumptions are made on the
dataset, which is a salient requirement in healthcare devices.
Therefore, in this study, a k-NN classifier was chosen for ECG
signal acceptability assessment.

Various works on energy-efficient ECG analysis for fea-
ture extraction, data classification, etc., are available in the
literature. However, most of these works assume that the
input signals are of acceptable quality. Further processing
of signals of poor quality can lead to incorrect inferences
or false alarms, which can lead to alarm fatigue [5]. In
wearable devices, signal integrity is ensured by just performing
a simple lead-off detection check. Through this article, we
address this gap by extending the simple lead-off detection
technique to a more comprehensive acceptability detection
check. The proposed method needs to be energy-efficient, area-
efficient, and fast for real-time assessment. To achieve this,
the k-NN classifier is used in conjunction with approximate
multipliers for energy and area optimization. Here, we have
considered only the single-channel signal quality assessment
scenario, as IoT wearable devices usually have only a single
information channel. Methods for indicating signal quality as
multiple classes or continuous values that specify acceptability
of ECG signals of diagnostic quality has been discussed in
literature for the multi-channel case, with varying levels of
accuracy [6]–[8]. All these studies dealt with multi-channel
recordings using multiple features from a recording. In [7], it
was concluded that the multi-channel signal quality is easier
to be classified, for the CinC 2011 challenge dataset. In most
of the works discussed in literature, QRS detection based
signal quality indicator (SQIs)/ fiducial-feature based SQIs (F-
SQIs) are commonly used along with a large number of SQIs
for signal quality assessment. However, to achieve accurate
QRS detection, the acquired signal has to be of acceptable
quality. Therefore, QRS detection based SQIs are not ideal for
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determining the acceptability of the signal. In this article, we
propose to use two non-fiducial feature-based SQIs (NF-SQIs)
[9] for signal acceptability testing of single-channel ECG data.

II. METHODOLOGY

A. Method Outline

The methodology proposed outlines the calculation of SQI
feature vectors and a k-NN classifier for signal acceptability
testing. The flow diagram is as depicted in Fig. 1 with the
details on SQI feature extraction discussed in Section III.
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Fig. 1. Flow diagram of the proposed methodology with the details of the
SQI features extracted (kSQI and sSQI) discussed in Section III.

B. Dataset

The Physionet CinC 2017 challenge training dataset with
single-lead ECG acquired using an AliveCor mobile mea-
surement device was used to evaluate the performance of
the proposed algorithm [10]. This dataset was chosen as the
records in the dataset are a good representation of the data
that would be obtained from a typical wearable IoT device.
The dataset for this experiment constitutes all the 284 noisy
recordings in the Physionet CinC 2017 training dataset (as
per references v2 of the labels) and 284 groups of normal
recordings. The recordings were sampled at 300 Hz and were
of length 30 s or 60 s. For this experiment, the signals were
downsampled by 4 to reduce the number of computations.

III. FEATURE EXTRACTION

SQIs provide an estimate of the quality of data obtained
from wearable devices that are prone to a wide variety of
noises. The feature vectors used in this work can be derived
directly from the raw data and do not require any prior pro-
cessing or prior knowledge of fiducial points in the ECG signal
[11]. The SQIs were empirically chosen for this application
after multiple trials with various SQIs discussed in literature.
The study found that the separability between the two classes
was greater with the combination of these two SQIs.

A. Skewness SQI (sSQI)

Skewness is defined as the third standardized moment of a
random variable, an estimate of which is as per (1).

sSQI =
1
N

∑
i (si − µ̂)

3

σ̂3
, (1)

where µ̂ and σ̂ are estimates of the mean and standard
deviation of the set of samples si of size N . Skewness
measures the symmetry of the distribution. A distribution with
no outliers will be more symmetric, and consequently, have
low values of skewness [11].

B. Kurtosis SQI (kSQI)

Kurtosis is defined as the fourth standardized moment of
a random variable. Kurtosis is a measure of how sharp the
peak of the distribution is. A distribution with many outliers
is expected to have a low value of kurtosis since its probability
distribution will be flatter and will approach zero slower [11].
kSQI index has been used to assign the quality of signal
segments in [6]. kSQI is computed based on (2) [12]:

kSQI =
1
N

∑
i(si − µ̂)4

σ̂4
(2)

In this work, we divide the nth record into 3 equal
windows and compute the kSQI

(n)
i and sSQI

(n)
i

for each window indexed by i = 1, 2, 3, resulting
in a feature vector for the nth record, x(n) =
[kSQI

(n)
1 kSQI

(n)
2 kSQI

(n)
3 sSQI

(n)
1 sSQI

(n)
2 sSQI

(n)
3 ].

