Press Releases

When electrons spin differently - Prof. Xinliang Feng contributed to Nature Paper

Graphene nanoribbons: it's all about the edges

Published on in PRESS RELEASES

Photo: empa (edited by cfaed)

[Deutsche Version unten]

As reported by the journal Nature in its latest issue, researchers from Empa, the Max Planck Institute in Mainz and the Technical University of Dresden have for the first time succeeded in producing graphene nanoribbons with perfect zigzag edges from molecules. Electrons on these zigzag edges exhibit different (and coupled) rotational directions ("spin"). This could make graphene nanoribbons the material of choice for electronics of the future, so-called spintronics.

As electronic components are becoming ever smaller, the industry is gradually approaching the limits of what is achievable using the traditional approach with silicon as a semiconductor material. Graphene, the material with a number of "miraculous" properties, is considered a possible replacement. The one atom thin carbon film is ultra-light, extremely flexible and highly conductive. However, in order to be able to use graphene for electronic components such as field effect transistors, the material has to be "transformed" into a semiconductor. This was achieved by Empa scientists some time ago using a newly developed method - in 2010, they presented, for the first time, graphene nanoribbons (GNR) only a few nanometres wide with precisely shaped edges. For this, the ribbons were grown on a metal surface from specifically designed precursor molecules. The narrower the ribbons, the larger their electronic band gap - i.e. the energy range in which no electrons can be located, which is responsible for ensuring that an electronic switch (for example, a transistor) can be turned on and off. The Empa researchers were then also able to "dope" the nanoribbons, i.e. to furnish the ribbons with impurity atoms such as nitrogen at certain points, in order to influence the electronic properties of the graphene ribbons even more.

The perfect blueprint

In the paper now published in Nature, the Empa team led by Roman Fasel reports, together with colleagues from the Max Planck Institute for Polymer Research in Mainz, headed by Klaus Müllen, and from the Technical University of Dresden led by Xinliang Feng, how it managed to synthesise GNR with perfectly zigzagged edges using suitable carbon precursor molecules and a perfected manufacturing process. The zigzags followed a very specific geometry along the longitudinal axis of the ribbons. This is an important step, because researchers can thus give graphene ribbons different properties via the geometry of the ribbons and especially via the structure of their edges.

As with floor tiling, the right tiles - or precursor molecules - for the synthesis on the surface first had to be found for the specific pattern of the zigzag graphene ribbons. Unlike in organic chemistry, which takes the occurrence of by-products into account on the path to achieving a pure substance, everything had to be designed for the surface synthesis of the graphene ribbons so that only a single product was produced. The scientists repeatedly switched back and forth between computer simulations and experiments, in order to design the best possible synthesis. With molecules in a U-shape, which they allowed to grow together to form a snake-like shape, and additional methyl groups, which completed the zigzag edges, the researchers were able to finally create a "blueprint" for GNR with perfect zigzag edges. To check that the zigzag edges were exact down to the atom, the researchers investigated the atomic structure using an atomic force microscope (AFM). In addition, they were able to characterise the electronic states of the zigzag edges using scanning tunnelling spectroscopy (STS).

Using the internal spin of the electrons

And these display a very promising feature. Electrons can spin either to the left or to the right, which is referred to as the internal spin of electrons. The special feature of the zigzag GNR is that, along each edge, the electrons all spin in the same direction; an effect which is referred to as ferro-magnetic coupling. At the same time, the so-called antiferromagnetic coupling ensures that the electrons on the other edge all spin in the opposite direction. So the electrons on one side all have a "spin-up" state and on the other edge they all have a "spin-down" state.

Thus, two independent spin-channels with opposite "directions of travel" arise on the band edges, like a road with separated lanes. Via intentionally integrated structural defects on the edges or - more elegantly - via the provision of an electrical, magnetic or optical signal from the outside, spin barriers and spin filters can thus be designed that require only energy in order to be switched on and off - the precursor to a nanoscale and also extremely energy efficient transistor.
Possibilities such as this make GNR extremely interesting for spintronic devices; these use both the charge and the spin of the electrons. This combination is prompting scientists to forecast completely new components, e.g. addressable magnetic data storage devices which maintain the information that has been fed in even after the power has been turned off.

This work was supported by the Swiss National Science Foundation (SNSF), the European Research Council (ERC) and the US Office of Naval Research (ONR).