A single SQI value will not be able to provide a good
representation of the signal quality for the entire record, and
therefore this method is chosen. Once all the feature vectors
in the training set are computed, the features are normalized
and arranged into a matrix Z:

Z
(n)
k =

x
(n)
k − xk
σxk

(3)

where in (3), xk and σxk
indicate the mean and standard

deviation of each column, with k indicating each feature in
the training set.
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Fig. 2. Comparison bar plot of Accuracy, Sensitivity, and Specificity of an
unweighted k-NN classifier for k = 1, 3, 5, 7

IV. k-NEAREST NEIGHBOR (k-NN) CLASSIFIER

The feature vectors derived in Section III is then used by the
k-NN algorithm for classifying records into acceptable (0) and
unacceptable (1) categories. k-NN is used for this classification
task because it is well-suited for case-based decision-making
[4]. k-NN is a distance-based classifier wherein a query object
is classified based on the classes of its k nearest neighbors,
where k is a user-defined number. A majority voting approach
is used to determine the class of the query object.

k-NN has been used for real-time ECG Arrhythmia clas-
sification, as discussed in [13]. The k-NN classifier can be
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modified with new training data easily in an edge wearable
device if required during update stages. In this experiment,
the k-NN feature space is 6 dimensional and populated with
512 objects (number of training examples) during the training
phase. Euclidean distance was chosen as the distance measure.
The selection of the hyperparameter k for this experiment was
chosen based on the performance of various k values for voting
as shown in Fig. 2 The performance of the different methods
were analyzed in terms of accuracy (Acc), sensitivity (Se) and
specificity (Sp) which are calculated from the confusion matrix

From the figure, it is observed that the classifier has the
highest accuracy and sensitivity when k = 1, and therefore
the k value is set to 1 for this experiment.

V. APPROXIMATE MULTIPLIER

The implementation of the proposed technique requires
several multiplication operations. Multipliers are usually costly
in terms of power and complexity. The possibility of using
an approximate 16 × 16 multiplier for feature extraction and
classification for the implementation of the data integrity
assessment in an IoT device is explored. An area-optimized
low-latency multiplier is used for this purpose [14]. This
approximate multiplier offers 25% – 31.5% area reduction,
8.6% – 53.2% reduction in latency, and 8.86% – 67% gains
in Energy-Delay-product (EDP) when compared to the ac-
curate multiplier implementation offered by Xilinx Vivado
[15]. The multiplier method utilizes 6-input Look Up Tables
(LUTs) for the generation of approximate partial products.
The approximate multiplier works based on the approximate
multiplication of a 4-bit number A(A3A2A1A0) to a 2-bit
number B(B1B0), which generates a 6-bit output. Truncation
of the last bit in the product, P0, limits the output error to the
least significant product bit and the final output accuracy to
75% with a maximum error magnitude of "1" for all input
combinations. The approximation of any other product bit
results in a higher magnitude of error in the final output.
This method of approximation uses four 6-input LUTs for its
implementation by truncating "P0".

The implementation of a 4×4 multiplier requires two 4×2
multipliers, consuming 8 LUTs for partial products generation.
As shown in Fig. 3, the accurate summation of the approximate
partial products generated by the two 4×2 multipliers requires
the use of two carry chains. Therefore, the approximate 4× 4
multiplier, with an accurate summation of partial products,
requires 16 LUTs (2 LUTs wasted by the second carry chain).
However, the 4 × 4 multiplier design utilizes approximate
addition of the partial products and employs only 4 LUTs
for the computation of the final product.

For the design of higher-order approximate multipliers,
the approximate 4 × 2 and 4 × 4 multipliers are utilized
recursively. For example, an approximate 8× 8 multiplier can
be implemented by accurately adding the approximate partial
products generated by four instances of approximate 4 × 4
multipliers. Although in [14], the authors discuss unsigned
number multiplications, we use a signed-unsigned converter to
carry out signed number multiplication using the approximate

PP1<5>    PP1<4>    PP1<3>    PP1<2>    PP1<1>    PP1<0>

PP0<5>    PP0<4>    PP0<3>    PP0<2>    PP0<1>    PP0<0>

P7             P6             P5             P4             P3             P2             P1             P0

Accurate Summation

Approximate Summation
PP0<X>: Result of first 4 X 2 Multiplier
PP1<X>: Result of second 4 X 2 Multiplier

Fig. 3. 4× 4 multiplier using two 4× 2 multipliers [14].

TABLE I
PERFORMANCE OF k-NN IN IDENTIFYING NOISY RECORDS

Acc (%) Se (%) Sp (%)
Accurate Multiplier 97.18 95.42 98.94

Approximate Multiplier 96.48 94.01 98.94

unsigned multiplier. The approximate 16 × 16 multiplier dis-
cussed has an average dynamic power of 2535.1323 µW with
a total delay of 7.328 ns, yielding an EDP of 0.5445× 10−18

Js.

VI. RESULTS

A. Performance Analysis

The results and performance comparison of the k-NN
classifier with the 10-fold cross-validation method, utilizing
the features generated using both accurate and approximate
multipliers is shown in Table I. During prediction, the k-NN
classifier presented an accuracy of 97.18% and a high detection
sensitivity of 95.42%. Energy consumption drops significantly
when using a 16 × 16 approximate multiplier, instead of
accurate multipliers, and these results are discussed in the next
section. However, as a tradeoff, the detection sensitivity drops
to an acceptable 94.01%. Utilizing a large and diverse dataset
can further improve the performance of the k-NN classifier,
but this leads to an increase in the number of objects stored
in the feature space and thereby increases the search cost.

The box plot of accuracy values over 10-fold cross-
validation with the accurate multiplier and approximate mul-
tiplier is as shown in Fig. 4 for performance comparison over
all folds testing.
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Fig. 4. Boxplot of accuracy values during testing over the 10 folds.
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TABLE II
MULTIPLIERS REQUIRED AT EACH STAGE FOR QUALITY ASSESSMENT OF

ONE RECORD

Multiplications Total EDP (f Js)
Feature
Generat-

ion

Normal-
ization

k-NN
Classifi-
cation

Total AOAM SOAM Approx-
imate

6585 6 8704 15301 12.728 8.974 8.332

TABLE III
COMPARISON OF THE BEST PERFORMING CLASSIFIER WITH

STATE-OF-THE-ART ECG RECORD QUALITY ASSESSMENT ALGORITHMS

Article G. Clifford
et. al [7]

Q. Li
et. al [6] This work

Dataset CinC 2011
challenge: Set B

CinC 2011
challenge: Set B

Subset of Cinc ’17
challenge: training

Method F and NF SQIs;
ML and fusion

F and NF
SQIs, SVM

NF SQIs;
ML

Accuracy 92.6% 80.26% 96.48%

B. Complexity Calculation

The computational complexity of the proposed algorithm is
evaluated in terms of the number of multiplications required
for quality assessment of a 30-second long record. Feature
extraction and normalization stages require a total of 6591
multiplications. Computations of kSQI and SSQI can share
a few multipliers. The shared number of multipliers required
was 4386. Computation of kSQI alone using the shared values
requires 2187 multiplications while sSQI specific calculation
requires 12 multiplications. Six multipliers are required for the
normalizing stage.

For estimating the computational complexity of the k-NN
classifier, the Euclidean distance calculation complexity to
each object needs to be evaluated. k-NN- with 512 training
examples- requires approximately 8704 multiplications for
classifying a record based on its features. Table II summarises
these values as well as the improvement in EDP when using
an approximate multiplier compared to accurate multipliers.
For this comparison, Xilinx’s area/speed optimized accurate
16 × 16 signed multiplier is used. All the values of power
and total delay are obtained using Vivado 17.4 for Xilinx
Virtex-7 xc7v585tffg1157-3 FPGA for verification purposes
and the results could be extended to a standard cell-based or
custom integrated circuit implementation. The EDP of the area
optimized 16 × 16 accurate multiplier (AOAM) with a total
delay of 5.035 ns and dynamic power of 8203.109 µW was
found to be 0.8318 × 10−18 Js, while the EDP of the speed
optimized 16 × 16 accurate multiplier (SOAM) with a total
delay of 4.269 ns and dynamic power of 8045.487 µW was
found to be 0.5864×10−18 Js. From Table II, we observe that
the proposed use of an approximate multiplier in place of an
accurate multiplier exhibits good improvements in EDP.

The performance of the discussed SQI-based k-NN classifier
using approximate multiplications is compared against the
performance of state-of-the-art ECG record quality assessment
algorithms in Table III and it can be observed that the proposed
algorithm exhibits the best performance.

VII. CONCLUSIONS

This article explores the possibility of data integrity assess-
ment of ECG signals on wearable devices using approximate
multiplier based computing. To improve the quality of the
signal acquired, records of poor signal quality need to be
discarded and re-recorded, calling for algorithms that are
highly sensitive to poor signal quality. The method discussed
uses kurtosis SQI and skewness SQI as features for data
integrity assessment using a k-NN classifier. The experiment
carried out proves that approximate multipliers can be used
for data integrity assessment, in place of accurate multipliers,
with just a slight drop in sensitivity but with gain in EDP,
which is an important consideration in wearable devices. This
would be a helpful add-on to IoT physiological monitoring
devices that are currently available.
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