Reference:
On-surface synthesis of graphene nanoribbons with zigzag edge topology, P Ruffieux, S Wang, B Yang, C Sanchez, J Liu, T Dienel, L Talirz, P Shinde, CA Pignedoli, D Passerone, T Dumslaff, X Feng, K Müllen, R Fasel, Nature (2016), doi: 10.1038/nature17151

Further information:
Dr Pascal Ruffieux, nanotech@surfaces, Phone +41 58 765 46 93, pascal.ruffieux@empa.ch
Prof Dr Roman Fasel, nanotech@surfaces, Phone +41 58 765 43 48, roman.fasel@empa.ch

Press contact:
Prof. Xinliang Feng
Technische Universität Dresden
cfaed Chair of Molecular Functional Materials
01062 Dresden
Phone: +49 351 463-43251
Mail: xinliang.feng@tu-dresden.de


Image captions:

Pattern template for graphene nanoribbons: Depending on the direction of the ribbon axis, graphene nanoribbons have an armchair edge (orange) or a zigzag edge (blue).

"Blueprint" for the fabrication of zigzag graphene nanoribbons using a specifically synthesised precursor molecule.

Illustration of a graphene nanoribbon with zigzag edges and the precursor molecules used in its manufacture. Electrons on the two zigzag edges display opposite directions of rotation (spin) - "spin-up" on the bottom edge (red) or "spin-down" on the top edge (blue).

Atomic force microscopy image of the atomic structure of a zigzag graphene nanoribbon.

The images can be downloaded at http://plus.empa.ch/images/2016-03-24-GNR-Zigzag/


Wenn Elektronen unterschiedlich "spinnen" - Prof. Xinliang Feng an aktuellem 'Nature'-Beitrag beteiligt

Graphen-Nanobänder: Auf die Ränder kommt es an

Wie die Fachzeitschrift Nature in ihrer aktuellen Ausgabe berichtet, ist es Forschern der Empa, des Max-Planck-Instituts in Mainz und der TU Dresden erstmals gelungen, aus Molekülen Graphen-Nanobänder mit perfektem Zickzackrand herzustellen. Die Atome der Ränder verfügen über Elektronen mit unterschiedlichem (und gekoppeltem) Drehsinn («Spin»). Dieser könnte Graphen-Nanobänder zum Werkstoff der Wahl für eine Elektronik der Zukunft machen, die so genannte Spintronik.

Weil elektronische Bauteile immer kleiner werden, stösst die Industrie mit dem traditionellen Silizium als Halbleitermaterial allmählich an ihre Grenzen. Graphen, der Stoff mit etlichen «wundersamen» Eigenschaften, gilt als möglicher Ersatz. Die nur ein Atom dünne Kohlenstoffschicht ist ultraleicht, äußerst flexibel und außerordentlich leitfähig. Um Graphen indes für elektronische Bauteile wie Feldeffekt-Transistoren nutzen zu können, muss das Material in einen Halbleiter "verwandelt" werden; dies gelang Empa-Wissenschaftler vor einiger Zeit mit Hilfe einer neu entwickelten Methode: 2010 stellten sie erstmals nur wenige Nanometer breite Graphen-Nanobänder (graphene nanoribbons, GNR) mit präzis geformten Rändern her. Dazu ließen sie die Bänder auf einer Metalloberfläche gezielt aus ausgewählten Vorläufermolekülen wachsen. Je schmaler die Bänder, desto größer war deren elektronische Bandlücke – also der Energiebereich, in dem sich keine Elektronen befinden können, und der dafür verantwortlich ist, dass ein elektronischer Schalter (z.B. ein Transistor) ein- bzw. ausgeschaltet werden kann. Es gelang den Empa-Forschern in der Folge auch, die Nanobänder zu dotieren, d.h. an bestimmten Stellen mit Fremdatomen wie Stickstoff zu versehen, um die elektronischen Eigenschaften der Graphenbänder noch weiter zu beeinflussen.

Der perfekte Bauplan

In der nun in Nature veröffentlichten Arbeit berichtet das Empa-Team um Roman Fasel zusammen mit Kollegen vom Max-Planck-Institut für Polymerforschung in Mainz unter der Leitung von Klaus Müllen und von der Technischen Universität Dresden um Xinliang Feng, wie sie aus geeigneten Kohlenstoff-Vorläufermolekülen und dank perfektioniertem Herstellungsprozess GNR mit perfekt zickzackförmigen Rändern synthetisierten, die einer ganz bestimmten Geometrie entlang der Längsachse des Bandes folgen. Ein wichtiger Schritt, denn durch die Geometrie der Bänder und vor allem durch die Struktur deren Ränder können die Forscher den Graphenbändern unterschiedliche Eigenschafen verleihen.

Wie beim Fliesenlegen mussten für das Muster des Zickzack-Graphenbandes vorgängig die richtigen Fliesen bzw. Vorläufermoleküle für die Synthese an der Oberfläche gefunden werden. Anders als in der organischen Chemie, die auf dem Weg zu einer reinen Substanz auch Nebenprodukte in Kauf nimmt, muss bei der Oberflächen-Synthese der Graphenbänder alles so angelegt sein, dass nur ein einziges Produkt entsteht. Wiederholt wechselten die Wissenschaftler zwischen Computersimulation und Experiment hin und her, um den bestmöglichen Syntheseweg zu entwerfen. Mit Molekülen in U-Form, die sie zu einer Schlangenlinie zusammenwachsen ließen, und zusätzlichen Methylgruppen, die die Zickzackränder vervollständigten, gelang es den Forschern schließlich, einen "Bauplan" für GNR mit perfektem Zickzackrand zu erstellen. Dass die Zickzackränder aufs Atom genau stimmten, überprüften die Forscher, indem sie die atomare Struktur mit dem Rasterkraftmikroskop (Atomic Force Microscope, AFM) untersuchten. Darüber hinaus gelang es ihnen, die elektronischen Zustände der Zickzackränder mittels Rastertunnelspektroskopie (Scanning Tunneling Spectroscopy, STS) zu charakterisieren.

Den inneren Drehsinn der Elektronen nutzen

Und genau diese zeigen eine vielversprechende Besonderheit. Elektronen können sich entweder links- oder rechts herum drehen, man spricht vom inneren Drehsinn ("Spin") der Elektronen. Das Spezielle an den Zickzack-GNR: Entlang der beiden Ränder richten sich die Elektronenspins jeweils alle gleich aus; ein Effekt, den man als ferromagnetische Kopplung bezeichnet. Gleichzeitig sorgt die so genannte antiferromagnetische Kopplung dafür, dass sich die Elektronenspins an gegenüberliegenden Rändern umgekehrt ausrichten. An einem Rand des Bandes befinden sich die Elektronen also alle im "spin-up"-, am anderen im "spin-down"-Zustand.

So lassen sich an den Bandrändern zwei voneinander unabhängige Spin-Kanäle mit unterschiedlicher "Fahrtrichtung" erschließen, ähnlich einer Autobahn mit getrennten Fahrbahnen. Über gezielt eingebaute strukturelle Defekte an den Rändern oder – etwas eleganter – über ein elektrisches, magnetisches oder optisches Signal von außen sollten sich so beispielsweise Spin-Barrieren und -Filter entwerfen lassen, die nur noch zum An- und Abschalten Energie benötigen – die Vorstufe eines nanoskaligen und höchst energieeffizienten Transistors.

Möglichkeiten wie diese machen GNR für spintronische Anwendungen bzw. Bauelemente extrem interessant; diese nutzen sowohl die Ladung als auch den Spin der Elektronen. Aus dieser Kombination versprechen sich Forscher völlig neuartige Komponenten, etwa adressierbare magnetische Datenspeicher, die eingespeiste Informationen auch nach dem Abschalten des Stroms noch beibehalten.

Diese Arbeit wurde vom Schweizerischen Nationalfonds (SNF), vom Europäischen Forschungsrat (ERC) und vom US-Office of Naval Research (ONR) unterstützt.

 

Literaturhinweis:
On-surface synthesis of graphene nanoribbons with zigzag edge topology, P Ruffieux, S Wang, B Yang, C Sanchez, J Liu, T Dienel, L Talirz, P Shinde, CA Pignedoli, D Passerone, T Dumslaff, X Feng, K Müllen, R Fasel, Nature (2016), doi: 10.1038/nature17151

Weitere Informationen:
Dr Pascal Ruffieux, nanotech@surfaces, Phone +41 58 765 46 93, pascal.ruffieux@empa.ch
Prof Dr Roman Fasel, nanotech@surfaces, Phone +41 58 765 43 48, roman.fasel@empa.ch

Pressekontakt:
Prof. Xinliang Feng
Technische Universität Dresden
cfaed Chair of Molecular Functional Materials
01062 Dresden
Phone: +49 351 463-43251
Mail: xinliang.feng@tu-dresden.de

 

Bildunterschriften:

"Schnittmuster" für Graphen-Nanobänder: Abhängig von der Richtung der Bandachse weisen Graphen-Nanobänder einen Sesselrand ("armchair", orange) oder einen Zickzackrand ("zigzag", blau) auf.
 
"Bauplan" für die Herstellung von Zickzack-Graphen-Nanobändern aus spezifisch synthetisierten Vorläufermolekülen.

Illustration eines Graphen-Nanobandes mit Zickzackrändern und der für dessen Herstellung verwendeten Vorläufermoleküle. Elektronen an den beiden Zickzackrändern weisen entgegengesetzten Drehsinn ("spin") auf - "spin-up" am unteren (rot) bzw. "spin-down" am oberen Rand (blau).

Rasterkraftmikrosopie-Aufnahme der atomaren Struktur eines Zickzack-Graphen-Nanobandes.

Die Bilder können Sie hier herunterladen.

Go back